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Introduction to Optimal Quantization History

What is Quantization?

Has its origin in the fields of signal processing in the late 1940’s

Describes the discretization of a random signal and analyses the
recovery of the original signal from the discrete one

Examples: Pulse-Code-Modulation(PCM), JPEG-Compression

Extensive Survey about the IEEE-History: [Gray/Neuhoff ’98]

Mathematical Foundation of Quantization Theory:
[Graf/Luschgy ’00]
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Introduction to Optimal Quantization Definition

Definition of Optimal Quantization

Let X : (Ω,S,P)→ (Rd,Bd) be a random vector with values in a
normed space (Rd, ‖·‖) and

E‖X‖p <∞

for some p ∈ [1,∞).
The p-th quantization error for a grid Γ ⊂ Rd with size |Γ| ≤ n, n ∈ N
is given by

ep(X; Γ) = Edist(X,Γ)p = Emin
x∈Γ
‖X − x‖p. (1)

The optimal quantization problem consists in minimizing (1) over all
grids of size |Γ| ≤ n.

We define the optimal quantization error of level n as

epn(X) := inf
{
Emin
x∈Γ
‖X − x‖p : Γ ⊂ Rd, |Γ| ≤ n

}
.
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Introduction to Optimal Quantization Quantization Rates/Zador Theorem

Rates of Optimal Quantization

The sharp asymptotics for the optimal quantization error are known
from Zador’s theorem, which reads in its final version as follows:

Theorem (Zador, Kiefer, Bucklew & Wise, Graf & Luschgy, cf.
[Graf/Luschgy ’00])

Let X ∈ Lr(Rd), r > p and denote by ϕ the λd-density of the absolutely
continuous part of PX .
Then

lim
n→∞

np/d · epn(X) = Qp,‖·‖ ·
(∫

Rd

‖ϕ‖d/(d+p) dλd
)(d+p)/d

where Qp,‖·‖ = limn→∞ n
p/d · epn

(
U([0, 1]d)

)
.
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Introduction to Optimal Quantization Voronoi Quantizer

Voronoi-Quantization

Given a quantization grid Γ = {x1, x2, . . . , xn}, we can easily construct
a discretization of the random vector X:

Let
(
Ci(Γ)

)
1≤i≤n be a Voronoi partition of Rd generated by Γ, i.e.(

Ci(Γ)
)

is a Borel partition of Rd satisfying

Ci(Γ) ⊂
{
z ∈ Rd : ‖z − xi‖ ≤ min

1≤j≤n
‖z − xj‖

}
.

Let πΓ : Rd → Γ the Nearest Neighbor projection,

z 7→
n∑
i=1

xi1Ci(Γ)(z).

⇒ We define the Voronoi Quantization as

X̂Γ = πΓ(X) =

n∑
i=1

xi1Ci(Γ)(X).
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PAGÈS/WILBERTZ (LPMA-UPMC) Dual Quantization Tamerza 5 / 49



Introduction to Optimal Quantization Voronoi Quantizer

Voronoi-Quantization

Given a quantization grid Γ = {x1, x2, . . . , xn}, we can easily construct
a discretization of the random vector X:

Let
(
Ci(Γ)

)
1≤i≤n be a Voronoi partition of Rd generated by Γ, i.e.(

Ci(Γ)
)

is a Borel partition of Rd satisfying

Ci(Γ) ⊂
{
z ∈ Rd : ‖z − xi‖ ≤ min

1≤j≤n
‖z − xj‖

}
.

Let πΓ : Rd → Γ the Nearest Neighbor projection,

z 7→
n∑
i=1

xi1Ci(Γ)(z).

⇒ We define the Voronoi Quantization as

X̂Γ = πΓ(X) =

n∑
i=1

xi1Ci(Γ)(X).
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Introduction to Optimal Quantization Voronoi Quantizer

Voronoi-Quantization

One easily shows

epn(X) = inf
{
E‖X − X̂‖p : X̂ ∈ Lp(Rd), |X̂(Ω)| ≤ n

}
.

⇒ The Voronoi Quantization X̂Γ provides an optimal Lp-mean
discretization of X as soon as Γ is an optimal quantization grid for
X.

A further characterization for the optimal quantization error is given by

epn(X) = inf
{
E‖X − f(X)‖p : f : Rd → Rd Borel mb, |f(Rd)| ≤ n

}
,

⇒ The Nearest Neighbor projection is the coding rule, which yields
the smallest Lp-mean approximation error for X.
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Introduction to Optimal Quantization Optimal Quantizers

Figure: A Quantizer for N (0, I2) of size 500 in (R2, ‖·‖2).
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Quantization and Cubature A Cubature formulae

Quantization for Cubature

Application as Cubature formula
Assume that we have access to the Voronoi-Cell weights

wi(Γ) := P(X ∈ Ci(Γ)).

⇒ The computation of EF (X̂Γ) for some Lipschitz continuous
F : Rd → R becomes straightforward:

EF (X̂Γ) = EF
( n∑
i=1

xi1Ci(Γ)(X)
)

=
∑
i=1

wi(Γ)F (xi).

As a first error estimate, we clearly have

|EF (X)− EF (X̂Γ)| ≤ [F ]Lip E‖X − X̂Γ‖.
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Quantization and Cubature A Cubature formulae

Quantization for Cubature

Second order rate

If F ∈ C1
Lip and the grid Γ is a stationary, i.e.

X̂Γ = E(X|X̂Γ),

then a Taylor expansion yields

|EF (X)− EF (X̂Γ)| ≤ [F ′]Lip · E‖X − X̂Γ‖2.

Furthermore, if F is convex, then Jensen’s inequality implies for
stationary Γ

EF (X̂Γ) ≤ EF (X).
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Quantization and Cubature Applications

Further Applications

Applications for optimal quantization grids

Approximation of conditional expectations in non-linear problems by
means of the Backward Dynamic Programming Principle

Obstacle Problems: Valuation of Bermudan and American options
([Bally/Pagès ’03])

δ-Hedging for American options ([Bally/Pagès/Printems ’05])

Optimal Stochastic Control problems, e.g. Pricing of Swing
options ([Bronstein/Pagès/W. ’09] and
[Bardou/Bouthemy/Pagès ’09])
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Dual Quantization Idea

Dual Quantization

Idea

Do not map X(ω) to its nearest neighbor, but split up the projection
randomly between the “surrounding” neighbors of X(ω).
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Dual Quantization Idea

Dual Quantization
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λ
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Dual Quantization Stationary Operators

Ideas behind Dual Quantization

Suppose that τ = {t1, . . . , td+1} ⊂ Rd spans a d-simplex in Rd, i.e.
t1, . . . , td+1 are affinely independent.

Moreover, let U ∼ U [0, 1] be defined on some exogenous probability
space (Ω0,S0,P0).
Denoting by λ(ξ) the barycentric coordinate of ξ ∈ conv{τ}, we define
a dual quantization operator J Uτ : conv{τ} → τ as

ξ 7→
d+1∑
i=1

ti1{i−1∑
j=1

λj(ξ)≤U <
i∑

j=1
λj(ξ)

}.
This operator satisfies a mean preserving property:

E0

(
J Uτ (ξ)

)
=

d+1∑
i=1

λi(ξ) · ti = ξ, ∀ξ ∈ conv{τ}. (2)

Similarly, we can construct such an operator for any triangulation on a
grid Γ = {x1, . . . , xn}, so that (2) holds for any ξ ∈ conv{Γ}.
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PAGÈS/WILBERTZ (LPMA-UPMC) Dual Quantization Tamerza 14 / 49



Dual Quantization Stationary Operators

Ideas behind Dual Quantization

Suppose that τ = {t1, . . . , td+1} ⊂ Rd spans a d-simplex in Rd, i.e.
t1, . . . , td+1 are affinely independent.
Moreover, let U ∼ U [0, 1] be defined on some exogenous probability
space (Ω0,S0,P0).
Denoting by λ(ξ) the barycentric coordinate of ξ ∈ conv{τ}, we define
a dual quantization operator J Uτ : conv{τ} → τ as

ξ 7→
d+1∑
i=1

ti1{i−1∑
j=1

λj(ξ)≤U <
i∑

j=1
λj(ξ)

}.
This operator satisfies a mean preserving property:

E0

(
J Uτ (ξ)

)
=

d+1∑
i=1

λi(ξ) · ti = ξ, ∀ξ ∈ conv{τ}. (2)

Similarly, we can construct such an operator for any triangulation on a
grid Γ = {x1, . . . , xn}, so that (2) holds for any ξ ∈ conv{Γ}.
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Suppose that τ = {t1, . . . , td+1} ⊂ Rd spans a d-simplex in Rd, i.e.
t1, . . . , td+1 are affinely independent.
Moreover, let U ∼ U [0, 1] be defined on some exogenous probability
space (Ω0,S0,P0).
Denoting by λ(ξ) the barycentric coordinate of ξ ∈ conv{τ}, we define
a dual quantization operator J Uτ : conv{τ} → τ as
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ti1{i−1∑
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i∑
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}.
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Dual Quantization Stationary Operators

Stationarity

Motivated by this observation, we call a random splitting operator
JΓ : Ω0 × Rd → Γ for a grid Γ ⊂ Rd intrinsic stationary, if

E0

(
JΓ(ξ)

)
= ξ, ∀ξ ∈ conv{Γ}.

The deeper meaning of this definition is revealed by the following
Proposition.

Proposition

JΓ is intrinsic stationary, if and only if it satisfies the stationarity
condition

EP⊗P0

(
JΓ(Y )|Y

)
= Y

for any r.v. Y : (Ω,S,P)→ (Rd,Bd) with supp(PY ) ⊂ conv{Γ}.

Note that this kind of stationarity now is very robust, since it holds by
construction for any r.v. Y with support in Γ.
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Dual Quantization Stationary Operators

Stationarity II

As in the case of regular quantization, this kind of stationarity also
yields a second order bound.

Proposition

(a) Let F ∈ C1
Lip, Γ ⊂ Rd and JΓ be intrinsic stationary. Then it holds

for any r.v. Y ∈ L2(P) with supp(PY ) ⊂ conv{Γ},

|EF (Y )− EF (JΓ(Y )| ≤ [F ′]Lip · E‖Y − JΓ(Y )‖2.

(b) If F is convex, then Jensen’s inequality implies

EF (JΓ(X)) ≥ EF (X)
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Dual Quantization Definition Dual Quantization

Question

What is the best approximation, which can be achieved by an intrinsic
stationary operator JΓ for a given grid Γ of size n ∈ N?

Problem: The grid Γ gives raise to many possible triangulations.

We aim at selecting the triangulation with the lowest p-inertia i.e. to
solve

∀ ξ∈ conv(Γ), F p(ξ; Γ) = min
λ∈Rn

n∑
i=1

λi ‖ξ − xi‖p

s.t. [x1 ... xn
1 ... 1 ]λ=

[
ξ
1

]
, λ≥0

For every ξ ∈ conv(Γ) we choose the best “triangle” in Γ which
contains ξ.
B The optimal p-th dual quantization error is then defined as

dpn(X) = inf
{
EF p(X; Γ) : Γ ⊂ Rd, |Γ| ≤ n

}
.
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Dual Quantization Definition Dual Quantization

Optimality regions for F p(ξ; Γ)

B To design the optimal dual quantization operator matching F p(ξ; Γ),
we need optimality regions, counterparts of the Voronoi regions for
regular quantization.

B (λi)1≤i≤n 7→ minλ∈Rn

∑n
i=1 λi ‖ξ − xi‖p

s.t. [x1 ... xn
1 ... 1 ]λ=

[
ξ
1

]
, λ≥0

atteins a minimum (at least)

at an extremal n-tuple λ∗(ξ) of the convex constraint set.

Therefore, I∗(ξ) := {i : λ∗i (ξ) > 0} defines an affinely independent
family (xi)i∈I∗(ξ) which can be completed into a Γ-valued affine basis.

DI(Γ) =
{
ξ ∈ Rd : ∃I∗(ξ) ⊂ I},
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Dual Quantization Definition Dual Quantization

or equivalently in term of linear programming

DI(Γ) =
{
ξ ∈ Rd : λI = A−1

I

[
ξ
1

]
≥ 0 and

∑
i∈I

λIi ‖ξ − xi‖p = F p(ξ; Γ)
}
,

where

I ∈ I(Γ) =
{
J ⊂ {1, . . . , n} : |J | = d+ 1, rk(AJ) = d+ 1

}
and AI denotes the submatrix of

[ x1 ... xn
1 ... 1

]
whose columns are given by

I.
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Dual Quantization Properties of Dual Quantization

Quadratic Euclidean case

In the case ‖·‖ = |·|2 and p = 2,

optimality regions are to Delaunay “triangles” in Γ,

i.e. the sphere spanned by such a d-simplex contains no further point
in its interior.

The following theorem is an extention of an important theorem by
Rajan ([Rajan ’91]).

Theorem

Let ‖·‖ = |·|2, p = 2, and Γ = {x1, . . . , xn} ⊂ Rd with aff.dim{Γ} = d.
(a) If I ∈ I(Γ) defines a Delaunay triangle (or d-simplex), then

λI = A−1
I

[
ξ
1

]
provides a solution to F p(ξ; Γ) for every ξ ∈ conv{xj : j ∈ I} i.e.

DI(Γ) = conv{xj : j ∈ I}.

(b) Conversly, if f I ∈ I(Γ) satisfies D̊I(Γ) 6= ∅, then the triangle (or
d-simplex) defined by I has the Delaunay property for Γ.
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Dual Quantization Properties of Dual Quantization

Optimal dual quantization operator

For a Γ = {x1, . . . , xn} ⊂ Rd with aff. dim{Γ} = d,

choose a Borel partition (CI(Γ))I∈I(Γ) of conv{Γ} such that

CI(Γ) ⊂ DI(Γ),

let U ∼ U [0, 1] on (Ω0,S0,P0).

The optimal dual quantization operator J ∗Γ is defined as

J ∗Γ (ξ) =
∑

I∈I(Γ)

[
k∑
i=1

xi · 1{i−1∑
j=1

λIj (ξ)≤U<
i∑

j=1
λIj (ξ)

}]1CI(Γ)(ξ).

One easily checks that this operator is intrinsic stationary.
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Dual Quantization Properties of Dual Quantization

Equivalence of optimal dual quantization

The operator J ∗Γ then leads to the following characterizations of the
optimal dual quantization error:

Theorem ([Pagès/W. ’10a])

Let X ∈ Lp(P) and n ∈ N. Then

dpn(X) =

inf
{
E‖X − JΓ(X)‖p : JΓ : Ω0 × Rd → Γ is intrinsic stationary,

supp(PX) ⊂ conv{Γ}, |Γ| ≤ n
}

= inf
{
E‖X − Ŷ ‖p : Ŷ is a r.v. on (Ω× Ω0,S ⊗ S0,P⊗ P0),

|Ŷ (Ω× Ω0)| ≤ n, E(Ŷ |X) = X
}
.
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Theorem ([Pagès/W. ’10a])

Let X ∈ Lp(P) and n ∈ N. Then

dpn(X) =

inf
{
E‖X − JΓ(X)‖p : JΓ : Ω0 × Rd → Γ is intrinsic stationary,

supp(PX) ⊂ conv{Γ}, |Γ| ≤ n
}

= inf
{
E‖X − Ŷ ‖p : Ŷ is a r.v. on (Ω× Ω0,S ⊗ S0,P⊗ P0),

|Ŷ (Ω× Ω0)| ≤ n, E(Ŷ |X) = X
}
.
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Dual Quantization Unbounded support

Extension to unbounded support

Since it is not possible to obtain intrinsic stationarity for ξ /∈ conv{Γ},
we have to limit the claim for stationarity to a subset of supp(PX) in
order to extend the dual quantization problem to distributions with
unbounded support.
We therefore drop the requirement supp(PX) ⊂ conv{Γ} in above
theorem and set

d̄pn(X) = inf
{
E‖X − JΓ(X)‖p : JΓ is intrinsic stationary, |Γ| ≤ n

}
.

This means that we use a Nearest Neighbor projection beyond conv{Γ}
while preserving stationarity in the interior of conv{Γ}.
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Dual Quantization Existence

Existence of optimal dual quantizers

Theorem ([Pagès/W. ’10a])

(a) Let p > 1 and assume that PX has a compact support. Then for
every n ≥ d+ 1 optimal dual quantizers actually exist, i.e. the dual
quantization problem dpn(X) attains its infimum. Moreover, dpn(X) is
(strictly) decreasing to 0 as n→∞, if it does not vanish.

(b) Let p > 1 and assume that the distribution PX is strongly
continuous. Then also optimal quantizers for d̄pn(X) exists and d̄pn(X)
is (strictly) decreasing to 0 as n→∞, if it does not vanish.
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Dual Quantization Asymptotics

Asymptotic behavior

Theorem ([Pagès/W. ’10b])

(a) Let X ∈ Lp+(Rd) and denote by ϕ the λd-density of the absolutely
continuous part of PX .

Then

lim
n→∞

np/d · d̄pn(X) = Qd,p,‖·‖ ·
(∫

Rd

ϕd/(d+p) dλd
) d+p

d

where Qd,p,‖·‖ = lim
n→∞

np/d · dpn
(
U([0, 1]d)

)
.

(b) If d = 1, Qd,p,‖·‖ = 2p+1

p+2 lim
n→∞

np/d · epn
(
U([0, 1])

)
. If d ≥ 2, ???
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Dual Quantization Asymptotics

Asymptotic behavior

Sketch of the proof

Prove existence of the limit for U([0, 1]d)

Derive upper and lower bounds for piecewise constant densities
(with compact support) on hypercubes

Use Differentiation of measure to cover the general case (still
compact support)

Random dual quantization argument (so-called extended Pierce
Lemma) to get the unbounded case.
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PAGÈS/WILBERTZ (LPMA-UPMC) Dual Quantization Tamerza 26 / 49



Dual Quantization Asymptotics

Asymptotic behavior

Sketch of the proof

Prove existence of the limit for U([0, 1]d)

Derive upper and lower bounds for piecewise constant densities
(with compact support) on hypercubes

Use Differentiation of measure to cover the general case (still
compact support)

Random dual quantization argument (so-called extended Pierce
Lemma) to get the unbounded case.
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Dual Quantization Numerical computations
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Figure: Dual Quantization for U([0, 1]2) and n = 8
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Dual Quantization Numerical computations
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Figure: Dual Quantization for N (0, I2) and N = 250
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Dual Quantization Numerical computations

Figure: Joint Dual Quantization of the BM and its supremum, N = 250
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Applications Problem description

Numerical Applications

Pricing of Early Exercise Options:

Using a Backward-Dynamic-Programming principle for the valuation of
early exercise options with underlying Markov dynamics (Xk)1≤k≤N
the numerical challenge in this approach consists in the approximation
of conditional expectations

E
(
vk+1(Xk+1)|Xk

)
.

As in the case of Quantization for numerical cubature, we may replace
the Markov chain (Xk) by a Quantization (X̂k), so that the the
computation of E

(
f(Xk+1)|Xk

)
becomes straightforward as

E(f(X̂k+1)|X̂k = xki ) =

nk+1∑
j=1

f(xk+1
j )πkij ,

with transition probabilities

πkij = P(X̂k+1 = xk+1
j |X̂k = xki ).
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Applications Problem description

Numerical Applications

For the approximation error the following result can be derived.

Proposition

If the mappings f : Rd → R and

Φf,k : Rd → R, x 7→ E
(
f(Xk+1)|Xk = x

)
are Lipschitz, then it holds

‖E(f(Xk+1)|Xk)− E(f(X̂k+1)|X̂k)‖p ≤ [Φf,k]Lip · ‖Xk − X̂k‖p
+ [f ]Lip · ‖Xk+1 − X̂k+1‖p.
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Applications Swing options

Valuation of Swing options

Swing options - A common contract in energy markets

The right to buy every day a certain quantity of gas/electricity for a
given price, where the bought quantity has to respect certain daily and
global constraints.

The fair premium of such an contract leads to a stochastic control
problem (SCP)

esssup

{
E

(
n−1∑
k=0

qkvk(Xk)|F0

)
, qk : (Ω,Fk)→ [0, 1], q̄n ∈ [Qmin, Qmax]

}

for q̄k :=
∑k−1

l=0 ql.
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Applications Swing options

Backward Dynamic Programming Principle

It was shown in [Bardou/Bouthemy/Pagès ’09] that (SCP) can be
solved by the Backward Dynamic Programming Principle with
bang-bang control, i.e we set

Pn
n ≡ 0

Pn
k (Qk) = max

{
xvk(Xk) + E(Pn

k+1(χn−k−1(Qk, x))|Xk), x ∈ {0, 1} ∩ In−k−1
Qk

}

with admissible set IM
Qk := [(Qkmin −M)+ ∧ 1, Qkmax ∧ 1] and

χM (Qk, x) :=
(
(Qkmin − x)+, (Qkmax − x) ∧M

)
.

Then Pn0 (Qmin, Qmax) is a solution to (SCP).
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Applications Swing options

Backward Dynamic Programming Principle

Using the Quantization (X̂k) we define an approximation of (Pk) as

P̂n
n ≡ 0

P̂n
k (Qk) = max

{
xvk(X̂k) + E(P̂n

k+1(χn−k−1(Qk, x))|X̂k), x ∈ {0, 1} ∩ In−k−1
Qk

}

Under the same assumptions on (Xk) and f = vk as in the above
Proposition about the approximation power of E(f(X̂k+1)|X̂k) one gets

|Pn0 (Q)− P̂n0 (Q)| ≤ C
n−1∑
k=0

E‖Xk − X̂k‖

for any reasonable initial global constraints Q = (Qmin, Qmax) (see
[Bardou/Bouthemy/Pagès ’10]).
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Backward Dynamic Programming Principle

Using the Quantization (X̂k) we define an approximation of (Pk) as

P̂n
n ≡ 0

P̂n
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Example: Gaussian 2-factor model

In this model, the dynamics of the underlying are given as

St = s0 exp
(
σ1

∫ t

0
e−α1(t−s)dW 1

s + σ2

∫ t

0
e−α2(t−s)dW 2

s −
1

2
µt
)

for Brownian Motions W 1 and W 2 with some correlation parameter ρ.
For a time-step parameter ∆t we consider the 2-dimensional Markov
process

Xk =

(∫ k∆t

0
e−α1(k∆t−s)dW 1

s ,

∫ k∆t

0
e−α2(k∆t−s)dW 2

s

)
.
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Numerical Results

Example

Gaussian 2-factor with parameters

s0 = 20, α1 = 1.11, α2 = 5.4, σ1 = 0.36, σ2 = 0.21, ρ = −0.11

and n = 30 exercise days for the swing contract.
Results in the Benchmark case of a Call-Strip, i.e. the global
consumption constraints are

(Qmin, Qmax) = (0, n).
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Figure: Triangulation for Xn and N = 250 in Gaussian 2-factor model
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Swing option: #exercise days: 30, K = 5.0
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PAGÈS/WILBERTZ (LPMA-UPMC) Dual Quantization Tamerza 41 / 49



Applications Swing options

Swing option: #exercise days: 30, K = 15.0

regular Quantization dual Quantization ref value
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Bermudan options

In the same way we use the BDP-Principle for the valuation of
Bermudan options:

BDP for Bermudan options

V̂n = ϕtn(X̂n)

V̂k = max
{
ϕtk(X̂k); E

(
V̂k+1

∣∣X̂k

)}
, 0 ≤ k ≤ n− 1,

so that V̂0 yields an approximation to the Bermudan option premium

V0 = esssup{Eϕ(Xτ ) : τ is {t0, . . . , tn}-valued stopping time}.
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Numerical Results

Example

2-asset Black-Scholes model with

s1
0 = s2

0 = 40, r = 0.05, σ1 = 0.2, σ2 = 0.3, ρ = 0.5, K = 40,

for a put on the min, i.e. payoff

ϕ(S1
t , S

2
t ) = (K −min{S1

t , S
2
t })+.

As underlying Markov process we have chosen a 2-dimensional
Brownian Motion with correlation ρ.

Reference values were computed using a Boyle-Evnine-Gibbs tree with
10.000 timesteps.
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Martingale Adjustment

Bermudan option: #exercise days: 10

regular + martgl adj dual + martgl adj european ref value

american ref value bermudan ref value
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Martingale Adjustment
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Conclusion / Outlook

Conclusion / Summary

Interesting and challenging extention of regular Quantization

Provides a stationarity, which holds independently of the choice of
the quantization grid

Represented in the Euclidean case by the dual concept of Voronoi
tesselations: the Delaunay triangulation

Yields very promising results in first numerical applications

Further applications in optimal grid generation, adaptive grid
refinements possible

Application to 3-factor models, etc.
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