Introduction to dual quantization and first applications

GILLES PAGÈS and BENEDIKT WILBERTZ

LPMA-Université Pierre et Marie Curie

New advances in BSDE's for financial engineering and applications

October 25-28, 2010

Introduction to Optimal Quantization History

What is Quantization?

- Has its origin in the fields of signal processing in the late 1940's
- Describes the discretization of a random signal and analyses the recovery of the original signal from the discrete one

- Examples: Pulse-Code-Modulation(PCM), JPEG-Compression
- Extensive Survey about the IEEE-History: [Gray/Neuhoff '98]
- Mathematical Foundation of Quantization Theory: [Graf/Luschgy '00]

Definition of Optimal Quantization

Definition of Optimal Quantization

Let $X : (\Omega, \mathcal{S}, \mathbb{P}) \to (\mathbb{R}^d, \mathcal{B}^d)$ be a random vector with values in a normed space $(\mathbb{R}^d, \|\cdot\|)$ and

 $\mathbb{E} \|X\|^p < \infty$

for some $p \in [1, \infty)$.

Definition of Optimal Quantization

Let $X : (\Omega, \mathcal{S}, \mathbb{P}) \to (\mathbb{R}^d, \mathcal{B}^d)$ be a random vector with values in a normed space $(\mathbb{R}^d, \|\cdot\|)$ and

 $\mathbb{E}||X||^p < \infty$

for some $p \in [1, \infty)$.

The *p*-th quantization error for a grid $\Gamma \subset \mathbb{R}^d$ with size $|\Gamma| \leq n, n \in \mathbb{N}$ is given by

$$e^{p}(X;\Gamma) = \mathbb{E}\operatorname{dist}(X,\Gamma)^{p} = \mathbb{E}\min_{x\in\Gamma} ||X-x||^{p}.$$
 (1)

Definition of Optimal Quantization

Let $X : (\Omega, \mathcal{S}, \mathbb{P}) \to (\mathbb{R}^d, \mathcal{B}^d)$ be a random vector with values in a normed space $(\mathbb{R}^d, \|\cdot\|)$ and

 $\mathbb{E}||X||^p < \infty$

for some $p \in [1, \infty)$.

The *p*-th quantization error for a grid $\Gamma \subset \mathbb{R}^d$ with size $|\Gamma| \leq n, n \in \mathbb{N}$ is given by

$$e^{p}(X;\Gamma) = \mathbb{E}\operatorname{dist}(X,\Gamma)^{p} = \mathbb{E}\min_{x\in\Gamma} ||X-x||^{p}.$$
 (1)

The optimal quantization problem consists in minimizing (1) over all grids of size $|\Gamma| \leq n$.

We define the *optimal quantization error* of level n as

$$e_n^p(X) := \inf \Big\{ \mathbb{E} \min_{x \in \Gamma} \|X - x\|^p : \Gamma \subset \mathbb{R}^d, \, |\Gamma| \le n \Big\}.$$

PAGÈS/WILBERTZ (LPMA-UPMC)

Rates of Optimal Quantization

The sharp asymptotics for the optimal quantization error are known from Zador's theorem, which reads in its final version as follows:

Rates of Optimal Quantization

The sharp asymptotics for the optimal quantization error are known from Zador's theorem, which reads in its final version as follows:

Theorem (Zador, Kiefer, Bucklew & Wise, Graf & Luschgy, cf. [Graf/Luschgy '00])

Let $X \in L^r(\mathbb{R}^d)$, r > p and denote by φ the λ^d -density of the absolutely continuous part of \mathbb{P}_X . Then

$$\lim_{n \to \infty} n^{p/d} \cdot e_n^p(X) = Q_{p,\|\cdot\|} \cdot \left(\int_{\mathbb{R}^d} \|\varphi\|^{d/(d+p)} \, d\lambda^d \right)^{(d+p)/d}$$

we $Q_{p,\|\cdot\|} = \lim_{n \to \infty} n^{p/d} \cdot e_n^p \left(U([0,1]^d) \right).$

wher

Given a quantization grid $\Gamma = \{x_1, x_2, \dots, x_n\}$, we can easily construct a discretization of the random vector X:

Given a quantization grid $\Gamma = \{x_1, x_2, \dots, x_n\}$, we can easily construct a discretization of the random vector X:

• Let $(C_i(\Gamma))_{1 \le i \le n}$ be a Voronoi partition of \mathbb{R}^d generated by Γ , i.e. $(C_i(\Gamma))$ is a Borel partition of \mathbb{R}^d satisfying

$$C_i(\Gamma) \subset \left\{ z \in \mathbb{R}^d : \|z - x_i\| \le \min_{1 \le j \le n} \|z - x_j\| \right\}.$$

Given a quantization grid $\Gamma = \{x_1, x_2, \dots, x_n\}$, we can easily construct a discretization of the random vector X:

• Let $(C_i(\Gamma))_{1 \le i \le n}$ be a Voronoi partition of \mathbb{R}^d generated by Γ , i.e. $(C_i(\Gamma))$ is a Borel partition of \mathbb{R}^d satisfying

$$C_i(\Gamma) \subset \Big\{ z \in \mathbb{R}^d : \|z - x_i\| \le \min_{1 \le j \le n} \|z - x_j\| \Big\}.$$

• Let $\pi_{\Gamma} : \mathbb{R}^d \to \Gamma$ the Nearest Neighbor projection,

$$z \mapsto \sum_{i=1}^n x_i \mathbf{1}_{C_i(\Gamma)}(z).$$

Given a quantization grid $\Gamma = \{x_1, x_2, \dots, x_n\}$, we can easily construct a discretization of the random vector X:

• Let $(C_i(\Gamma))_{1 \le i \le n}$ be a Voronoi partition of \mathbb{R}^d generated by Γ , i.e. $(C_i(\Gamma))$ is a Borel partition of \mathbb{R}^d satisfying

$$C_i(\Gamma) \subset \Big\{ z \in \mathbb{R}^d : \|z - x_i\| \le \min_{1 \le j \le n} \|z - x_j\| \Big\}.$$

• Let $\pi_{\Gamma} : \mathbb{R}^d \to \Gamma$ the Nearest Neighbor projection,

$$z\mapsto \sum_{i=1}^n x_i \mathbf{1}_{C_i(\Gamma)}(z).$$

 \Rightarrow We define the Voronoi Quantization as

$$\widehat{X}^{\Gamma} = \pi_{\Gamma}(X) = \sum_{i=1}^{n} x_i \mathbf{1}_{C_i(\Gamma)}(X).$$

Introduction to Optimal Quantization Voronoi Quantizer

Voronoi-Quantization

 \times

Х

 \times

One easily shows

$$e_n^p(X) = \inf \{ \mathbb{E} \| X - \widehat{X} \|^p : \ \widehat{X} \in L^p(\mathbb{R}^d), \ |\widehat{X}(\Omega)| \le n \}.$$

One easily shows

$$e_n^p(X) = \inf \{ \mathbb{E} \| X - \widehat{X} \|^p : \ \widehat{X} \in L^p(\mathbb{R}^d), \ |\widehat{X}(\Omega)| \le n \}.$$

⇒ The Voronoi Quantization \widehat{X}^{Γ} provides an optimal L^{p} -mean discretization of X as soon as Γ is an optimal quantization grid for X.

One easily shows

$$e_n^p(X) = \inf \left\{ \mathbb{E} \| X - \widehat{X} \|^p : \ \widehat{X} \in L^p(\mathbb{R}^d), \ |\widehat{X}(\Omega)| \le n \right\}.$$

- ⇒ The Voronoi Quantization \widehat{X}^{Γ} provides an optimal L^{p} -mean discretization of X as soon as Γ is an optimal quantization grid for X.
- A further characterization for the optimal quantization error is given by

 $e_n^p(X) = \inf \big\{ \mathbb{E} \| X - f(X) \|^p : \ f : \mathbb{R}^d \to \mathbb{R}^d \text{ Borel mb}, \ |f(\mathbb{R}^d)| \le n \big\},$

One easily shows

$$e_n^p(X) = \inf \big\{ \mathbb{E} \| X - \widehat{X} \|^p : \ \widehat{X} \in L^p(\mathbb{R}^d), \ |\widehat{X}(\Omega)| \le n \big\}.$$

- ⇒ The Voronoi Quantization \widehat{X}^{Γ} provides an optimal L^{p} -mean discretization of X as soon as Γ is an optimal quantization grid for X.
- A further characterization for the optimal quantization error is given by

 $e_n^p(X) = \inf \big\{ \mathbb{E} \| X - f(X) \|^p : \ f : \mathbb{R}^d \to \mathbb{R}^d \text{ Borel mb}, \ |f(\mathbb{R}^d)| \le n \big\},$

⇒ The Nearest Neighbor projection is the coding rule, which yields the smallest L^p -mean approximation error for X.

Figure: A Quantizer for $\mathcal{N}(0, I_2)$ of size 500 in $(\mathbb{R}^2, \|\cdot\|_2)$.

PAGÈS/WILBERTZ (LPMA-UPMC)

Dual Quantization

Application as Cubature formula

Assume that we have access to the Voronoi-Cell weights

 $w_i(\Gamma) := \mathbb{P}(X \in C_i(\Gamma)).$

Application as Cubature formula

Assume that we have access to the Voronoi-Cell weights

 $w_i(\Gamma) := \mathbb{P}(X \in C_i(\Gamma)).$

⇒ The computation of $\mathbb{E}F(\widehat{X}^{\Gamma})$ for some Lipschitz continuous $F: \mathbb{R}^d \to \mathbb{R}$ becomes straightforward:

$$\mathbb{E}F(\widehat{X}^{\Gamma}) = \mathbb{E}F\left(\sum_{i=1}^{n} x_i \mathbf{1}_{C_i(\Gamma)}(X)\right) = \sum_{i=1}^{n} w_i(\Gamma)F(x_i).$$

Application as Cubature formula

Assume that we have access to the Voronoi-Cell weights

 $w_i(\Gamma) := \mathbb{P}(X \in C_i(\Gamma)).$

⇒ The computation of $\mathbb{E}F(\widehat{X}^{\Gamma})$ for some Lipschitz continuous $F : \mathbb{R}^d \to \mathbb{R}$ becomes straightforward:

$$\mathbb{E}F(\widehat{X}^{\Gamma}) = \mathbb{E}F\left(\sum_{i=1}^{n} x_i \mathbf{1}_{C_i(\Gamma)}(X)\right) = \sum_{i=1}^{n} w_i(\Gamma)F(x_i).$$

As a first error estimate, we clearly have

$$|\mathbb{E}F(X) - \mathbb{E}F(\widehat{X}^{\Gamma})| \le [F]_{\text{Lip}} \mathbb{E}||X - \widehat{X}^{\Gamma}||.$$

Second order rate

If $F \in C^1_{\text{Lip}}$ and the grid Γ is a *stationary*, i.e.

$$\widehat{X}^{\Gamma} = \mathbb{E}(X|\widehat{X}^{\Gamma}),$$

then a Taylor expansion yields

$$|\mathbb{E}F(X) - \mathbb{E}F(\widehat{X}^{\Gamma})| \le [F']_{\text{Lip}} \cdot \mathbb{E}||X - \widehat{X}^{\Gamma}||^2.$$

Second order rate

If $F \in C^1_{\text{Lip}}$ and the grid Γ is a *stationary*, i.e.

$$\widehat{X}^{\Gamma} = \mathbb{E}(X|\widehat{X}^{\Gamma}),$$

then a Taylor expansion yields

$$|\mathbb{E}F(X) - \mathbb{E}F(\widehat{X}^{\Gamma})| \le [F']_{\text{Lip}} \cdot \mathbb{E} ||X - \widehat{X}^{\Gamma}||^2.$$

Furthermore, if F is convex, then Jensen's inequality implies for stationary Γ

 $\mathbb{E}F(\widehat{X}^{\Gamma}) \leq \mathbb{E}F(X).$

Applications for optimal quantization grids

Applications for optimal quantization grids

Approximation of conditional expectations in non-linear problems by means of the Backward Dynamic Programming Principle

Applications for optimal quantization grids

Approximation of conditional expectations in non-linear problems by means of the Backward Dynamic Programming Principle

• Obstacle Problems: Valuation of Bermudan and American options ([Bally/Pagès '03])

Applications for optimal quantization grids

Approximation of conditional expectations in non-linear problems by means of the Backward Dynamic Programming Principle

- Obstacle Problems: Valuation of Bermudan and American options ([Bally/Pagès '03])
- δ -Hedging for American options ([Bally/Pagès/Printems '05])

Applications for optimal quantization grids

Approximation of conditional expectations in non-linear problems by means of the Backward Dynamic Programming Principle

- Obstacle Problems: Valuation of Bermudan and American options ([Bally/Pagès '03])
- δ -Hedging for American options ([Bally/Pagès/Printems '05])
- Optimal Stochastic Control problems, e.g. Pricing of Swing options ([Bronstein/Pagès/W. '09] and [Bardou/Bouthemy/Pagès '09])

Idea

Do not map $X(\omega)$ to its nearest neighbor, but split up the projection randomly between the "surrounding" neighbors of $X(\omega)$.

Idea

Do not map $X(\omega)$ to its nearest neighbor, but split up the projection randomly between the "surrounding" neighbors of $X(\omega)$.

 $\stackrel{\times}{X}(\omega)$

PAGÈS/WILBERTZ (LPMA-UPMC)

Idea

Do not map $X(\omega)$ to its nearest neighbor, but split up the projection randomly between the "surrounding" neighbors of $X(\omega)$.

Idea

Do not map $X(\omega)$ to its nearest neighbor, but split up the projection randomly between the "surrounding" neighbors of $X(\omega)$.

Idea

Do not map $X(\omega)$ to its nearest neighbor, but split up the projection randomly between the "surrounding" neighbors of $X(\omega)$.

Idea

Do not map $X(\omega)$ to its nearest neighbor, but split up the projection randomly between the "surrounding" neighbors of $X(\omega)$.

Suppose that $\tau = \{t_1, \ldots, t_{d+1}\} \subset \mathbb{R}^d$ spans a *d*-simplex in \mathbb{R}^d , i.e. t_1, \ldots, t_{d+1} are affinely independent.

Suppose that $\tau = \{t_1, \ldots, t_{d+1}\} \subset \mathbb{R}^d$ spans a *d*-simplex in \mathbb{R}^d , i.e. t_1, \ldots, t_{d+1} are affinely independent.

Moreover, let $U \sim \mathcal{U}[0,1]$ be defined on some exogenous probability space $(\Omega_0, \mathcal{S}_0, \mathbb{P}_0)$.

Denoting by $\lambda(\xi)$ the barycentric coordinate of $\xi \in \operatorname{conv}{\tau}$, we define a dual quantization operator $\mathcal{J}_{\tau}^{U} : \operatorname{conv}{\tau} \to \tau$ as

$$\xi \mapsto \sum_{i=1}^{d+1} t_i \mathbf{1}_{\left\{\sum_{j=1}^{i-1} \lambda_j(\xi) \le U < \sum_{j=1}^{i} \lambda_j(\xi)\right\}}.$$

Suppose that $\tau = \{t_1, \ldots, t_{d+1}\} \subset \mathbb{R}^d$ spans a *d*-simplex in \mathbb{R}^d , i.e. t_1, \ldots, t_{d+1} are affinely independent.

Moreover, let $U \sim \mathcal{U}[0,1]$ be defined on some exogenous probability space $(\Omega_0, \mathcal{S}_0, \mathbb{P}_0)$.

Denoting by $\lambda(\xi)$ the barycentric coordinate of $\xi \in \operatorname{conv}\{\tau\}$, we define a dual quantization operator $\mathcal{J}^U_{\tau} : \operatorname{conv}\{\tau\} \to \tau$ as

$$\xi \mapsto \sum_{i=1}^{d+1} t_i \mathbf{1}_{\left\{\sum_{j=1}^{i-1} \lambda_j(\xi) \le U < \sum_{j=1}^{i} \lambda_j(\xi)\right\}}.$$

This operator satisfies a mean preserving property:

$$\mathbb{E}_0\left(\mathcal{J}^U_\tau(\xi)\right) = \sum_{i=1}^{d+1} \lambda_i(\xi) \cdot t_i = \xi, \qquad \forall \xi \in \operatorname{conv}\{\tau\}.$$
 (2)

Suppose that $\tau = \{t_1, \ldots, t_{d+1}\} \subset \mathbb{R}^d$ spans a *d*-simplex in \mathbb{R}^d , i.e. t_1, \ldots, t_{d+1} are affinely independent.

Moreover, let $U \sim \mathcal{U}[0,1]$ be defined on some exogenous probability space $(\Omega_0, \mathcal{S}_0, \mathbb{P}_0)$.

Denoting by $\lambda(\xi)$ the barycentric coordinate of $\xi \in \operatorname{conv}\{\tau\}$, we define a dual quantization operator $\mathcal{J}^U_{\tau} : \operatorname{conv}\{\tau\} \to \tau$ as

$$\boldsymbol{\xi} \mapsto \sum_{i=1}^{d+1} t_i \mathbf{1}_{\left\{\sum_{j=1}^{i-1} \lambda_j(\boldsymbol{\xi}) \le U < \sum_{j=1}^{i} \lambda_j(\boldsymbol{\xi})\right\}}$$

This operator satisfies a mean preserving property:

$$\mathbb{E}_0\left(\mathcal{J}^U_\tau(\xi)\right) = \sum_{i=1}^{d+1} \lambda_i(\xi) \cdot t_i = \xi, \qquad \forall \xi \in \operatorname{conv}\{\tau\}.$$
 (2)

Similarly, we can construct such an operator for any triangulation on a grid $\Gamma = \{x_1, \ldots, x_n\}$, so that (2) holds for any $\xi \in \operatorname{conv}\{\Gamma\}$.

PAGÈS/WILBERTZ (LPMA-UPMC)

Dual Quantization

Tamerza 14 / 49

Stationarity

Motivated by this observation, we call a random splitting operator $\mathcal{J}_{\Gamma}: \Omega_0 \times \mathbb{R}^d \to \Gamma$ for a grid $\Gamma \subset \mathbb{R}^d$ intrinsic stationary, if

 $\mathbb{E}_0\big(\mathcal{J}_{\Gamma}(\xi)\big) = \xi, \qquad \forall \xi \in \operatorname{conv}\{\Gamma\}.$

Stationarity

Motivated by this observation, we call a random splitting operator $\mathcal{J}_{\Gamma}: \Omega_0 \times \mathbb{R}^d \to \Gamma$ for a grid $\Gamma \subset \mathbb{R}^d$ intrinsic stationary, if

$$\mathbb{E}_0\big(\mathcal{J}_{\Gamma}(\xi)\big) = \xi, \qquad \forall \xi \in \operatorname{conv}\{\Gamma\}.$$

The deeper meaning of this definition is revealed by the following Proposition.

Proposition

 \mathcal{J}_{Γ} is intrinsic stationary, if and only if it satisfies the stationarity condition

$$\mathbb{E}_{\mathbb{P}\otimes\mathbb{P}_0}\big(\mathcal{J}_{\Gamma}(Y)|Y\big)=Y$$

for any r.v. $Y : (\Omega, \mathcal{S}, \mathbb{P}) \to (\mathbb{R}^d, \mathcal{B}^d)$ with $\operatorname{supp}(\mathbb{P}_Y) \subset \operatorname{conv}\{\Gamma\}$.

Stationarity

Motivated by this observation, we call a random splitting operator $\mathcal{J}_{\Gamma}: \Omega_0 \times \mathbb{R}^d \to \Gamma$ for a grid $\Gamma \subset \mathbb{R}^d$ intrinsic stationary, if

$$\mathbb{E}_0\big(\mathcal{J}_{\Gamma}(\xi)\big) = \xi, \qquad \forall \xi \in \operatorname{conv}\{\Gamma\}.$$

The deeper meaning of this definition is revealed by the following Proposition.

Proposition

 \mathcal{J}_{Γ} is intrinsic stationary, if and only if it satisfies the stationarity condition

$$\mathbb{E}_{\mathbb{P}\otimes\mathbb{P}_0}\big(\mathcal{J}_{\Gamma}(Y)|Y\big)=Y$$

for any r.v. $Y : (\Omega, \mathcal{S}, \mathbb{P}) \to (\mathbb{R}^d, \mathcal{B}^d)$ with $\operatorname{supp}(\mathbb{P}_Y) \subset \operatorname{conv}\{\Gamma\}$.

Note that this kind of stationarity now is very robust, since it holds by construction for any r.v. Y with support in Γ .

Stationarity II

As in the case of regular quantization, this kind of stationarity also yields a second order bound.

Stationarity II

As in the case of regular quantization, this kind of stationarity also yields a second order bound.

Proposition

(a) Let $F \in C^1_{Lip}$, $\Gamma \subset \mathbb{R}^d$ and \mathcal{J}_{Γ} be intrinsic stationary. Then it holds for any r.v. $Y \in L^2(\mathbb{P})$ with $\operatorname{supp}(\mathbb{P}_Y) \subset \operatorname{conv}{\Gamma}$,

 $|\mathbb{E}F(Y) - \mathbb{E}F(\mathcal{J}_{\Gamma}(Y))| \le [F']_{Lip} \cdot \mathbb{E}||Y - \mathcal{J}_{\Gamma}(Y)||^{2}.$

Stationarity II

As in the case of regular quantization, this kind of stationarity also yields a second order bound.

Proposition

(a) Let $F \in C^1_{Lip}$, $\Gamma \subset \mathbb{R}^d$ and \mathcal{J}_{Γ} be intrinsic stationary. Then it holds for any r.v. $Y \in L^2(\mathbb{P})$ with $\operatorname{supp}(\mathbb{P}_Y) \subset \operatorname{conv}{\Gamma}$,

$$|\mathbb{E}F(Y) - \mathbb{E}F(\mathcal{J}_{\Gamma}(Y))| \le [F']_{Lip} \cdot \mathbb{E}||Y - \mathcal{J}_{\Gamma}(Y)||^{2}.$$

(b) If F is convex, then Jensen's inequality implies

 $\mathbb{E}F(\mathcal{J}_{\Gamma}(X)) \geq \mathbb{E}F(X)$

What is the best approximation, which can be achieved by an intrinsic stationary operator \mathcal{J}_{Γ} for a given grid Γ of size $n \in \mathbb{N}$?

What is the best approximation, which can be achieved by an intrinsic stationary operator \mathcal{J}_{Γ} for a given grid Γ of size $n \in \mathbb{N}$?

Problem: The grid Γ gives raise to many possible triangulations.

What is the best approximation, which can be achieved by an intrinsic stationary operator \mathcal{J}_{Γ} for a given grid Γ of size $n \in \mathbb{N}$?

Problem: The grid Γ gives raise to many possible triangulations.

We aim at selecting the triangulation with the lowest p-inertia i.e. to solve

$$\forall \xi \in \operatorname{conv}(\Gamma), \qquad F^p(\xi; \Gamma) = \min_{\lambda \in \mathbb{R}^n} \sum_{i=1}^n \lambda_i \|\xi - x_i\|^p$$

s.t. $\begin{bmatrix} x_1 \dots x_n \\ 1 \dots 1 \end{bmatrix} \lambda = \begin{bmatrix} \xi \\ 1 \end{bmatrix}, \lambda \ge 0$

What is the best approximation, which can be achieved by an intrinsic stationary operator \mathcal{J}_{Γ} for a given grid Γ of size $n \in \mathbb{N}$?

Problem: The grid Γ gives raise to many possible triangulations.

We aim at selecting the triangulation with the lowest p-inertia i.e. to solve

$$\forall \xi \in \operatorname{conv}(\Gamma), \qquad F^p(\xi; \Gamma) = \min_{\lambda \in \mathbb{R}^n} \sum_{i=1}^n \lambda_i \|\xi - x_i\|^p$$

s.t. $\begin{bmatrix} x_1 & \dots & x_n \\ 1 & \dots & 1 \end{bmatrix} \lambda = \begin{bmatrix} \xi \\ 1 \end{bmatrix}, \lambda \ge 0$

For every $\xi \in \operatorname{conv}(\Gamma)$ we choose the best "triangle" in Γ which contains ξ .

What is the best approximation, which can be achieved by an intrinsic stationary operator \mathcal{J}_{Γ} for a given grid Γ of size $n \in \mathbb{N}$?

Problem: The grid Γ gives raise to many possible triangulations.

We aim at selecting the triangulation with the lowest p-inertia i.e. to solve

$$\forall \xi \in \operatorname{conv}(\Gamma), \qquad F^p(\xi; \Gamma) = \min_{\lambda \in \mathbb{R}^n} \sum_{i=1}^n \lambda_i \|\xi - x_i\|^p$$

s.t. $\begin{bmatrix} x_1 & \dots & x_n \\ 1 & \dots & 1 \end{bmatrix} \lambda = \begin{bmatrix} \xi \\ 1 \end{bmatrix}, \lambda \ge 0$

For every $\xi \in \operatorname{conv}(\Gamma)$ we choose the best "triangle" in Γ which contains ξ .

 \triangleright The optimal *p*-th dual quantization error is then defined as

$$d_n^p(X) = \inf \{ \mathbb{E} F^p(X; \Gamma) : \Gamma \subset \mathbb{R}^d, |\Gamma| \le n \}.$$

PAGÈS/WILBERTZ (LPMA-UPMC)

 \triangleright To design the optimal dual quantization operator matching $F^p(\xi; \Gamma)$, we need optimality regions, counterparts of the Voronoi regions for regular quantization.

 \triangleright To design the optimal dual quantization operator matching $F^p(\xi; \Gamma)$, we need optimality regions, counterparts of the Voronoi regions for regular quantization.

$$\triangleright \ (\lambda_i)_{1 \le i \le n} \mapsto \min_{\lambda \in \mathbb{R}^n} \sum_{i=1}^n \lambda_i \|\xi - x_i\|^p \text{ atteins a minimum (at least)}$$

s.t. $\begin{bmatrix} x_1 & \dots & x_n \\ 1 & \dots & 1 \end{bmatrix} \lambda = \begin{bmatrix} \xi \\ 1 \end{bmatrix}, \lambda \ge 0$

at an extremal *n*-tuple $\lambda^*(\xi)$ of the convex constraint set.

 \triangleright To design the optimal dual quantization operator matching $F^p(\xi; \Gamma)$, we need optimality regions, counterparts of the Voronoi regions for regular quantization.

$$\triangleright \ (\lambda_i)_{1 \le i \le n} \mapsto \min_{\lambda \in \mathbb{R}^n} \sum_{i=1}^n \lambda_i \|\xi - x_i\|^p \text{ atteins a minimum (at least)}$$

s.t. $\begin{bmatrix} x_1 & \dots & x_n \\ 1 & \dots & 1 \end{bmatrix} \lambda = \begin{bmatrix} \xi \\ 1 \end{bmatrix}, \lambda \ge 0$

at an extremal *n*-tuple $\lambda^*(\xi)$ of the convex constraint set.

Therefore, $I^*(\xi) := \{i : \lambda_i^*(\xi) > 0\}$ defines an affinely independent family $(x_i)_{i \in I^*(\xi)}$ which can be completed into a Γ -valued affine basis.

 \triangleright To design the optimal dual quantization operator matching $F^p(\xi; \Gamma)$, we need optimality regions, counterparts of the Voronoi regions for regular quantization.

$$\triangleright \ (\lambda_i)_{1 \le i \le n} \mapsto \min_{\lambda \in \mathbb{R}^n} \sum_{i=1}^n \lambda_i \|\xi - x_i\|^p \text{ atteins a minimum (at least)}$$

s.t. $\begin{bmatrix} x_1 & \dots & x_n \\ 1 & \dots & 1 \end{bmatrix} \lambda = \begin{bmatrix} \xi \\ 1 \end{bmatrix}, \lambda \ge 0$

at an extremal *n*-tuple $\lambda^*(\xi)$ of the convex constraint set.

Therefore, $I^*(\xi) := \{i : \lambda_i^*(\xi) > 0\}$ defines an affinely independent family $(x_i)_{i \in I^*(\xi)}$ which can be completed into a Γ -valued affine basis.

$$D_I(\Gamma) = \{ \xi \in \mathbb{R}^d : \exists I^*(\xi) \subset I \},\$$

or equivalently in term of linear programming

$$D_{I}(\Gamma) = \{\xi \in \mathbb{R}^{d} : \lambda^{I} = A_{I}^{-1} \begin{bmatrix} \xi \\ 1 \end{bmatrix} \ge 0 \text{ and } \sum_{i \in I} \lambda_{i}^{I} \|\xi - x_{i}\|^{p} = F^{p}(\xi; \Gamma) \},$$

where

$$I \in \mathcal{I}(\Gamma) = \left\{ J \subset \{1, \dots, n\} : |J| = d + 1, \operatorname{rk}(A_J) = d + 1 \right\}$$

and A_I denotes the submatrix of $\begin{bmatrix} x_1 & \dots & x_n \\ 1 & \dots & 1 \end{bmatrix}$ whose columns are given by I.

In the case $\|\cdot\| = |\cdot|_2$ and p = 2,

optimality regions are to Delaunay "triangles" in $\Gamma,$

i.e. the sphere spanned by such a $d\mbox{-simplex}$ contains no further point in its interior.

In the case $\|\cdot\| = |\cdot|_2$ and p = 2,

optimality regions are to Delaunay "triangles" in $\Gamma,$

i.e. the sphere spanned by such a $d\mbox{-simplex}$ contains no further point in its interior.

The following theorem is an extention of an important theorem by Rajan ([Rajan '91]).

Theorem

Let
$$\|\cdot\| = |\cdot|_2$$
, $p = 2$, and $\Gamma = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ with aff. dim $\{\Gamma\} = d$.
(a) If $I \in \mathcal{I}(\Gamma)$ defines a Delaunay triangle (or d-simplex), then

$$\lambda^{I} = A_{I}^{-1} \begin{bmatrix} \xi \\ 1 \end{bmatrix}$$

provides a solution to $F^p(\xi;\Gamma)$ for every $\xi \in \operatorname{conv}\{x_j : j \in I\}$ i.e.

$$D_I(\Gamma) = \operatorname{conv}\{x_j : j \in I\}.$$

In the case $\|\cdot\| = |\cdot|_2$ and p = 2,

optimality regions are to Delaunay "triangles" in $\Gamma,$

i.e. the sphere spanned by such a $d\mbox{-simplex}$ contains no further point in its interior.

The following theorem is an extention of an important theorem by Rajan ([Rajan '91]).

Theorem

Let
$$\|\cdot\| = |\cdot|_2$$
, $p = 2$, and $\Gamma = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ with aff. dim $\{\Gamma\} = d$.
(a) If $I \in \mathcal{I}(\Gamma)$ defines a Delaunay triangle (or d-simplex), then

$$\lambda^{I} = A_{I}^{-1} \begin{bmatrix} \xi \\ 1 \end{bmatrix}$$

provides a solution to $F^p(\xi;\Gamma)$ for every $\xi \in \operatorname{conv}\{x_j : j \in I\}$ i.e.

$$D_I(\Gamma) = \operatorname{conv}\{x_j : j \in I\}.$$

For a $\Gamma = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ with aff. dim $\{\Gamma\} = d$,

For a $\Gamma = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ with aff. dim $\{\Gamma\} = d$,

• choose a Borel partition $(C_I(\Gamma))_{I \in \mathcal{I}(\Gamma)}$ of conv $\{\Gamma\}$ such that

 $C_I(\Gamma) \subset D_I(\Gamma),$

For a $\Gamma = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ with aff. dim $\{\Gamma\} = d$,

• choose a Borel partition $(C_I(\Gamma))_{I \in \mathcal{I}(\Gamma)}$ of conv $\{\Gamma\}$ such that

 $C_I(\Gamma) \subset D_I(\Gamma),$

• let $U \sim \mathcal{U}[0,1]$ on $(\Omega_0, \mathcal{S}_0, \mathbb{P}_0)$.

For a $\Gamma = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ with aff. dim $\{\Gamma\} = d$,

• choose a Borel partition $(C_I(\Gamma))_{I \in \mathcal{I}(\Gamma)}$ of conv $\{\Gamma\}$ such that

 $C_I(\Gamma) \subset D_I(\Gamma),$

• let $U \sim \mathcal{U}[0,1]$ on $(\Omega_0, \mathcal{S}_0, \mathbb{P}_0)$.

The optimal dual quantization operator \mathcal{J}_{Γ}^* is defined as

$$\mathcal{J}_{\Gamma}^{*}(\xi) = \sum_{I \in \mathcal{I}(\Gamma)} \left[\sum_{i=1}^{k} x_{i} \cdot \mathbf{1}_{\left\{ \sum_{j=1}^{i-1} \lambda_{j}^{I}(\xi) \leq U < \sum_{j=1}^{i} \lambda_{j}^{I}(\xi) \right\}} \right] \mathbf{1}_{C_{I}(\Gamma)}(\xi).$$
Optimal dual quantization operator

For a $\Gamma = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ with aff. dim $\{\Gamma\} = d$,

• choose a Borel partition $(C_I(\Gamma))_{I \in \mathcal{I}(\Gamma)}$ of conv $\{\Gamma\}$ such that

 $C_I(\Gamma) \subset D_I(\Gamma),$

• let $U \sim \mathcal{U}[0,1]$ on $(\Omega_0, \mathcal{S}_0, \mathbb{P}_0)$.

The optimal dual quantization operator \mathcal{J}_{Γ}^* is defined as

$$\mathcal{J}_{\Gamma}^{*}(\xi) = \sum_{I \in \mathcal{I}(\Gamma)} \left[\sum_{i=1}^{k} x_{i} \cdot \mathbf{1}_{\left\{ \sum_{j=1}^{i-1} \lambda_{j}^{I}(\xi) \leq U < \sum_{j=1}^{i} \lambda_{j}^{I}(\xi) \right\}} \right] \mathbf{1}_{C_{I}(\Gamma)}(\xi).$$

One easily checks that this operator is intrinsic stationary.

Dual Quantization Properties of Dual Quantization

Equivalence of optimal dual quantization

Equivalence of optimal dual quantization

The operator \mathcal{J}_{Γ}^* then leads to the following characterizations of the optimal dual quantization error:

The operator \mathcal{J}_{Γ}^* then leads to the following characterizations of the optimal dual quantization error:

Theorem ([Pagès/W. '10a])

Let $X \in L^p(\mathbb{P})$ and $n \in \mathbb{N}$. Then

 $d_n^p(X) =$

Equivalence of optimal dual quantization

The operator \mathcal{J}_{Γ}^* then leads to the following characterizations of the optimal dual quantization error:

Theorem ([Pagès/W. '10a])

Let $X \in L^p(\mathbb{P})$ and $n \in \mathbb{N}$. Then

 $d_n^p(X) = \inf \{ \mathbb{E} \| X - \mathcal{J}_{\Gamma}(X) \|^p \colon \mathcal{J}_{\Gamma} \colon \Omega_0 \times \mathbb{R}^d \to \Gamma \text{ is intrinsic stationary,} \\ \operatorname{supp}(\mathbb{P}_X) \subset \operatorname{conv}\{\Gamma\}, \, |\Gamma| \le n \}$

Equivalence of optimal dual quantization

The operator \mathcal{J}_{Γ}^* then leads to the following characterizations of the optimal dual quantization error:

Theorem ([Pagès/W. '10a])

Let $X \in L^p(\mathbb{P})$ and $n \in \mathbb{N}$. Then

$$d_n^p(X) = \inf \{ \mathbb{E} \| X - \mathcal{J}_{\Gamma}(X) \|^p \colon \mathcal{J}_{\Gamma} \colon \Omega_0 \times \mathbb{R}^d \to \Gamma \text{ is intrinsic stationary}, \\ \operatorname{supp}(\mathbb{P}_X) \subset \operatorname{conv}\{\Gamma\}, \ |\Gamma| \le n \} \\ = \inf \{ \mathbb{E} \| X - \widehat{Y} \|^p \colon \widehat{Y} \text{ is a } r.v. \text{ on } (\Omega \times \Omega_0, \mathcal{S} \otimes \mathcal{S}_0, \mathbb{P} \otimes \mathbb{P}_0), \\ |\widehat{Y}(\Omega \times \Omega_0)| \le n, \ \mathbb{E}(\widehat{Y}|X) = X \}.$$

Since it is not possible to obtain intrinsic stationarity for $\xi \notin \operatorname{conv}\{\Gamma\}$, we have to limit the claim for stationarity to a subset of $\operatorname{supp}(\mathbb{P}_X)$ in order to extend the dual quantization problem to distributions with unbounded support.

Since it is not possible to obtain intrinsic stationarity for $\xi \notin \operatorname{conv}\{\Gamma\}$, we have to limit the claim for stationarity to a subset of $\operatorname{supp}(\mathbb{P}_X)$ in order to extend the dual quantization problem to distributions with unbounded support.

We therefore drop the requirement $\operatorname{supp}(\mathbb{P}_X) \subset \operatorname{conv}\{\Gamma\}$ in above theorem

Since it is not possible to obtain intrinsic stationarity for $\xi \notin \operatorname{conv}\{\Gamma\}$, we have to limit the claim for stationarity to a subset of $\operatorname{supp}(\mathbb{P}_X)$ in order to extend the dual quantization problem to distributions with unbounded support.

We therefore drop the requirement $\operatorname{supp}(\mathbb{P}_X) \subset \operatorname{conv}\{\Gamma\}$ in above theorem and set

 $\bar{d}_n^p(X) = \inf \{ \mathbb{E} \| X - \mathcal{J}_{\Gamma}(X) \|^p \colon \mathcal{J}_{\Gamma} \text{ is intrinsic stationary}, |\Gamma| \le n \}.$

Since it is not possible to obtain intrinsic stationarity for $\xi \notin \operatorname{conv}\{\Gamma\}$, we have to limit the claim for stationarity to a subset of $\operatorname{supp}(\mathbb{P}_X)$ in order to extend the dual quantization problem to distributions with unbounded support.

We therefore drop the requirement $\operatorname{supp}(\mathbb{P}_X) \subset \operatorname{conv}\{\Gamma\}$ in above theorem and set

 $\bar{d}_n^p(X) = \inf \{ \mathbb{E} \| X - \mathcal{J}_{\Gamma}(X) \|^p \colon \mathcal{J}_{\Gamma} \text{ is intrinsic stationary}, |\Gamma| \le n \}.$

This means that we use a Nearest Neighbor projection beyond $\operatorname{conv}\{\Gamma\}$ while preserving stationarity in the interior of $\operatorname{conv}\{\Gamma\}$.

Existence of optimal dual quantizers

Existence of optimal dual quantizers

Theorem ([Pagès/W. '10a])

(a) Let p > 1 and assume that \mathbb{P}_X has a compact support. Then for every $n \ge d+1$ optimal dual quantizers actually exist, i.e. the dual quantization problem $d_n^p(X)$ attains its infimum. Moreover, $d_n^p(X)$ is (strictly) decreasing to 0 as $n \to \infty$, if it does not vanish.

Existence of optimal dual quantizers

Theorem ([Pagès/W. '10a])

(a) Let p > 1 and assume that \mathbb{P}_X has a compact support. Then for every $n \ge d+1$ optimal dual quantizers actually exist, i.e. the dual quantization problem $d_n^p(X)$ attains its infimum. Moreover, $d_n^p(X)$ is (strictly) decreasing to 0 as $n \to \infty$, if it does not vanish.

(b) Let p > 1 and assume that the distribution \mathbb{P}_X is strongly continuous. Then also optimal quantizers for $\overline{d}_n^p(X)$ exists and $\overline{d}_n^p(X)$ is (strictly) decreasing to 0 as $n \to \infty$, if it does not vanish.

Theorem ([Pagès/W. '10b])

(a) Let $X \in L^{p+}(\mathbb{R}^d)$ and denote by φ the λ^d -density of the absolutely continuous part of \mathbb{P}_X .

Theorem ([Pagès/W. '10b])

(a) Let $X \in L^{p+}(\mathbb{R}^d)$ and denote by φ the λ^d -density of the absolutely continuous part of \mathbb{P}_X . Then

$$\lim_{n \to \infty} n^{p/d} \cdot \bar{d}_n^p(X) = Q_{d,p,\|\cdot\|} \cdot \left(\int_{\mathbb{R}^d} \varphi^{d/(d+p)} \, d\lambda^d \right)^{\frac{d+p}{d}}$$

$$e \ Q_{d,p,\|\cdot\|} = \lim_{n \to \infty} n^{p/d} \cdot d_n^p \left(U([0,1]^d) \right).$$

where

Theorem ([Pagès/W. '10b])

(a) Let $X \in L^{p+}(\mathbb{R}^d)$ and denote by φ the λ^d -density of the absolutely continuous part of \mathbb{P}_X . Then

$$\lim_{n \to \infty} n^{p/d} \cdot \bar{d}_n^p(X) = Q_{d,p,\|\cdot\|} \cdot \left(\int_{\mathbb{R}^d} \varphi^{d/(d+p)} \, d\lambda^d \right)^{-\frac{1}{d}}$$

where $Q_{d,p,\|\cdot\|} = \lim_{n \to \infty} n^{p/d} \cdot d_n^p \left(U([0,1]^d) \right).$
(b) If $d = 1$, $Q_{d,p,\|\cdot\|} = \frac{2^{p+1}}{p+2} \lim_{n \to \infty} n^{p/d} \cdot e_n^p \left(U([0,1]) \right).$ If $d \ge 2$, ???

d+p

Sketch of the proof

• Prove existence of the limit for $\mathcal{U}([0,1]^d)$

- Prove existence of the limit for $\mathcal{U}([0,1]^d)$
- Derive upper and lower bounds for piecewise constant densities (with compact support) on hypercubes

- Prove existence of the limit for $\mathcal{U}([0,1]^d)$
- Derive upper and lower bounds for piecewise constant densities (with compact support) on hypercubes
- Use Differentiation of measure to cover the general case (still compact support)

- Prove existence of the limit for $\mathcal{U}([0,1]^d)$
- Derive upper and lower bounds for piecewise constant densities (with compact support) on hypercubes
- Use Differentiation of measure to cover the general case (still compact support)
- Random dual quantization argument (so-called extended Pierce Lemma) to get the unbounded case.

Figure: Dual Quantization for $\mathcal{U}([0,1]^2)$ and n=8

PAGÈS/WILBERTZ (LPMA-UPMC)

Figure: Dual Quantization for $\mathcal{U}([0,1]^2)$ and n = 12

PAGÈS/WILBERTZ (LPMA-UPMC)

Figure: Dual Quantization for $\mathcal{U}([0,1]^2)$ and n = 13

PAGÈS/WILBERTZ (LPMA-UPMC)

Figure: Dual Quantization for $\mathcal{U}([0,1]^2)$ and n = 16

PAGÈS/WILBERTZ (LPMA-UPMC)

Figure: Dual Quantization for $\mathcal{N}(0, I_2)$ and N = 250

PAGÈS/WILBERTZ (LPMA-UPMC)

Figure: Joint Dual Quantization of the BM and its supremum, N = 250

PAGÈS/WILBERTZ (LPMA-UPMC)

Pricing of Early Exercise Options:

Pricing of Early Exercise Options:

Using a Backward-Dynamic-Programming principle for the valuation of early exercise options with underlying Markov dynamics $(X_k)_{1 \le k \le N}$ the numerical challenge in this approach consists in the approximation of conditional expectations

 $\mathbb{E}\big(v_{k+1}(X_{k+1})|X_k\big).$

Pricing of Early Exercise Options:

Using a Backward-Dynamic-Programming principle for the valuation of early exercise options with underlying Markov dynamics $(X_k)_{1 \le k \le N}$ the numerical challenge in this approach consists in the approximation of conditional expectations

$$\mathbb{E}\big(v_{k+1}(X_{k+1})|X_k\big).$$

As in the case of Quantization for numerical cubature, we may replace the Markov chain (X_k) by a Quantization (\hat{X}_k) , so that the the computation of $\mathbb{E}(f(X_{k+1})|X_k)$ becomes straightforward as

$$\mathbb{E}(f(\hat{X}_{k+1})|\hat{X}_k = x_i^k) = \sum_{j=1}^{n_{k+1}} f(x_j^{k+1})\pi_{ij}^k,$$

with transition probabilities

$$\pi_{ij}^k = \mathbb{P}(\hat{X}_{k+1} = x_j^{k+1} | \hat{X}_k = x_i^k).$$

For the approximation error the following result can be derived.

Proposition

If the mappings $f : \mathbb{R}^d \to \mathbb{R}$ and

$$\Phi_{f,k}: \mathbb{R}^d \to \mathbb{R}, x \mapsto \mathbb{E}(f(X_{k+1})|X_k = x)$$

are Lipschitz, then it holds

$$\begin{split} \|\mathbb{E}(f(X_{k+1})|X_k) - \mathbb{E}(f(\hat{X}_{k+1})|\hat{X}_k)\|_p &\leq [\Phi_{f,k}]_{Lip} \cdot \|X_k - \hat{X}_k\|_p \\ &+ [f]_{Lip} \cdot \|X_{k+1} - \hat{X}_{k+1}\|_p. \end{split}$$

Valuation of Swing options

Valuation of Swing options

Swing options - A common contract in energy markets

The right to buy every day a certain quantity of gas/electricity for a given price, where the bought quantity has to respect certain daily and global constraints.

Valuation of Swing options

Swing options - A common contract in energy markets

The right to buy every day a certain quantity of gas/electricity for a given price, where the bought quantity has to respect certain daily and global constraints.

The fair premium of such an contract leads to a stochastic control problem (SCP)

esssup
$$\left\{ \mathbb{E}\left(\sum_{k=0}^{n-1} q_k v_k(X_k) | \mathcal{F}_0\right), q_k : (\Omega, \mathcal{F}_k) \to [0, 1], \bar{q}_n \in [Q_{\min}, Q_{\max}] \right\}$$
for $\bar{q}_k := \sum_{l=0}^{k-1} q_l$.
It was shown in [Bardou/Bouthemy/Pagès '09] that (SCP) can be solved by the Backward Dynamic Programming Principle with bang-bang control, i.e we set

$$P_n^n \equiv 0$$

$$P_k^n(Q^k) = \max\left\{xv_k(X_k) + \mathbb{E}(P_{k+1}^n(\chi^{n-k-1}(Q^k, x))|X_k), x \in \{0, 1\} \cap I_{Q^k}^{n-k-1}\right\}$$

with admissible set
$$I_{Q^k}^M := [(Q_{\min}^k - M)^+ \wedge 1, Q_{\max}^k \wedge 1]$$
 and $\chi^M(Q^k, x) := ((Q_{\min}^k - x)^+, (Q_{\max}^k - x) \wedge M).$

It was shown in [Bardou/Bouthemy/Pagès '09] that (SCP) can be solved by the Backward Dynamic Programming Principle with bang-bang control, i.e we set

$$P_n^n \equiv 0$$

$$P_k^n(Q^k) = \max\left\{xv_k(X_k) + \mathbb{E}(P_{k+1}^n(\chi^{n-k-1}(Q^k, x))|X_k), x \in \{0, 1\} \cap I_{Q^k}^{n-k-1}\right\}$$

with admissible set
$$I_{Q^k}^M := [(Q_{\min}^k - M)^+ \wedge 1, Q_{\max}^k \wedge 1]$$
 and $\chi^M(Q^k, x) := ((Q_{\min}^k - x)^+, (Q_{\max}^k - x) \wedge M).$

Then $P_0^n(Q_{\min}, Q_{\max})$ is a solution to (SCP).

Using the Quantization (\hat{X}_k) we define an approximation of (P_k) as

$$\hat{P}_n^n \equiv 0$$
$$\hat{P}_k^n(Q^k) = \max\left\{xv_k(\hat{X}_k) + \mathbb{E}(\hat{P}_{k+1}^n(\chi^{n-k-1}(Q^k, x))|\hat{X}_k), x \in \{0, 1\} \cap I_{Q^k}^{n-k-1}\right\}$$

Using the Quantization (\widehat{X}_k) we define an approximation of (P_k) as

$$\hat{P}_n^n \equiv 0$$

$$\hat{P}_k^n(Q^k) = \max\left\{xv_k(\hat{X}_k) + \mathbb{E}(\hat{P}_{k+1}^n(\chi^{n-k-1}(Q^k, x))|\hat{X}_k), x \in \{0, 1\} \cap I_{Q^k}^{n-k-1}\right\}$$

Under the same assumptions on (X_k) and $f = v_k$ as in the above Proposition about the approximation power of $\mathbb{E}(f(\hat{X}_{k+1})|\hat{X}_k)$ one gets

$$|P_0^n(Q) - \hat{P}_0^n(Q)| \le C \sum_{k=0}^{n-1} \mathbb{E} ||X_k - \hat{X}_k||$$

for any reasonable initial global constraints $Q = (Q_{\min}, Q_{\max})$ (see [Bardou/Bouthemy/Pagès '10]).

Example: Gaussian 2-factor model

In this model, the dynamics of the underlying are given as

$$S_t = s_0 \exp\left(\sigma_1 \int_0^t e^{-\alpha_1(t-s)} dW_s^1 + \sigma_2 \int_0^t e^{-\alpha_2(t-s)} dW_s^2 - \frac{1}{2}\mu_t\right)$$

for Brownian Motions W^1 and W^2 with some correlation parameter ρ .

In this model, the dynamics of the underlying are given as

$$S_t = s_0 \exp\left(\sigma_1 \int_0^t e^{-\alpha_1(t-s)} dW_s^1 + \sigma_2 \int_0^t e^{-\alpha_2(t-s)} dW_s^2 - \frac{1}{2}\mu_t\right)$$

for Brownian Motions W^1 and W^2 with some correlation parameter ρ . For a time-step parameter Δt we consider the 2-dimensional Markov process

$$X_k = \left(\int_0^{k\Delta t} e^{-\alpha_1(k\Delta t - s)} dW_s^1, \int_0^{k\Delta t} e^{-\alpha_2(k\Delta t - s)} dW_s^2\right).$$

Example

Gaussian 2-factor with parameters

 $s_0 = 20, \, \alpha_1 = 1.11, \, \alpha_2 = 5.4, \, \sigma_1 = 0.36, \, \sigma_2 = 0.21, \, \rho = -0.11$

and n = 30 exercise days for the swing contract. Results in the Benchmark case of a Call-Strip, i.e. the global consumption constraints are

$$(Q_{\min}, Q_{\max}) = (0, n).$$

Figure: Triangulation for X_n and N = 250 in Gaussian 2-factor model

PAGÈS/WILBERTZ (LPMA-UPMC)

Dual Quantization

Bermudan options

In the same way we use the BDP-Principle for the valuation of Bermudan options:

BDP for Bermudan options

$$\widehat{V}_n = \varphi_{t_n}(\widehat{X}_n)$$
$$\widehat{V}_k = \max\left\{\varphi_{t_k}(\widehat{X}_k); \mathbb{E}(\widehat{V}_{k+1}|\widehat{X}_k)\right\}, \ 0 \le k \le n-1,$$

so that \widehat{V}_0 yields an approximation to the Bermudan option premium

 $V_0 = \operatorname{esssup}\{\mathbb{E}\varphi(X_{\tau}) : \tau \text{ is } \{t_0, \ldots, t_n\}\text{-valued stopping time}\}.$

Example

2-asset Black-Scholes model with

$$s_0^1 = s_0^2 = 40, r = 0.05, \sigma_1 = 0.2, \sigma_2 = 0.3, \rho = 0.5, K = 40,$$

for a put on the min, i.e. payoff

$$\varphi(S_t^1, S_t^2) = (K - \min\{S_t^1, S_t^2\})^+.$$

Example

2-asset Black-Scholes model with

$$s_0^1 = s_0^2 = 40, r = 0.05, \sigma_1 = 0.2, \sigma_2 = 0.3, \rho = 0.5, K = 40,$$

for a put on the min, i.e. payoff

$$\varphi(S_t^1, S_t^2) = (K - \min\{S_t^1, S_t^2\})^+.$$

As underlying Markov process we have chosen a 2-dimensional Brownian Motion with correlation ρ .

Example

2-asset Black-Scholes model with

$$s_0^1 = s_0^2 = 40, r = 0.05, \sigma_1 = 0.2, \sigma_2 = 0.3, \rho = 0.5, K = 40,$$

for a put on the min, i.e. payoff

$$\varphi(S_t^1, S_t^2) = (K - \min\{S_t^1, S_t^2\})^+.$$

As underlying Markov process we have chosen a 2-dimensional Brownian Motion with correlation ρ .

Reference values were computed using a Boyle-Evnine-Gibbs tree with 10.000 timesteps.

Martingale Adjustment

Bermudan option: #exercise days: 10

PAGÈS/WILBERTZ (LPMA-UPMC)

Martingale Adjustment

Bermudan option: #exercise days: 10

PAGÈS/WILBERTZ (LPMA-UPMC)

Conclusion / Summary

• Interesting and challenging extention of regular Quantization

- Interesting and challenging extention of regular Quantization
- Provides a stationarity, which holds independently of the choice of the quantization grid

- Interesting and challenging extention of regular Quantization
- Provides a stationarity, which holds independently of the choice of the quantization grid
- Represented in the Euclidean case by the dual concept of Voronoi tesselations: the Delaunay triangulation

- Interesting and challenging extention of regular Quantization
- Provides a stationarity, which holds independently of the choice of the quantization grid
- Represented in the Euclidean case by the dual concept of Voronoi tesselations: the Delaunay triangulation
- Yields very promising results in first numerical applications

- Interesting and challenging extention of regular Quantization
- Provides a stationarity, which holds independently of the choice of the quantization grid
- Represented in the Euclidean case by the dual concept of Voronoi tesselations: the Delaunay triangulation
- Yields very promising results in first numerical applications
- Further applications in optimal grid generation, adaptive grid refinements possible

- Interesting and challenging extention of regular Quantization
- Provides a stationarity, which holds independently of the choice of the quantization grid
- Represented in the Euclidean case by the dual concept of Voronoi tesselations: the Delaunay triangulation
- Yields very promising results in first numerical applications
- Further applications in optimal grid generation, adaptive grid refinements possible
- Application to 3-factor models, etc.

References

References I

O. Bardou, S. Bouthemy, and G Pagès. Optimal Quantization for the Pricing of Swing Options. Applied Mathematical Finance, 16(2):183-217, 2009.

O. Bardou, S. Bouthemy, and G Pagès.

When are Swing options bang-bang? International Journal of Theoretical and Applied Finance (IJTAF), 13(06):867–899, 2010.

V. Bally and G. Pagès.

Error analysis of the optimal quantization algorithm for obstacle problems. Stochastic Processes and their Applications, 106:1–40(40), July 2003.

V. Bally, G. Pagès, and J. Printems.

A quantization tree method for pricing and hedging multidimensional american options. Mathematical Finance, 15:119–168(50), January 2005.

A. L. Bronstein, G. Pagès, and B. Wilbertz.

How to speed up the quantization tree algorithm with an application to swing options. to appear in Quantitative Finance, 2009.

S. Graf and H. Luschgy.

Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics $n^0 1730$. Springer, Berlin, 2000.

R.M. Gray and D.L. Neuhoff.

Quantization. *IEEE Trans. Inform.*, 44:2325–2383, 1998.

References II

G. Pagès and B. Wilbertz.

Intrinsic stationarity for vector quantization: Foundation of dual quantization. Work in progress, 2010.

G. Pagès and B. Wilbertz.

Sharp rate for the dual quantization problem. Work in progress, 2010.

V. T. Rajan.

Optimality of the delaunay triangulation in \mathbb{R}^d .

In SCG '91: Proceedings of the seventh annual symposium on Computational geometry, pages 357–363, New York, NY, USA, 1991. ACM.