Discussion on “Generalized fractional smoothness and L^p-variation of BSDEs with non-Lipschitz terminal condition”

B. Bouchard

Ceremade - Univ. Paris-Dauphine, and, Crest - Ensaee

Tamerza 2010
Motivations

- Want to approximate the solution of:

\[
\begin{align*}
X_t &= X_0 + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s, \\
Y_t &= g(X_1) + \int_t^1 f(X_s, Y_s, Z_s)ds - \int_t^1 Z_s dW_s
\end{align*}
\]
Motivations

- Want to approximate the solution of:

\[
\begin{align*}
X_t &= X_0 + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s, \\
Y_t &= g(X_1) + \int_t^1 f(X_s, Y_s, Z_s)ds - \int_t^1 Z_s dW_s
\end{align*}
\]

- Formal approximation: \(\pi := (0 = t_0 < \cdots < t_i < \cdots < t_n = 1) \)

\[
Y_{t_i}^{\pi} \sim Y_{t_{i+1}}^{\pi} + (t_{i+1} - t_i)f(X_{t_i}^{\pi}, Y_{t_i}^{\pi}, Z_{t_i}^{\pi}) - Z_{t_i}^{\pi}(W_{t_{i+1}} - W_{t_i})
\]
Motivations

- Want to approximate the solution of:

\[
\begin{align*}
X_t &= X_0 + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s, \\
Y_t &= g(X_1) + \int_t^1 f(X_s, Y_s, Z_s)ds - \int_t^1 Z_s dW_s
\end{align*}
\]

- Formal approximation: \(\pi := (0 = t_0 < \cdots < t_i < \cdots < t_n = 1) \)

\[
Y_{t_i}^\pi \sim Y_{t_{i+1}}^\pi + (t_{i+1} - t_i)f (X_{t_i}^\pi, Y_{t_i}^\pi, Z_{t_i}^\pi) - Z_{t_i}^\pi (W_{t_{i+1}} - W_{t_i})
\]

- Euler scheme type approximation

\[
\begin{align*}
Y_{t_i}^\pi &= \mathbb{E} \left[Y_{t_{i+1}}^\pi \mid \mathcal{F}_{t_i} \right] + (t_{i+1} - t_i)f (X_{t_i}^\pi, Y_{t_i}^\pi, Z_{t_i}^\pi) \\
Z_{t_i}^\pi &= (t_{i+1} - t_i)^{-1} \mathbb{E} \left[Y_{t_{i+1}}^\pi (W_{t_{i+1}} - W_{t_i}) \mid \mathcal{F}_{t_i} \right]
\end{align*}
\]
Error control

- Error term

\[
\text{Err}^2 := \max_i \mathbb{E} \left[\sup_{t_i \leq t \leq t_{i+1}} |Y_{t_i}^{\pi} - Y_t|^2 \right] + \sum_i \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|Z_t - Z_{t_i}^{\pi}|^2 \right] dt
\]
Error control

- **Error term**

\[
\text{Err}^2 := \max_i \mathbb{E} \left[\sup_{t_i \leq t \leq t_{i+1}} |Y^\pi_{t_i} - Y_t|^2 \right] + \sum_i \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|Z_t - Z^\pi_{t_i}|^2 \right] dt
\]

- **Important quantities**
Error control

- Error term

\[\text{Err}^2 := \max_i \mathbb{E} \left[\sup_{t_i \leq t \leq t_{i+1}} |Y^\pi_{t_i} - Y_t|^2 \right] + \sum_i \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|Z_t - Z^\pi_{t_i}|^2 \right] dt \]

- Important quantities
 - \(\mathbb{E} \left[\sup_{t_i \leq t \leq t_{i+1}} |Y_{t_i} - Y_t|^2 \right] \)
Error control

- Error term

$$\text{Err}^2 := \max_i \mathbb{E} \left[\sup_{t_i \leq t \leq t_{i+1}} |Y_t^\pi - Y_t|^2 \right] + \sum_i \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|Z_t - Z_t^\pi|^2 \right] dt$$

- Important quantities
 - $$\mathbb{E} \left[\sup_{t_i \leq t \leq t_{i+1}} |Y_t - Y_t|^2 \right]$$
 - $$\int_0^1 \mathbb{E} \left[|Z_t - \bar{Z}_t^\pi|^2 \right] dt$$

where

$$\bar{Z}_t^\pi := \frac{t_{i+1} - t_i}{t_{i+1}} \mathbb{E} \left[\int_{t_i}^{t_{i+1}} Z_s ds \mid \mathcal{F}_{t_i} \right] \text{ on } [t_i, t_{i+1})$$
For Lipschitz coefficients
Lipschitz case

- For Lipschitz coefficients
 - $Y = v(\cdot, X)$ with v 1/2-Hölder in t and Lipschitz in x
 - $\mathbb{E} \left[\sup_{t_i \leq t \leq t_{i+1}} |Y_{t_i} - Y_t|^2 \right] = O(|\pi|)$
For Lipschitz coefficients

- $Y = v(\cdot, X)$ with v 1/2-Hölder in t and Lipschitz in x
 \[\mathbb{E} \left[\sup_{t_i \leq t \leq t_{i+1}} |Y_{t_i} - Y_t|^2 \right] = O(|\pi|) \]

- Ma and Zhang: \[\int_0^1 \mathbb{E} \left[|Z_t - \bar{Z}_t|^2 \right] dt = O(|\pi|) \text{ too!} \]
For Lipschitz coefficients

- \(Y = v(\cdot, X) \) with \(v \) 1/2-Hölder in \(t \) and Lipschitz in \(x \)
 \[\Rightarrow \mathbb{E} \left[\sup_{t_i \leq t \leq t_{i+1}} |Y_t - Y_{t_i}|^2 \right] = O(|\pi|) \]

- Ma and Zhang: \(\int_0^1 \mathbb{E} \left[|Z_t - \bar{Z}_t^\pi|^2 \right] dt = O(|\pi|) \) too!

Estimates depend crucially on the Lipschitz continuity of \(g \) (and \(f \)).
Non-Lipschitz case but $f = 0$ (or linear in (Y, Z))

- S. Geiss (with Ch. Geiss and A. Toivola) for $X = W$ or $X = e^W$
Non-Lipschitz case but $f = 0$ (or linear in (Y, Z))

- S. Geiss (with Ch. Geiss and A. Toivola) for $X = W$ or $X = e^W$
 - Need to consider the *fractional smoothness of g* : $g \in B_{2,2}^\beta$, $\beta \in (0, 1]$, i.e
 \[
 \sum_{k \geq 1} (k + 1)^\beta \alpha_k^2 < \infty
 \]
 with α_k the coefficients of g in the Hermite polynomial basis.
Non-Lipschitz case but \(f = 0 \) (or linear in \((Y, Z)\))

- S. Geiss (with Ch. Geiss and A. Toivola) for \(X = W \) or \(X = e^W \)
 - Need to consider the fractional smoothness of \(g : g \in B_{2,2}^\beta, \ \beta \in (0, 1] \), i.e
 \[
 \sum_{k \geq 1} (k+1)^\beta \alpha_k^2 < \infty
 \]
 with \(\alpha_k \) the coefficients of \(g \) in the Hermite polynomial basis.
 - Leads to \(\int_0^1 \mathbb{E} \left[|Z_t - \tilde{Z}_t^\pi|^2 \right] dt = O(|\pi|^\beta) \)
Non-Lipschitz case but $f = 0$ (or linear in (Y,Z))

- S. Geiss (with Ch. Geiss and A. Toivola) for $X = W$ or $X = e^W$
 - Need to consider the \textit{fractional smoothness of} $g : g \in B_{2,2}^\beta$, $\beta \in (0, 1]$, i.e
 \[\sum_{k \geq 1} (k + 1)^\beta \alpha_k^2 < \infty \]
 with α_k the coefficients of g in the Hermite polynomial basis.
 - Leads to $\int_0^1 \mathbb{E} \left[|Z_t - \tilde{Z}_t^\pi|^2 \right] dt = O(|\pi|^\beta)$
 - Need to adapt the time net accordingly: $t_i := 1 - (1 - i/n)^{1/\beta}$
Non-Lipschitz case but $f = 0$ (or linear in (Y, Z))

SUMER Geiss (with Ch. Geiss and A. Toivola) for $X = W$ or $X = e^W$

- Need to consider the fractional smoothness of $g : g \in B^\beta_{2, 2}$, $\beta \in (0, 1]$, i.e

$$\sum_{k \geq 1} (k + 1)^\beta \alpha_k^2 < \infty$$

with α_k the coefficients of g in the Hermite polynomial basis.

- Leads to $\int_0^1 E \left[|Z_t - \bar{Z}_t^\pi|^2 \right] dt = O(|\pi|^\beta)$

- Need to adapt the time net accordingly: $t_i := 1 - (1 - i/n)^{1/\beta}$

- In this case can approximate with an error $1/\sqrt{n}$.
Non-Lipschitz case but $f = 0$ (or linear in (Y, Z))

- S. Geiss (with Ch. Geiss and A. Toivola) for $X = W$ or $X = e^W$
 - Need to consider the *fractional smoothness of g*: $g \in B_{2,2}^\beta$, $\beta \in (0, 1]$, i.e
 \[
 \sum_{k \geq 1} (k + 1)^\beta \alpha_k^2 < \infty
 \]
 with α_k the coefficients of g in the Hermite polynomial basis.
 - Leads to $\int_0^1 \mathbb{E} \left[|Z_t - \bar{Z}_t^\pi|^2 \right] dt = O(|\pi|\beta)$
 - Need to adapt the time net accordingly: $t_i := 1 - (1 - i/n)^{1/\beta}$
 - In this case can approximate with an error $1/\sqrt{n}$.
 - Results are sharp.
Non-Lipschitz case - General case

- Gobet and Makhlouf

- Need to revisit the notion of fractional smoothness of g:

 $g \in L_2$, $\beta \in (0, 1]$, i.e.

 $\sup_{t<1} \left(1 - t \right)^{\beta} E \left[\left| g(X_T) - E g(X_T) \right|^2 | F_t \right] < \infty$.

- From this (plus Malliavin calculus) obtain estimates on ∇v and $\nabla^2 v$.

- Also leads to $\int_0^1 E \left[|Z_t - \bar{Z}_\pi_t|^2 \right] dt = O \left(|\pi|^{\beta} \right)$.

- Need to adapt the time net accordingly:

 $t_i := 1 - \left(1 - \frac{i}{n} \right)^{1/\beta}$.

- In this case can approximate with an error $\frac{1}{\sqrt{n}}$.
Non-Lipschitz case - General case

Gobet and Makhlouf

- Need to revisit the notion of fractional smoothness of g:
 \[g \in L^\beta_2, \beta \in (0, 1], \text{ i.e.} \]
 \[
 \sup_{t < 1} \frac{1}{(1 - t)^\beta} \mathbb{E} \left[|g(X_T) - \mathbb{E} [g(X_T) | \mathcal{F}_t]|^2 \right] < \infty.
 \]
Non-Lipschitz case - General case

- Gobet and Makhlouf
 - Need to revisit the notion of fractional smoothness of g: $g \in L_2^\beta$, $\beta \in (0, 1]$, i.e.
 \[
 \sup_{t < 1} \frac{1}{(1-t)^\beta} \mathbb{E} \left[|g(X_T) - \mathbb{E}[g(X_T) | \mathcal{F}_t]|^2 \right] < \infty.
 \]
 - From this (plus Malliavin calculus) obtain estimates on ∇v and $\nabla^2 v$.

Non-Lipschitz case - General case

- Gobet and Makhlouf
 - Need to revisit the notion of fractional smoothness of g:
 $$g \in L_2^\beta, \beta \in (0, 1], \text{i.e.}$$
 $$\sup_{t<1} \frac{1}{(1-t)^\beta} \mathbb{E} \left[|g(X_T) - \mathbb{E}[g(X_T) | \mathcal{F}_t]|^2 \right] < \infty.$$
 - From this (plus Malliavin calculus) obtain estimates on ∇v and $\nabla^2 v$.
 - Also leads to $\int_0^1 \mathbb{E} \left[|Z_t - \bar{Z}_t^\pi|^2 \right] dt = O(|\pi|^\beta)$
 - Need to adapt the time net accordingly: $t_i := 1 - (1 - i/n)^{1/\beta}$
 - In this case can approximate with an error $1/\sqrt{n}$.
Present paper

- \(g \) discretely path depend.
Present paper

- g discretely path depend.
- L^p estimates.
Questions

☐ f irregular as in A. Richou?
Questions

- f irregular as in A. Richou?

- Why do not you consider the discrete time approximation error?
Questions

☐ f irregular as in A. Richou?

☐ Why do not you consider the discrete time approximation error?

☐ Is the uniform ellipticity condition so crucial? (no need in the Lipschitz setting, even for Reflected BSDE - B. and Chassagneux - or Dirichlet type conditions - B. and Mennozì)

☐ Weak error as in Gobet and Labart?

☐ Pure numerical schemes?
Questions

- f irregular as in A. Richou?

- Why do not you consider the discrete time approximation error?

- Is the uniform ellipticity condition so crucial? (no need in the Lipschitz setting, even for Reflected BSDE - B. and Chassagneux - or Dirichlet type conditions - B. and Mennozi)

- Continuously path dependent terminal conditions? (compare with e.g. Zhang)
Questions

☐ f irregular as in A. Richou?

☐ Why do not you consider the discrete time approximation error?

☐ Is the uniform ellipticity condition so crucial? (no need in the Lipschitz setting, even for Reflected BSDE - B. and Chassagneux - or Dirichlet type conditions - B. and Mennozi)

☐ Continuously path dependent terminal conditions? (compare with e.g. Zhang)

☐ Weak error as in Gobet and Labart?
Questions

☐ f irregular as in A. Richou?

☐ Why do not you consider the discrete time approximation error?

☐ Is the uniform ellipticity condition so crucial? (no need in the Lipschitz setting, even for Reflected BSDE - B. and Chassagneux - or Dirichlet type conditions - B. and Mennozi)

☐ Continuously path dependent terminal conditions? (compare with e.g. Zhang)

☐ Weak error as in Gobet and Labart?

☐ Pure numerical schemes?