Generalized fractional smoothness
and L_p-variation of BSDEs
with non-Lipschitz terminal condition

emmanuel.gobet@polytechnique.edu

Ecole Polytechnique

Centre de Mathématiques Appliquées

Joint work with C. Geiss (Innsbruck University) and S. Geiss (Innsbruck University).
Framework: usual Markovian BSDE

\[Y_t = \xi + \int_t^T f(s, X_s, Y_s, Z_s)ds - \int_t^T Z_s dW_s \]

with a Lipschitz generator \(f \), where

- \(X = (X_t)_{t \in [0,T]} \) is a \(\mathbb{R}^d \)-valued forward diffusion \(dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t \),
- \(\xi = g(X_{r_1}, \ldots, X_{r_L}) \) for a given number \(L \) of times \(0 = r_0 < r_1 < \cdots < r_L = T \) and a measurable function \(g : (\mathbb{R}^d)^L \to \mathbb{R} \).

We assume that \(\xi \in L_p \) for a \(p \geq 2 \).

Main concern: which connection between regularities of \(\xi \) and \(Z \)?

Our purpose

Provide necessary and sufficient conditions of the \(L_p \)-variations of the \(Y \) and \(Z \) processes, in terms of the fractional regularity of the terminal condition \(\xi \).

See also El Karoui’s talk about quadratic BSDE, providing estimates on \(\mathbb{E}(\frac{1}{2} \int_S^T |Z_r|^2 dr |\mathcal{F}_S) \) in terms of \(\Phi_{S,T} \).
Potential applications

- Error analysis of the convergence of the time discretization of BSDEs: it is known (in the L_2-case) that one main contribution is due to

$$
\mathcal{E}(Z, (t_i)_i) = \left(\mathbb{E} \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} \|Z_t - Z_{t_{i-1}}\|_2^2 dt \right)^{1/2}
$$

where

$$
\overline{Z}_{t_{i-1}} := \frac{1}{t_i - t_{i-1}} \mathbb{E} \left[\int_{t_{i-1}}^{t_i} Z_s ds \mid \mathcal{F}_{t_{i-1}} \right]
$$

is an appropriate projection of Z.

\leadsto Optimal choice of deterministic time grids.

- Tight estimates on the gradient of semi-linear PDEs.
Background results

- L_∞-functionals [Zhang '04]: if $\xi = \phi(X_t : t \leq T)$ with

$$|\phi(x) - \phi(x')| \leq C_\phi \sup_{t \leq T} |x(t) - x'(t)|,$$

then

$$\mathcal{E}(Z, (t_i)_i) \leq C|t_i|^{1/2}.$$

\Rightarrow Uniform grids $t_i = i\frac{T}{N}$ yield the optimal rate of convergence $N^{1/2}$.

- Possible extensions to jumps [Bouchard, Elie '08], to RBSDE [Bouchard, Chassagneux '06], to BSDE with random terminal time [Bouchard, Menozzi '09].

- Fractional regularity [G’, Makhlouf ’10] (see Makhlouf’s talk): if $\xi = g(X_T)$ with

$$\|g(X_T) - \mathbb{E}(g(X_T)|\mathcal{F}_t)\|_2 \leq c(T - s)^{\frac{\theta}{2}}$$

then

$$\mathcal{E}(Z, (t_i)_i) \leq \frac{C}{N^{\theta/2}}$$

for uniform grids. The rate $N^{1/2}$ is achieved using non-uniform grids.

Our work: extension of G’-Makhlouf results for path-dependent ξ.
Agenda of the talk

1. Definitions and assumptions

2. A general equivalence result: necessary and sufficient conditions

3. Simple sufficient conditions

4. Sketch of proofs
Definition of fractional regularity

Definition. Let $\Theta = (\theta_1, ..., \theta_L) \in (0, 1]^L$ and $2 \leq p < \infty$. Then we let $(\xi, f) \in B_{p, \infty}^\Theta(X)$ provided that there is some $c > 0$ such that

$$\|Y_{r_l} - \mathbb{E}(Y_{r_l} | \mathcal{F}_s)\|_p \leq c(r_l - s)^{\theta_l/2}$$

for all $l = 1, ..., L$ and $r_{l-1} \leq s < r_l$.

Property. It measures the rate of best approximation in \mathbb{L}_p of Y_{r_l} by a \mathcal{F}_s-measurable random variable, as $s \to r_l$.

Proof: $\inf_{V \in \mathbb{L}_p(\mathcal{G})} \|U - V\|_p \leq \|U - \mathbb{E}(U|\mathcal{G})\|_p \leq 2 \inf_{V \in \mathbb{L}_p(\mathcal{G})} \|U - V\|_p$.

Remark. Specializing to the linear one-step Gaussian case ($X = W$, $T = L = 1$ and $f = 0$) we obtain that

$$g(W_1) \in B_{p, \infty}^{(\theta)}(W) \text{ if and only if } g \in B_{p, \infty}^\theta(\mathbb{R}^d, \gamma_d),$$

i.e. the usual interpolation space taking the standard Gaussian measure γ_d on \mathbb{R}^d (see [GH07, Toi09]).
Standing assumptions on X, f and g

\((A_{\sigma,b})\) We have $1 \leq d < \infty$, $\sigma \sigma^* \geq \delta I_{\mathbb{R}^d}$ for some $\delta > 0$, and the functions b, σ are bounded and C^2 with respect to the space variable, with uniformly bounded and γ-Hölder C^0 derivatives, for some $\gamma \in (0, 1]$. In addition, b and σ are $\frac{1}{2}$-Hölder C^0 in time uniformly in space.

\((A_f)\) The function $f : [0, T] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is continuous in (t, x, y, z) and continuously differentiable in x, y and z with uniformly bounded derivatives. In particular, there is some $L_f > 0$ such that

$$|f(s, x_1, y_1, z_1) - f(s, x_2, y_2, z_2)| \leq L_f [|x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|].$$

\((A_g)\) The terminal condition $\xi := g(X_{r_1}, ..., X_{r_L})$ is such that $\xi \in \mathbb{L}_p$ ($p \geq 2$).

\((A_{g,pol})\) The terminal functional is at most of polynomial growth (stronger than A_g).
A preliminary result (extension of [Zha05])

Proposition. Under \((A_{\sigma,b}), (A_f)\) and \((A_{pol}^g)\), the solution \((Y, Z)\) is on \([r_{l-1}, r_l)\) by

\[
Y_t = u_l(\bar{X}_{l-1}; t, X_t) \quad \text{and} \quad Z_t = v_l(\bar{X}_{l-1}; t, X_t)\sigma(t, X_t),
\]

where we set \(\bar{X}_{l-1} := (X_1, \ldots, X_{l-1})\), for some measurable functions \(u_l\) and \(v_l\) that satisfy the following properties:

(i) \(u_l(\bar{x}_{l-1}; \cdot, \cdot) : [r_{l-1}, r_l) \times \mathbb{R}^d \to \mathbb{R}\) is continuous and continuously differentiable w.r.t. the space variable with

\[
\nabla_x u_l(\bar{x}_{l-1}; t, x) = v_l(\bar{x}_{l-1}; t, x),
\]

where \(\bar{x}_{l-1} = (x_1, \ldots, x_{l-1})\),

(ii) there are \(\alpha_l, q_{l,1}, \ldots, q_{l,l} \in [1, \infty)\) such that

\[
\sup_{t \in [r_{l-1}, r_l)} |u_l(\bar{x}_{l-1}; t, x)| + \sup_{t \in [r_{l-1}, r_l)} \sqrt{r_l - t}|v_l(\bar{x}_{l-1}; t, x)| \leq \alpha_l(1 + |x_1|^{q_{l,1}} + \cdots + |x_{l-1}|^{q_{l,l-1}} + |x|^{q_{l,l}}).
\]
A general equivalence result

Theorem. Assume that \((A_{\sigma,b}), (A_f)\) and \((A_{g}^{pol})\) are satisfied. For \(2 \leq p < \infty\) and \(\Theta \in (0, 1]^L\) consider the following conditions:

(C1) There is some \(c_1 > 0\) such that, for \(r_{l-1} \leq s < t < r_l\),

\[
\|Z_t - Z_s\|_p \leq c_1 \left(\int_s^t (r_l - r)^{\theta_l - 2} \, dr \right)^{\frac{1}{2}}.
\]

(C2) There is some \(c_2 > 0\) with \(\|Z_t\|_p \leq c_2 (r_l - t)^{\frac{\theta_l - 1}{2}}\) for \(r_{l-1} \leq t < r_l\).

(C3) There is some \(c_3 > 0\) such that, for \(r_{l-1} \leq s < t \leq r_l\),

\[
\|Y_t - Y_s\|_p \leq c_3 \left(\int_s^t (r_l - r)^{\theta_l - 1} \, dr \right)^{\frac{1}{2}}.
\]

(C4) \((\xi, f) \in B_{p,\infty}^\Theta(X)\).

Then one has that \(\text{(C1)} \overset{\Theta \in (0, 1]^L}{\iff} \text{(C2)} \iff \text{(C3)} \iff \text{(C4)} \implies \text{(C1)}\).

\(\text{⚠️ (C1)} \implies \text{(C2)}\) is false in general (explicit counter-example with \(X = W, f \equiv 0\)).
Another equivalence result - In terms of the second derivatives of the linear PDE

We consider the piece-wise linearization of the backward equation by letting

$$g_l(x_1, \ldots, x_l) := u_l(x_1, \ldots, x_{l-1}; r_l, x_l)$$

and $F_l(x_{l-1}; \cdot, \cdot) : [r_{l-1}, r_l] \times \mathbb{R}^d \to \mathbb{R}$ by

$$F_l(x_1, \ldots, x_{l-1}; t, x) = F_l(x_{l-1}; t, x) := \mathbb{E}g_l(x_1, \ldots, x_{r_l-1}, X_{r_l}^{t,x}),$$

which solves a linear PDE on the interval $[r_{l-1}, r_l)$ for fixed $x_1, \ldots, x_{l-1} \in \mathbb{R}^d$.

Theorem. Under $(A_{\sigma,b})$, (A_f) and $(A_{g^{pol}})$, we have $(C4) \iff (C5)$ where

(C4) $(\xi, f) \in B^\Theta_{p,\infty}(X)$.

(C5) There is some $c_5 > 0$ such that, for any l and for $r_{l-1} \leq t < r_l$,

$$\left\| \left(\int_{r_{l-1}}^t |(D^2 F_l)(X_{l-1}; r, X_r)|^2 dr \right)^{\frac{1}{2}} \right\|_p \leq c_5 (r_l - t)^{\frac{\theta_l-1}{2}}.$$
Another equivalence result - In terms of adapted splines

Non regular grids

A common idea when we deal with singularities located at the times
$0 < r_1 < \cdots < r_L = T$ is to compensate them with adapted time-nets, that are
more concentrated near these points.

Definition. For $\Theta \in (0, 1]^L$ we let $\tau^{n, \Theta} = (t^{n, \Theta}_k)_{k=1}^{nL}$ be given by $t^{n, \Theta}_0 := 0$ and

$$
t^{n, \Theta}_k := r_{l-1} + (r_l - r_{l-1}) \left(1 - \left(1 - \frac{k - (l - 1)n}{n} \right) \frac{1}{\theta_l} \right)
$$

for $(l - 1)n < k \leq ln$.

Remark. In [GM10], taking this type of grid with θ_l strictly smaller that the
regularity index of (ξ, f) yields an optimal rate of \mathbb{L}_2-convergence w.r.t. n (see also
[GG04] for $f \equiv 0$).
Definition. **Adapted splines.** Given a time-net $\tau = (t_k)_{k=0}^n$ with $0 = t_0 < \cdots < t_n = T$ we say that the process $S = (S_t)_{t \in [0, T]}$ is an **adapted spline based on** τ provided that S_{t_k} is \mathcal{F}_{t_k}-measurable for all $k = 0, \ldots, n$ and

$$S_t := \frac{t_k - t}{t_k - t_{k-1}} S_{t_{k-1}} + \frac{t - t_{k-1}}{t_k - t_{k-1}} S_{t_k} \quad \text{for} \quad t_{k-1} \leq t \leq t_k.$$

This is a useful concept to find efficient approximation schemes for stochastic processes where the whole path needs to be approximated but the adaptedness of the approximation is not fully needed, see [CMGR07].

Theorem. Under $(A_{\sigma,b})$, (A_f) and (A_{pol}^g), we have $(C4) \iff (C6)$ where

$(C4)$ $(\xi, f) \in B_{p,\infty}^\Theta(X)$.

$(C6)$ There is some $c_6 > 0$ such that for all $n = 1, 2, \ldots$ there is an adapted spline $S^n = (S^n_t)_{t \in [0,T]}$ based on τ^n, Θ such that

$$\|Y_{r_l} - Y_{r_{l-1}}\|_p + \sqrt{n} \sup_{t \in [0, T]} \|Y_t - S^n_t\|_p \leq c_6.$$
Sufficient conditions (independent from the generator f)

First approach. We use the Hirsch fractional smoothness approach [Hir99]. Consider B an independent copy of W, supported on the same $(\Omega, \mathcal{F}, \mathbb{P})$.

For a given measurable function $\eta : [0, T] \mapsto [-1, 1]$, we define W^η a new BM:

$$W^\eta_t := \int_0^t \sqrt{1 - \eta(s)^2} dW_s + \int_0^t \eta(s) dB_s.$$

We denote by $(\mathcal{F}^\eta_t)_{0 \leq t \leq T}$ the \mathbb{P}-augmented natural filtration of W^η.

Then, define the strong solution to

$$X^\eta_t = x_0 + \int_0^t b(s, X^\eta_s) ds + \int_0^t \sigma(s, X^\eta_s) dW^\eta_s$$

and for $\xi^\eta \in \mathbb{L}_p(\mathcal{F}^\eta_T)$, define the \mathbb{L}_p-solution (in the filtration $(\mathcal{F}^\eta_t)_{0 \leq t \leq T}$) to

$$Y^\eta_t = \xi^\eta + \int_t^T f(s, X^\eta_s, Y^\eta_s, Z^\eta_s) ds - \int_t^T Z^\eta_s dW^\eta_s.$$

$\Rightarrow \mathbb{L}_p$-distance between (X, Y, Z) and (X^η, Y^η, Z^η)?
Main tool

Theorem. Assume that $(A_{\sigma,b})$ and (A_f) are satisfied. Then for $2 \leq p < \infty$ and $\xi, \xi^\eta \in \mathbb{L}_p$ we have that

$$\| \sup_{0 \leq t \leq T} |X_t^\eta - X_t| \|_p + \| \sup_{0 \leq t \leq T} |Y_t^\eta - Y_t| \|_p + \left\| \left(\int_0^T |Z_t^\eta - Z_t|^2 dt \right)^{1/2} \right\|_p \leq c \left[\| \xi^\eta - \xi \|_p + \sqrt{\int_0^T \eta(t)^2 dt} \right]$$

where $c > 0$ depends at most on p, T, f, b and σ.

Proof. Based on a clever application of a priori estimates for BSDE in \mathbb{L}_p.
Applications (relaxing A_{ag}^{pol} to A_g)

We choose specific perturbations η defined as follows: for $0 \leq t < r \leq T$ we let

$$\eta_{t,r}(s) := \chi(t,r)(s).$$

Corollary. Assume $(A_{b,\sigma})$, (A_f) and (A_g) for some $p \geq 2$. Let

$$\xi^{t,r} := g(X_{r_1}^{\eta_{t,r}}, \ldots, X_{r_L}^{\eta_{t,r}})$$

for $0 \leq t < r \leq T$. Setting $\Theta = (\theta_1, \ldots, \theta_L) \in (0,1]^L$, if there is a constant $c > 0$ such that one has that

$$\|\xi - \xi^{t,r_1}\|_p \leq c(r_1 - t)^{\theta_1}$$

for all $l = 1, \ldots, L$ and $r_{l-1} \leq t < r_l$, then $(\xi, f) \in B_{p,\infty}^\Theta$.

Consequently, for some $c > 0$ we have

(C’1) $\|Z_t - Z_s\|_p \leq c_1\left(\int_s^t (r_1 - r)^{\theta_1 - 2}dr\right)^{\frac{1}{2}}$, for a.e. (s,t) s.t. $r_{l-1} \leq s < t < r_l$;

(C’2) $\|Z_t\|_p \leq c_2(r_1 - t)^{\theta_1 - \frac{1}{2}}$, for a.e. $t \ r_{l-1} \leq t < r_l$;

(C’3) $\|Y_t - Y_s\|_p \leq c_3\left(\int_s^t (r_1 - r)^{\theta_1 - 1}dr\right)^{\frac{1}{2}}$, for every (s,t) s.t. $r_{l-1} \leq s < t \leq r_l$.
Proof of \(\|\xi - \xi_{t,r_l}\|_p \leq c(r_l - t)^{\frac{\theta_l}{2}} \Rightarrow (\xi, f) \in B_{p,\infty}^{\Theta} \).

For \(r_{l-1} \leq t < r_l \) we get that

\[
\|Y_{r_l} - \mathbb{E}(Y_{r_l}|\mathcal{F}_t)\|_p = \|Y_{r_l} - \mathbb{E}^W(Y_{r_l}|\mathcal{F}_t)\|_p \\
= \|Y_{r_l} - \mathbb{E}^B(Y_{r_l}^{\eta_t,r_l}|\mathcal{F}_t)\|_p \\
\leq \|Y_{r_l} - Y_{r_l}^{\eta_t,r_l}\|_p \\
\leq c \left[\|\xi - \xi_{t,r_l}\|_p + \sqrt{\int_0^T \eta_{t,r_l}(r)^2 dr} \right] \\
\leq c \left[c(r_l - t)^{\frac{\theta_l}{2}} + \sqrt{r_l - t} \right].
\]

\(\Box \)
Applications (Cont’d)

Proposition. Let g_1, \ldots, g_L be of bounded variation, i.e.

$$
\sup_N \sup_{-\infty < x_0 < \cdots < x_N < \infty} \sum_{k=1}^N |g_l(x_k) - g(x_{k-1})| < \infty
$$

for any l. Consider

$$
\xi = \Phi(g_1(X_{r_1}), \ldots, g_L(X_{r_L}))
$$

such that

$$
|\Phi(x_1, \ldots, x_L) - \Phi(y_1, \ldots, y_L)| \leq \kappa \left(|x_1 - y_1|^\alpha + \cdots + |x_L - y_L|^\alpha \right).
$$

Then one has that $(\xi, f) \in \bigcap_{0 < \theta < \frac{\alpha}{2p}} B_{p,\infty}^{(\theta, \ldots, \theta)}(X)$.
Proof

According to [Avikainen ’09] one has

\[\mathbb{E}|g(X) - g(Y)|^p \leq c(p, q, g, X)\|X - Y\|^\frac{q}{q+1} \]

whenever \(g \in BV, 1 \leq p, q < \infty \), where \(X \) has a bounded density. Hence,

\[\|\xi - \xi^{t, r_l}\|_p \leq \kappa \sum_{j=1}^{L} \left\| g_j(X_{r_j}) - g_j(X_{\eta t, r_l}^{r_j}) \right\|_p^\alpha \]

\[\leq \kappa \sum_{j=l}^{L} \left\| g_j(X_{r_j}) - g_j(X_{\eta t, r_l}^{r_j}) \right\|_p^\alpha \]

\[\leq c' \sum_{j=l}^{L} \left(X_{r_j} - X_{\eta t, r_l}^{r_j} \right) \|_q^{\frac{\alpha q}{(q+1)p}} \]

\[\leq c'' (r_l - t) \frac{\alpha q}{(q+1)^2p} . \]

Now we can take a large \(q \). \qed
Sufficient conditions (Cont’d)

Second approach. Relies on a simple iteration procedure.

Theorem. Assume that

\[|\Phi(x_1, ..., x_L) - \Phi(x'_1, ..., x'_L)| \leq \sum_{l=1}^{L} [|g_l(x_l) - g_l(x'_l)| + \psi_l(x_1, ..., x_l; x'_1, ..., x'_l)|x_l - x'_l|] \]

where the functions \(\Phi, g_l \) and \(\psi_l \) are polynomially bounded Borel functions such that

\[\|g_l(X_{r_l}) - \mathbb{E}(g_l(X_{r_l})|\mathcal{F}_t)\|_p \leq c(r_l - t)^{\theta_l/2} \]

for \(l = 1, ..., L, 0 < \theta_l \leq 1, \) and \(r_{l-1} \leq t \leq r_l. \)

Then,

\[(\xi, f) \in B^{\Theta}_{\infty}(X). \]

Example: for \(\Phi(x) = 1_{a_1 < x_1 < a_1} \cdots 1_{a_L < x_L < a_L}, \) we have \(\theta_1 = \frac{1}{2p}. \)
Sketch of proofs of the main equivalence results

\((C1) \implies (C2)\) for \(0 < \theta_l < 1\)

Quite easy since

\[
\|Z_t\|_p \leq \|Z_{r_l-1}\|_p + c_1 \left(\int_{r_{l-1}}^{t} (r_l - r)^{\theta_l-2} \, dr \right)^{\frac{1}{2}}
\]

\[
= \|Z_{r_{l-1}}\|_p + c_1 \left(\frac{1}{1 - \theta_l} \left[(r_l - t)^{\theta_l-1} - (r_l - r_{l-1})^{\theta_l-1} \right] \right)^{\frac{1}{2}}
\]

\[
\leq \|Z_{r_{l-1}}\|_p + c_1 (1 - \theta_l)^{-\frac{1}{2}} (r_l - t)^{\frac{\theta_l-1}{2}}.
\]
Generalized fractional smoothness and L_p-variation of BSDEs with non-Lipschitz terminal

E. Gobet

$(C2) \implies (C3)$

Quite easy since

$$
\|Y_t - Y_s\|_p = \left\| \int_s^t f(r, X_r, Y_r, Z_r)dr - \int_s^t Z_r dW_r \right\|_p
$$

$$
\leq \int_s^t \|f(r, X_r, Y_r, Z_r)\|_p dr + a_p \left(\int_s^t \|Z_r\|_p^2 dr \right)^{\frac{1}{2}} \quad \text{(BDG + } p \geq 2)
$$

$\leq \cdots$

\square
(C3) \implies (C4)

Quite easy since

$$\|Y_{r_l} - \mathbb{E}(Y_{r_l} | \mathcal{F}_s)\|_p \leq \|Y_{r_l} - Y_s\|_p + \|Y_s - \mathbb{E}(Y_{r_l} | \mathcal{F}_s)\|_p$$

$$\leq 2\|Y_{r_l} - Y_s\|_p$$

$$\leq 2c_3\left(\int_s^{r_l} (r_l - r)^{\theta_l-1} dr\right)^{\frac{1}{2}}$$

$$= 2c_3\sqrt{\frac{1}{\theta_l}}(r_l - s)^{\frac{\theta_l}{2}}.$$
\[(C4) \implies (C5)\]

A bit less easy (inspired from [GM10]).

Crucial Malliavin calculus \(L_p\)-estimates on PDE, under fractional smoothness assumptions

Set

\[R_s := \|Y_{r_1} - \mathbb{E}(Y_{r_1}|\mathcal{F}_s)\|_p.\]

Then

\[\|\nabla_x F_1(\overline{X}_{1-1}; s, X_s)\|_p \leq \kappa_p' \frac{\|Y_{r_1} - \mathbb{E}(Y_{r_1}|\mathcal{F}_s)\|_p}{\sqrt{r_1 - s}}\]

and

\[\|D^2 F_1(\overline{X}_{1-1}; s, X_s)\|_p \leq \kappa_p' \frac{\|Y_{r_1} - \mathbb{E}(Y_{r_1}|\mathcal{F}_s)\|_p}{r_1 - s}.\]

(see Makhlouf’s talk).
Then, using ellipticity and BDG inequalities, one has
\[
\left\| \left(\int_{r_{l-1}}^{t} \left| (D^2 F_l)(X_{l-1}; s, X_s) \right|^2 ds \right) \right\|_p^{\frac{1}{2}} \leq c \sum_{k=1}^{d} \left\| \int_{r_{l-1}}^{t} (\nabla_x (\partial_{x_k} F_l) \sigma)(X_{l-1}; s, X_s) dW_s \right\|_p.
\]

Thanks to the PDE solved by F_l, we have
\[
\partial_{x_k} F_l(X_{l-1}; t, X_t) - \partial_{x_k} F_l(X_{l-1}; r_{l-1}, X_{r_{l-1}}) = - \int_{r_{l-1}}^{t} \left\{ \langle \partial_{x_k} b, \nabla_x F_l \rangle + \frac{1}{2} \langle \partial_{x_k} A, D^2 F_l \rangle \right\} (X_{l-1}; s, X_s) ds + \int_{r_{l-1}}^{t} \left\{ \nabla_x (\partial_{x_k} F_l) \sigma \right\} (X_{l-1}; s, X_s) dW_s.
\]
Then, this implies that

\[
\left\| \int_{r_{l-1}}^{t} \left(\nabla_x (\partial_{x_k} F_l) \sigma(\overline{X}_{l-1}; s, X_s) dW_s \right) \right\|_p \\
\leq \left\| \nabla_x F_l(\overline{X}_{l-1}; t, X_t) \right\|_p + \left\| \nabla_x F_l(\overline{X}_{l-1}; r_{l-1}, X_{r_{l-1}}) \right\|_p \\
+ \left\| \int_{r_{l-1}}^{t} \left\{ \langle \partial_{x_k} b, \nabla_x F_l \rangle + \frac{1}{2} \langle \partial_{x_k} A, D^2 F_l \rangle \right\} (\overline{X}_{l-1}; s, X_s) ds \right\|_p \\
\leq \kappa_p \sqrt{d} \frac{R_t}{\sqrt{r_{l-t}}} + \kappa_p \sqrt{d} \frac{R_{r_{l-1}}}{\sqrt{r_{l-1}-r_{l-1}}} + \kappa_p \sqrt{d} \| \partial_{x_k} b \|_\infty \int_{r_{l-1}}^{r_l} \frac{R_s}{\sqrt{r_l-s}} ds \\
+ \kappa_p d \| \partial_{x_k} A \|_\infty \int_{r_{l-1}}^{r_l} \frac{R_s}{r_l-s} ds \\
\ldots
\]
(C5) \Rightarrow (C2)

Decomposition of the Z process: $\delta Z_r := Z_r - \nabla_x F_l(X_{l-1}; r, X_r)\sigma(r, X_r)$.

Two steps:

- prove that $\sup_{r_{l-1} \leq r < r_l} \|\delta Z_r\|_p < \infty$ (crucially linked to the fact that this difference of BSDEs has zero terminal condition).

- estimate $\nabla_x F_l(X_{l-1}; r, X_r)$ in \mathbb{L}_p. It relies on the

Lemma. There exists a constant $c > 0$ such that, for all $r_{l-1} \leq s < t < r_l$,

$$
\|\nabla_x F_l(X_{l-1}; t, X_t) - \nabla_x F_l(X_{l-1}; s, X_s)\|_p
\leq c(t - s)\|\nabla_x F_l(X_{l-1}; r_{l-1}, X_{r_{l-1}})\|_p
+ c(t - s) \left\| \left(\int_{r_{l-1}}^{s} |D^2 F_l(X_{l-1}; v, X_v)|^2 dv \right)^{\frac{1}{2}} \right\|_p
+ c \left\| \left(\int_{s}^{t} |D^2 F_l(X_{l-1}; v, X_v)|^2 dv \right)^{\frac{1}{2}} \right\|_p.
$$
\[(C4) \implies (C1)\]

We linearize the BSDE, following the approach of [GM10].

Long and technical...
References

