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Problem

Complete Market (e.g Black-Scholes)

unique martingale measure Q for asset prices S
any claim X ≥ 0 is priced by replication

X = EQ
t [X ]︸ ︷︷ ︸

replication cost

+

∫ T̄

t

ϑ dS︸ ︷︷ ︸
hedging

, t ≤ T̄

Incomplete Market
infinitely many martingale measures Q ∈M(S)
No-arbitrage valuations bounds

inf
Q∈M

EQ
t [X ] and sup

Q∈M
EQ
t [X ]

are the super-replication costs  notion of hedging
Problem: The bounds are typically too wide!
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“Solution”

Ad-hoc Solution
Get tighter bounds by using smaller subset Qngd ⊂M

inf
Q∈Qngd

EQ
t [X ] and sup

Q∈Qngd

EQ
t [X ]

Questions
Which subset Qngd to choose ?
... for good mathematical dynamical valuation properties ?
... for financial meaning of such valuation bounds ?
Can one associate to such bounds any notion of hedging ?
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Outline

1 Bounds for Optimal Growth for Semimartingales by Duality

2 An Itô process model

3 Good-deal valuation and hedging via BSDE
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Bounds on Optimal Growth

discounted asset prices processes: Semimartingales S ≥ 0

positive (normalized) wealth processes = tradable
numeraires

Nt = 1 +

∫
0
ϑdS > 0 , t ≤ T̄

cond. expected growth over any period ]] T , τ ]] is

ET

[
log

Nτ
NT

]
(1)

Question: Can we choose the set Qngd such that a
pre-specified bound for growth (1) is ensured for any market
extension S̄ = (S , S ′) by derivative price processes
S ′t = EQ

t [X ] for X ≥ 0 computed by Q ∈ Qngd ?
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Ensuring Bounds for Optimal Growth

by defining a suitable set Qngd of pricing measures

Def: Measures with finite (reverse) relative entropy

Q :=
{
Q ∈Me(S)

∣∣E [− logZT̄ ] <∞
}

Fix some predictable and bounded process h = (ht) > 0, and

Def: let Qngd contain Q ∈ Q iff density process Z satisfies

ET

[
− log

Zτ
ZT

]
≤ 1

2
ET

[∫ τ

T
h2
u du

]
for all T ≤ τ ≤ T̄ ,

... equivalently with only deterministic times

Es

[
− log

Zt

Zs

]
≤ 1

2
Es

[∫ t

s
h2
udu

]
for all s ≤ t ≤ T̄
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Example: For h = const e.g.

Es

[
− log

Zt

Zs

]
≤ const(t − s) , s ≤ t ≤ T̄
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Ensuring Bounds for Optimal Growth

Convex duality yields: When pricing with Q ∈ Qngd, any
extended market

S̄t = (St ,E
Q
t [X ])

satisfies the bounds for expected growth of wealth

ET

[
log

N̄τ

N̄T

]
≤ ET

[
− log

Zτ
ZT

]
(2)

for all stopping times T ≤ τ ≤ T̄ .

That is, derivatives price processes are taken such that there
arise no dynamic trading opportunities which offer deals that
are ‘too good’ !
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Multiplicative Stability

For any Q ∈ Q, we have a Doob-Meyer decomposition

− logZt = Mt + At

with M= UI-martingale, A= predictable, increasing, integrable

Additive functional for T ≤ τ : ET

[
− log Zτ

ZT

]
= ET [Aτ − AT ]

 Qngd is multiplicative stable

 Dynamic good-deal valuation bounds

πut (X ) = sup
Q∈Qngd

EQ
t [X ] and π`t (X ) = inf

Q∈Qngd
EQ
t [X ] = −πut (−X )

have good dynamic behavior over time....
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Good Dynamic Valuation Bound Properties

Thm: Mappings X 7→ πut (X ) (t ≤ T̄ ) from L∞ → L∞(Ft)
satisfies

(nice paths) For any X ∈ L∞ there is an RCLL-version of
(πut (X ))t≤T̄

πuT (X ) = ess sup
Q∈S

EQ
T [X ] for all stopping times T ≤ T̄ .

(recursiveness) For any stopping times T ≤ τ ≤ T̄ holds that

πuT (X ) = πuT (πuτ (X )) .

(Stopping-time consistency) For stopping times T ≤ τ ≤ T̄
the inequality πuτ (X 1) ≥ πuτ (X 2) implies πuT (X 1) ≥ πuT (X 2).
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Motivation General Itô processes Good deals by BSDEs Bounds for optimal growth Dynamic valuation properties

Good Valuation Bound properties (cont.)

Thm (cont.)

(dynamic coherent risk measure) For any stopping time
T ≤ T̄ and mT , αT , λT ∈ L∞(FT ) with 0 ≤ αT ≤ 1,
λT ≥ 0, the mapping X 7→ πuT (X ) satisfies the properties:

monotonicity: X 1 ≥ X 2 implies πu
T (X 1) ≥ πu

T (X 2)
translation invariance: πu

T (X + mT ) = πu
T (X ) + mT

convexity:
πu
T (αTX

1 + (1− αT )X 2) ≤ αTπ
u
T (X 1) + (1− αT )πu

T (X 2)
positive homogeneity: πu

T (λTX ) = λTπ
u
T (X )

No arbitrage consistency: πuT (X ) = x + ϑ · ST for any
X = x + ϑ · ST̄ with ((ϑ · St)t≤T̄ ) being uniformly bounded.
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Itô price process model

Take more explicit model for more constructive results:

Filtration (Ft)t≤T̄ generated by n-dim Brownian motion W

Market with d assets, d ≤ n.

Itô prices processes

dSt = diag(St)σt (ξt dt + dWt) , t ≤ T̄ ,

where σ, ξ are predictable, σt ∈ Rd×n has full rank d ≤ n.

(minimal) market price of risk process ξ bounded,
ξt ∈ Im σtrt = (Ker σt)

⊥
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Trading strategies

Trading strategy ϕ (wealth invested in assets) yields wealth
process

dVt = ϕtr
t dRt = ϕtr

t σt(ξtdt + dWt)

=

Convenient: Re-parameterize strategy set by φ ∈ Φ

φt = σtrt ϕt ∈ Im σtrt and ϕ = (σσtr)−1σφ
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Trading strategies

Trading strategy ϕ (wealth invested in assets) yields wealth
process

dVt = ϕtr
t dRt = ϕtr

t σt(ξtdt + dWt)

= φtrt (ξtdt + dWt) =: φtrt dŴt

Convenient: Re-parameterize strategy set by φ ∈ Φ

φt = σtrt ϕt ∈ Im σtrt and ϕ = (σσtr)−1σφ

Later useful: orthogonal projections

Πt : Rn → Im σtrt and Π⊥t : Rn → (Im σtrt )⊥ = Ker σt
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Equivalent martingale measures

Convenient parameterization of Qngd by Girsanov kernels

Any Q ∈M has a density process of the form

Zt :=
dQ

dP

∣∣∣∣
t

= E
(∫

λdW

)
t

= E
(
−
∫
ξ dW

)
t

E
(∫

η dW

)
t

with (possible) market price of risk λ = −ξ + η
predictable s.t. Πt(λt) = −ξt and Π⊥t (λt) = ηt .

For Q ∈ Qngd ⊂M holds |λ|2 = |ξ|2 + |η|2 ≤ h2 (P × dt-a.e.)

Vice versa any predictable λ with |λ|2 ≤ h2 and
Πt(λt) = −ξt (P × dt-a.e.) defines a density process Z for
some Q ∈ Qngd with η = Π⊥(λ).
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BSDE description of good-deal valuation bounds

Upper good-deal bound πut (X ) = ess sup
Q∈Qngd

EQ
t [X ], X ∈ L2

maximizing over linear BSDE generators
(−ξtrt Πt(Zt) + ηtrt Π⊥t (Zt)) yields upper good-deal
valuation process

πut (X ) = ess sup
Q∈Qngd

EQ
t [X ] = E Q̄

t [X ] = Yt , t ≤ T̄

...where (Y ,Z ) is solution to the BSDE with YT̄ = X and

−dYt =

(
−ξtrt Πt(Zt) +

√
h2
t − |ξt |2

∣∣∣Π⊥t (Zt)
∣∣∣) dt − Zt dWt

Density of ‘worst case’ scenario measure Q̄ is described too.
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Illustration
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BSDE description for good-deal hedging

What hedging notion can we associate to good-deal valuation
bounds ?

Define dynamic ‘a-priori’ coherent risk measure

ρt(X ) := ess sup
Q∈Pngd

EQ
t [X ] , t ≤ T̄ ,

for Pngd :=
{
Q ∼ P

∣∣∣ dQ
dP

∣∣
F = E

(∫
λdW

)
with |λ| ≤ h

}
Note 1) Pngd ⊃ Qngd

2) analogous ‘no-good-deal type’ structure as Qngd

As before, get BSDE description for ρt(X ) = Yt :

−dYt = ht |Zt | dt − Zt dWt , t ≤ T̄ with YT̄ = X
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BSDE description for good-deal hedging

Applying again the optimality methods for BSDEs...

... yields

πut (X ) = Yt = ess inf
φ∈Φ

ρt

(
X −

∫ T̄

t
φ dŴ

)
= ρt

(
X −

∫ T̄

t
φ∗ dŴ

)

... where the hedging strategy φ∗ is explicitly given in terms
of the πu-BSDE solution (Y ,Z ) as

φ∗ =
|Π⊥(Z )|√
h2 − |ξ|2

ξ + Π(Z )
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Motivation General Itô processes Good deals by BSDEs Valuation bounds Hedging Ambiguity Ambiguity Fine

BSDE description for good-deal hedging

Tracking error (cost process) of hedging strategy ?

Tracking error :=

πu0 (X )− πut (X )︸ ︷︷ ︸
regul.capital reqrmnt

+

∫ t

0
φ∗s dŴs︸ ︷︷ ︸

P+L from trading

, t ≤ T̄

of the good-deal hedging strategy φ∗ is submartingale
under any Q ∈ Pngd and a martingale unter a worst-case
measure Qλ ∈ Pngd, whose density is explicitly known in
terms of the πu-BSDE solution (Y ,Z ).

Hedging strategy is “super-mean-self-financing”
under all generalized scenarios Q ∈ Pngd.
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Ambiguity

Problem: We do not really know market prices for risk

 Model uncertainty (“Knightean uncertainty”)

Aim: Robustness wrt uncertainty of market prices for risk :

dŴ = ξνdt + dW
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Ambiguity

Aim: Robustness wrt uncertainty of market prices for risk :

dŴ = ξνdt + dW ν := (ξ̂ + ν)dt + dW ν

with ν ∈
{
ν ∈ Ker σt : |ν| ≤ δ

}
. (= “Confidence region”)

Instead of single reference probability P = P0 consider set{
Pν
∣∣ dPν = E

(
ν ·W 0

)
dP0

}
 A-priori dynamic risk measure to be minimized becomes

ρt(X ) = ess sup
ν

E νt [X ] = ess sup
Q∈P̄

EQ
t [X ]

with P̄ := ∪νPngd(Pν) being m-stable.
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Robust Hedging

Note: There is a ‘worst case’ measure Pν∗ yielding the widest
(highest) good-deal bounds πu,ν(X ).

But: Good-deal hedging strategy wrt to ‘worst case’ measure
Pν∗ does not ensure submartingale property for tracking
errors of the hedge uniformly for all Pν ∈ P̄ !

Dirk Becherer, Humboldt-Universität Berlin Good-deal hedging
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Robust Hedging

BSDE solution

−dYt = f (t,Zt) dt − Zt dW
0
t , t ≤ T̄ , with YT̄ = X

for f (t,Zt) = min
φ∈Φ

(
−ξ̂trt φt + δ

∣∣∣φt − Πt(Z )
∣∣∣+ h

∣∣∣φt − Zt

∣∣∣)
for robust Valuation:

π̄ut (X ) = ess inf
φ

ess sup
ν

E νt

[
X −

∫ T̄

t
φ dŴ

]
= Yt

and for robust Hedging:

φ̄∗ = argminφ∈Φ

(
−ξ̂trt φt + δ

∣∣∣φt − Πt(Z )
∣∣∣+ h

∣∣∣φt − Zt

∣∣∣)
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Thank you !


