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Motivation Problem Solution Bounds on optional

Problem

e Complete Market (e.g Black-Scholes)

e unique martingale measure @ for asset prices S
e any claim X > 0 is priced by replication

:
X = EC[X] +/ 9dS, t<T
N—— t

replication cost S~
hedging

@ Incomplete Market

o infinitely many martingale measures Q € M(S)
o No-arbitrage valuations bounds

ng/fvt ER[X] and ngj\)/t EQ[X]

e are the super-replication costs ~» notion of hedging
o Problem: The bounds are typically too wide!
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Motivation Problem Solution Bounds on optional g

“Solution”

@ Ad-hoc Solution
Get tighter bounds by using smaller subset Q"4 M

inf EQ[X] and sup EQ[X
it B X1 o, e 1X]

@ Questions

Which subset 9"84 to choose ?

... for good mathematical dynamical valuation properties ?
... for financial meaning of such valuation bounds ?

Can one associate to such bounds any notion of hedging 7
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“

. we note that the good-deal bound theory is a pure
pricing theory... one would expect that it should be
possible to develop a dual ‘good-deal hedging theory’. In
our view, the task of developing such a theory constitutes
a highly challenging open problem.”

(Bjork/Slinko 2006, Towards a general theory of good-deal
bounds)

Refs: Cochrane/Saa Reqquejo 2000 and Hodges/Cerny 2000



Motivation Problem Solution Bounds

Outline

@ Bounds for Optimal Growth for Semimartingales by Duality
© An 15 process model

e Good-deal valuation and hedging via BSDE
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Motivation Problem Solution Bounds on optional growth

Bounds on Optimal Growth

@ discounted asset prices processes: Semimartingales S > 0

@ positive (normalized) wealth processes = tradable
numeraires

Nt:1+/19d5>0, t< T
0
e cond. expected growth over any period | T,7] is

Er [log NT} (1)

o Question: Can we choose the set Q"84 such that a
pre-specified bound for growth (1) is ensured for any market
extension S = (S, S') by derivative price processes
SI = EQ[X] for X > 0 computed by Q € Q"84 ?
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General Bounds for optimal growth Dynamic valuation properties

Ensuring Bounds for Optimal Growth

by defining a suitable set Q"84 of pricing measures

o Def: Measures with finite (reverse) relative entropy
Q:={Q € M*(S)| E[- log Z3] < o0}

e Fix some predictable and bounded process h = (h;) > 0, and
o Def: let 98 contain Q € Q iff density process Z satisfies

Z T _
—log == fET / R du| forall T<7<T,
Zr| 2 -

@ ... equivalently with only deterministic times

1 t _
E, [_ log f] < ks U hﬁdu} foralls<t<T
S
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General Bounds for optimal growth Dynamic valuation properties

Ensuring Bounds for Optimal Growth

by defining a suitable set Q"84 of pricing measures

o Def: Measures with finite (reverse) relative entropy
Q:={Q e M*(S)| E[-log Z7] < oo}

e Fix some predictable and bounded process h = (h:) > 0, and
o Def: let Q&4 contain Q € Q iff density process Z satisfies

AR | T -
ET[—IogZT}g ET[/ hﬁdu] foral T<7<T,

T

o Example: For h = const e.g.
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General Bounds for optimal growth Dynamic valuation properties

Ensuring Bounds for Optimal Growth

e Convex duality yields: When pricing with Q € Q"84 any
extended market B
Se = (St E[X])

satisfies the bounds for expected growth of wealth

N Z,
Er|log=—| < Et |—log =— 2
o] < € |10 7] @)
for all stopping times T <7 < T.

@ That is, derivatives price processes are taken such that there
arise no dynamic trading opportunities which offer deals that
are ‘too good'!
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General Bounds for optimal growth Dynamic valuation properties

Multiplicative Stability

e For any Q € Q, we have a Doob-Meyer decomposition
—IOth = Mt+At
with M= Ul-martingale, A= predictable, increasing, integrable
o Additive functional for T < 7: Ey [— log TT} = E7[A, — A7]

o ~ Q"&d is multiplicative stable

@ ~» Dynamic good-deal valuation bounds

m(X)= sup ER[X] and 7iX)= inf ER[X]=-7m!(—X)
QcQned QeQnred

have good dynamic behavior over time....
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General 30 for op srowth  Dynamic valuation properties

Good Dynamic Valuation Bound Properties

Thm: Mappings X — 7¥(X) (t < T) from L>® — L®(F;)

satisfies
@ (nice paths) For any X € L* there is an RCLL-version of
(¢ (X))e<
TH(X) = esssup E7Q[X] for all stopping times T < T.

QeS
o (recursiveness) For any stopping times T < 7 < T holds that
T4(X) = 7 (x2(X)).

o (Stopping-time consistency) For stopping times T <7< T
the inequality m¥(X!) > 74(X?) implies 4(X1!) > w4 (X?).
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General Bounds for optimal h  Dynamic valuation properties

Good Valuation Bound properties (cont.)

Thm (cont.)
e (dynamic coherent risk measure) For any stopping time
T < Tand mr,ar, A7 € L®(F7) with 0 < a1 <1,
A1 > 0, the mapping X — 7% (X) satisfies the properties:
e monotonicity: X! > X2 implies 4 (X1) > 74 (X?)
e translation invariance: 74 (X + mr) = 74(X) + mr
@ convexity:
7Tl-;—(OzTX1 + (1 - OéT)Xz) S OéT’]Tl-;—(Xl) + (1 - OéT)W%(X2)
e positive homogeneity: w4 (A7rX) = At (X)
e No arbitrage consistency: 74 (X) = x+ 1 - St for any
X =x+1v-S7 with ((9- S¢),<7) being uniformly bounded.
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1td processes 1td price process Trading strategies Martingale measures

It6 price process model

Take more explicit model for more constructive results:
Filtration (F¢),~7 generated by n-dim Brownian motion W
Market with d assets, d < n.

Itd prices processes

dSt = dlag(St) O¢ (‘gt dt + th) s t S 7—,

where ¢, € are predictable, o € R¥*" has full rank d < n.

(minimal) market price of risk process { bounded,
& € Im ol = (Ker o)+

Dirk Becherer, Humboldt-Universitat Berlin Good-deal hedging



1té processes 1t6 price process Trading strategies Martingale measures

Trading strategies

e Trading strategy ¢ (wealth invested in assets) yields wealth
process

th = th (pt O't(é.tdt_f' th)

e Convenient: Re-parameterize strategy set by ¢ € ¢

¢r = opr € Imo and ¢ = (00") tog
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Trading strategies

e Trading strategy ¢ (wealth invested in assets) yields wealth
process
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= Of (Eedt + dW,) =: o' dW,
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1td processes 1td price process Trading strategies Martingale measures

Trading strategies

e Trading strategy ¢ (wealth invested in assets) yields wealth
process

th = th (701‘ O't(ftdt + th)
= t (gtdt + th) = th th

@ Convenient: Re-parameterize strategy set by ¢ € ©
br =0 €Imo™ and ¢ = (00") tog
o Later useful: orthogonal projections

N,:R" - Imo™ and N :R"— (Imo¥) = Ker o,
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1td processes 1td price process Trading strategies Martingale measures

Equivalent martingale measures

Convenient parameterization of Q"84 by Girsanov kernels
@ Any Q € M has a density process of the form

A t:E(/AdW)t:E(—/gdW>t5</ndW>t

T dP
with (possible) market price of risk A = —§ + 7
predictable s.t. M¢(\;) = —&; and NE(As) = e
o For Q € 9"84 C M holds |A]? = |£]2 4 |n|? < h? (P x dt-a.e.)
e Vice versa any predictable A with [A|? < h? and

Me(At) = =& (P x dt-a.e.) defines a density process Z for
some Q € Q"4 with n = M+(\).
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Good deals by BSDEs Valuation bounds H Ambiguity /

BSDE description of good-deal valuation bounds

o Upper good-deal bound 7(X) = ess sup EQ[X], X € L2
QeQred

@ maximizing over linear BSDE generators
(—€YN(Z:) + " NE(Z;)) yields upper good-deal
valuation process

T(X) = ess sup EQ[X] = Et(_‘)[X] =Yy, t<T
QeQnsd

o ..where (Y, Z) is solution to the BSDE with Y7 = X and

~ave= (~grnuz) + i -2 | (2)

@ Density of ‘worst case’ scenario measure @ is described too.

> dt — Z; dW;
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Good deals by B Valuation bounds Hedging Ambiguity

[[lustration
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Good deals by BSDEs Valuation bounds Hedging Ambiguity Ambiguity Fine

BSDE description for good-deal hedging

What hedging notion can we associate to good-deal valuation
bounds ?

@ Define dynamic ‘a-priori’ coherent risk measure

pe(X) ==esssup EQ[X], t<T,
Qepned

for et = L@~ P | 98], = & (f AdW) with || < b}

o Note 1) Pred 5 gned
2) analogous ‘no-good-deal type’ structure as Q"84

@ As before, get BSDE description for p;(X) = Y;:
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Good deals by BSDEs Valuation bounds Hedging Ambiguity /

BSDE description for good-deal hedging

@ Applying again the optimality methods for BSDEs...

o ... yields

T T e
¢ (X) = Y = essinf p; X—/ pdW | = pt X—/ ¢*dW
d>€d> t t

@ ... where the hedging strategy ¢* is explicitly given in terms
of the m“-BSDE solution (Y, Z) as

oo M@
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Good deals by BSDEs Valuation bounds Hedging Ambiguity Ambiguity

BSDE description for good-deal hedging

Tracking error (cost process) of hedging strategy ?
e Tracking error :=

WO(X)—’th /¢des, t<T

regul capital reqrmnt
P+L from trading

of the good-deal hedging strategy ¢* is submartingale
under any Q € P"84 and a martingale unter a worst-case
measure Q@ € P"&d, whose density is explicitly known in
terms of the w“-BSDE solution (Y, Z).

@ Hedging strategy is “super-mean-self-financing”
under all generalized scenarios Q € P &d.
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Good deals by BSDEs Valuation bounds Hedging Ambiguity Ambiguity Fine

Ambiguity

@ Problem: We do not really know market prices for risk
@ ~» Model uncertainty (“Knightean uncertainty”)

@ Aim: Robustness wrt uncertainty of market prices for risk :

dW = ¢’dt + dW
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Good deals by BSDEs Valuation bounds Hedging Ambiguity Ambiguity Fine

Ambiguity

@ Aim: Robustness wrt uncertainty of market prices for risk :
dW = ¢’dt + dW" := (€ + v)dt + dW"”
with v € {v € Kero;: |v| < 4}. (= “Confidence region”)
o Instead of single reference probability P = P° consider set
{P"|dP" =€ (v- W°) dP°}
@ ~~ A-priori dynamic risk measure to be minimized becomes

pe(X) = ess sup EV[X] = ess sup EZ[X]
v QeP

with P := U, P"84(P¥) being m-stable.
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Good deals by BSDEs Valuation bounds Hedging Ambiguity Ambiguity Fine

Robust Hedging

@ Note: There is a ‘worst case’ measure P”* yielding the widest
(highest) good-deal bounds 7" (X).

o But: Good-deal hedging strategy wrt to ‘worst case’ measure
P”* does not ensure submartingale property for tracking
errors of the hedge uniformly for all P¥ € P |
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Good deals by BSDEs Valuation bounds Hedging Ambiguity Ambiguity Fine

Robust Hedging

o BSDE solution

—dYy = f(t,Z)dt—Z,dW?, t<T, with Yz =X
for f(t, Z:) = min <_é}r¢t + 6] — I‘It(Z)‘ + hloe — Z,

)

for robust Valuation:

7
(X)) = ess(z)infess sup E/ | X / pdW | =Y;
v t
e and for robust Hedging:
Tk . Ftr
¢" = argmingce (_ft Gt + 0| Pt — nt(Z)’ + h|¢r — Z¢ )
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Thank you |



