From bounds on optimal growth towards a theory of good-deal hedging

Dirk Becherer, Humboldt-Universität

Tamerza, Tunesia, Oct.2010
Problem

- **Complete Market** (e.g. Black-Scholes)
 - unique martingale measure Q for asset prices S
 - any claim $X \geq 0$ is priced by replication

\[
X = E_t^Q[X] + \int_t^\bar{T} \vartheta \, dS, \quad t \leq \bar{T}
\]

- **Incomplete Market**
 - infinitely many martingale measures $Q \in \mathcal{M}(S)$
 - No-arbitrage valuations bounds

\[
\inf_{Q \in \mathcal{M}} E_t^Q[X] \quad \text{and} \quad \sup_{Q \in \mathcal{M}} E_t^Q[X]
\]

- are the super-replication costs \rightsquigarrow notion of hedging
- Problem: The bounds are typically too wide!
Problem

- **Complete Market** (e.g. Black-Scholes)
 - unique martingale measure Q for asset prices S
 - any claim $X \geq 0$ is priced by replication

\[
X = E^Q_t[X] + \int_t^\bar{T} \vartheta \, dS, \quad t \leq \bar{T}
\]

- **Incomplete Market**
 - infinitely many martingale measures $Q \in \mathcal{M}(S)$
 - No-arbitrage valuations bounds

\[
\inf_{Q \in \mathcal{M}} E^Q_t[X] \quad \text{and} \quad \sup_{Q \in \mathcal{M}} E^Q_t[X]
\]

- are the super-replication costs \leadsto notion of hedging
- Problem: The bounds are typically too wide!
“Solution”

- **Ad-hoc Solution**
 Get tighter bounds by using smaller subset $Q^{\text{ngd}} \subset \mathcal{M}$

 $$\inf_{Q \in Q^{\text{ngd}}} E_t^Q[X] \quad \text{and} \quad \sup_{Q \in Q^{\text{ngd}}} E_t^Q[X]$$

- **Questions**
 - Which subset Q^{ngd} to choose?
 - ... for good mathematical dynamical valuation properties?
 - ... for financial meaning of such valuation bounds?
 - Can one associate to such bounds any notion of hedging?
“... we note that the good-deal bound theory is a pure pricing theory... one would expect that it should be possible to develop a dual 'good-deal hedging theory'. In our view, the task of developing such a theory constitutes a highly challenging open problem.”

(Björk/Slinko 2006, Towards a general theory of good-deal bounds)

Refs: Cochrane/Saa Reqquejo 2000 and Hodges/Cerny 2000
Outline

1. Bounds for Optimal Growth for Semimartingales by Duality
2. An Itô process model
3. Good-deal valuation and hedging via BSDE
Bounds on Optimal Growth

- discounted asset prices processes: Semimartingales $S \geq 0$
- **positive** (normalized) **wealth processes** = tradable numeraires

$$N_t = 1 + \int_0^t \theta dS > 0, \quad t \leq \bar{T}$$

- **cond. expected growth** over any period $\left\langle T, \tau \right\rangle$ is

$$E_T \left[\log \frac{N_\tau}{N_T} \right]$$ \hspace{1cm} (1)

Question: Can we choose the set Q^{ngd} such that a pre-specified **bound for growth** (1) is ensured for any **market extension** $\tilde{S} = (S, S')$ by derivative price processes $S'_t = E^Q_t [X]$ for $X \geq 0$ computed by $Q \in Q^{\text{ngd}}$?
Bounds on Optimal Growth

- discounted asset prices processes: Semimartingales \(S \geq 0 \)
- **positive** (normalized) **wealth processes** = tradable numeraires

\[
N_t = 1 + \int_0^t \vartheta dS > 0, \quad t \leq \bar{T}
\]

- **cond. expected growth** over any period \(\tau \) is

\[
E_T \left[\log \frac{N_\tau}{N_T} \right]
\]

Question: Can we choose the set \(Q^{\text{ngd}} \) such that a pre-specified **bound for growth** (1) is ensured for any market extension \(\tilde{S} = (S, S') \) by derivative price processes \(S'_t = E^Q_t[X] \) for \(X \geq 0 \) computed by \(Q \in Q^{\text{ngd}} \)?
Ensuring Bounds for Optimal Growth

by defining a suitable set \mathcal{Q}^{ngd} of pricing measures

- **Def**: Measures with finite (reverse) relative entropy

$$\mathcal{Q} := \{ Q \in \mathcal{M}^e(S) \mid E[- \log Z_T] < \infty \}$$

- Fix some predictable and bounded process $h = (h_t) > 0$, and
- **Def**: let \mathcal{Q}^{ngd} contain $Q \in \mathcal{Q}$ iff density process Z satisfies

$$E_T \left[- \log \frac{Z_T}{Z_T} \right] \leq \frac{1}{2} E_T \left[\int_T^\tau h_u^2 du \right] \quad \text{for all } T \leq \tau \leq \bar{T},$$

- ... equivalently with only deterministic times

$$E_s \left[- \log \frac{Z_t}{Z_s} \right] \leq \frac{1}{2} E_s \left[\int_s^t h_u^2 du \right] \quad \text{for all } s \leq t \leq \bar{T}$$
Ensuring Bounds for Optimal Growth

by defining a suitable set Q^{ngd} of pricing measures

- **Def**: Measures with finite (reverse) relative entropy

 $$Q := \{ Q \in \mathcal{M}(S) \mid E[- \log Z_T] < \infty \}$$

- Fix some predictable and bounded process $h = (h_t) > 0$, and

- **Def**: let Q^{ngd} contain $Q \in Q$ iff density process Z satisfies

 $$E_T \left[- \log \frac{Z_\tau}{Z_T} \right] \leq \frac{1}{2} E_T \left[\int_T^\tau h_u^2 \, du \right] \quad \text{for all } T \leq \tau \leq \bar{T},$$

- **Example**: For $h = \text{const}$ e.g.

 $$E_s \left[- \log \frac{Z_t}{Z_s} \right] \leq \text{const}(t - s), \quad s \leq t \leq \bar{T}$$
Ensuring Bounds for Optimal Growth

- **Convex duality** yields: When pricing with $Q \in Q^{\text{ngd}}$, any extended market
 \[\tilde{S}_t = (S_t, E^Q_t[X]) \]
 satisfies the bounds for expected growth of wealth
 \[E_T \left[\log \frac{\tilde{N}_T}{\tilde{N}_T} \right] \leq E_T \left[- \log \frac{Z_T}{Z_T} \right] \]
 for all stopping times $T \leq \tau \leq \bar{T}$.

- That is, derivatives price processes are taken such that there arise no dynamic trading opportunities which offer deals that are ‘too good’!
Ensuring Bounds for Optimal Growth

- **Convex duality** yields: When pricing with $Q \in Q^{ngd}$, any extended market

 $$\tilde{S}_t = (S_t, E_t^Q[X])$$

 satisfies the bounds for expected growth of wealth

 $$E_T \left[\log \frac{\tilde{N}_T}{N_T} \right] \leq E_T \left[- \log \frac{Z_T}{Z_T} \right] \leq \frac{1}{2} E_T \left[\int_T^\tau h_u^2 \, du \right]$$

 for all stopping times $T \leq \tau \leq \bar{T}$.

- That is, derivatives price processes are taken such that there arise no dynamic trading opportunities which offer deals that are ‘too good’!
Ensuring Bounds for Optimal Growth

- **Convex duality** yields: When pricing with \(Q \in Q^{\text{ngd}} \), any extended market

\[
\tilde{S}_t = (S_t, E_t^Q[X])
\]

satisfies the bounds for expected growth of wealth

\[
E_T \left[\log \frac{\tilde{N}_T}{\bar{N}_T} \right] \leq E_T \left[-\log \frac{Z_T}{\bar{Z}_T} \right] \leq \frac{1}{2} E_T \left[\int_T^\tau h_u^2 du \right]
\]

(2)

for all stopping times \(T \leq \tau \leq \bar{T} \).

- That is, derivatives price processes are taken such that there arise no dynamic trading opportunities which offer deals that are ‘too good’!
Multiplicative Stability

For any \(Q \in \mathcal{Q} \), we have a **Doob-Meyer decomposition**

\[
- \log Z_t = M_t + A_t
\]

with \(M = \text{UI-martingale}, A = \text{predictable, increasing, integrable} \)

Additive functional for \(T \leq \tau \):

\[
E_T \left[- \log \frac{Z_\tau}{Z_T} \right] = E_T[A_\tau - A_T]
\]

\(\sim \mathcal{Q}_{\text{ngd}} \) is **multiplicative stable**

\(\sim \) Dynamic good-deal valuation bounds

\[
\pi^u_t(X) = \sup_{Q \in \mathcal{Q}_{\text{ngd}}} E^Q_t[X] \quad \text{and} \quad \pi^\ell_t(X) = \inf_{Q \in \mathcal{Q}_{\text{ngd}}} E^Q_t[X] = -\pi^u_t(-X)
\]

have **good dynamic behavior** over time....
Good Dynamic Valuation Bound Properties

Thm: Mappings $X \mapsto \pi^u_t(X)$ ($t \leq \bar{T}$) from $L^\infty \to L^\infty(\mathcal{F}_t)$ satisfies

- **(nice paths)** For any $X \in L^\infty$ there is an RCLL-version of $(\pi^u_t(X))_{t \leq \bar{T}}$

 $$\pi^u_T(X) = \text{ess sup}_{Q \in S} E^Q_T[X] \quad \text{for all stopping times } T \leq \bar{T}.$$

- **(recursiveness)** For any stopping times $T \leq \tau \leq \bar{T}$ holds that

 $$\pi^u_T(X) = \pi^u_T(\pi^u_\tau(X)).$$

- **(Stopping-time consistency)** For stopping times $T \leq \tau \leq \bar{T}$ the inequality $\pi^u_\tau(X^1) \geq \pi^u_\tau(X^2)$ implies $\pi^u_T(X^1) \geq \pi^u_T(X^2)$.
Thm (cont.)

- **(dynamic coherent risk measure)** For any stopping time \(T \leq \bar{T} \) and \(m_T, \alpha_T, \lambda_T \in L^\infty(\mathcal{F}_T) \) with \(0 \leq \alpha_T \leq 1 \), \(\lambda_T \geq 0 \), the mapping \(X \mapsto \pi^u_T(X) \) satisfies the properties:
 - monotonicity: \(X^1 \geq X^2 \) implies \(\pi^u_T(X^1) \geq \pi^u_T(X^2) \)
 - translation invariance: \(\pi^u_T(X + m_T) = \pi^u_T(X) + m_T \)
 - convexity:
 \[
 \pi^u_T(\alpha_T X^1 + (1 - \alpha_T) X^2) \leq \alpha_T \pi^u_T(X^1) + (1 - \alpha_T) \pi^u_T(X^2)
 \]
 - positive homogeneity:
 \[
 \pi^u_T(\lambda_T X) = \lambda_T \pi^u_T(X)
 \]

- **No arbitrage consistency**: \(\pi^u_T(X) = x + \vartheta \cdot S_T \) for any \(X = x + \vartheta \cdot S_T \) with \((\vartheta \cdot S_t)_{t \leq \bar{T}}\) being uniformly bounded.
Itô price process model

- Take **more explicit** model for **more constructive** results:
- Filtration \((\mathcal{F}_t)_{t \leq \bar{T}}\) generated by \(n\)-dim Brownian motion \(W\)
- Market with \(d\) assets, \(d \leq n\).
- **Itô prices processes**

\[
dS_t = \text{diag}(S_t) \sigma_t (\xi_t \, dt + dW_t), \quad t \leq \bar{T},
\]

where \(\sigma, \xi\) are predictable, \(\sigma_t \in \mathbb{R}^{d \times n}\) has full rank \(d \leq n\).

- (minimal) **market price of risk** process \(\xi\) bounded,
 \(\xi_t \in \text{Im} \sigma_t^{\text{tr}} = (\text{Ker} \sigma_t)^\perp\)
Trading strategies

- **Trading strategy** φ (wealth invested in assets) yields wealth process

 $$dV_t = \varphi_t^{\text{tr}} dR_t = \varphi_t^{\text{tr}} \sigma_t (\xi_t dt + dW_t)$$

- Convenient: **Re-parameterize** strategy set by $\phi \in \Phi$

 $$\phi_t = \sigma_t^{\text{tr}} \varphi_t \in \text{Im} \sigma_t^{\text{tr}} \quad \text{and} \quad \varphi = (\sigma \sigma^{\text{tr}})^{-1} \sigma \phi$$
Trading strategies

- **Trading strategy** φ (wealth invested in assets) yields wealth process

\[
 dV_t = \varphi_t^{\text{tr}} dR_t = \varphi_t^\text{tr} \sigma_t (\xi_t dt + dW_t) \\
 = \phi_t^\text{tr} (\xi_t dt + dW_t) =: \phi_t^\text{tr} d\hat{W}_t
\]

- Convenient: **Re-parameterize** strategy set by $\phi \in \Phi$

\[
 \phi_t = \sigma_t^\text{tr} \varphi_t \in \text{Im} \sigma_t^\text{tr} \quad \text{and} \quad \varphi = (\sigma\sigma^\text{tr})^{-1} \sigma \phi
\]
Trading strategies

- Trading strategy φ (wealth invested in assets) yields wealth process

$$dV_t = \varphi^{\text{tr}}_t dR_t = \varphi^{\text{tr}}_t \sigma_t (\xi_t dt + dW_t)$$

$$= \phi^{\text{tr}}_t (\xi_t dt + dW_t) =: \phi^{\text{tr}}_t d\hat{W}_t$$

- Convenient: **Re-parameterize** strategy set by $\phi \in \Phi$

$$\phi_t = \sigma^{\text{tr}}_t \varphi_t \in \text{Im} \sigma^{\text{tr}}_t \quad \text{and} \quad \varphi = (\sigma \sigma^{\text{tr}})^{-1} \sigma \phi$$

- Later useful: **orthogonal projections**

$$\Pi_t : \mathbb{R}^n \to \text{Im} \sigma^{\text{tr}}_t \quad \text{and} \quad \Pi^\perp_t : \mathbb{R}^n \to (\text{Im} \sigma^{\text{tr}}_t)^\perp = \text{Ker} \sigma_t$$
Equivalent martingale measures

Convenient parameterization of Q^{ngd} by Girsanov kernels

- Any $Q \in \mathcal{M}$ has a density process of the form

$$Z_t := \left. \frac{dQ}{dP} \right|_t = \mathcal{E} \left(\int \lambda dW \right)_t = \mathcal{E} \left(- \int \xi dW \right)_t \mathcal{E} \left(\int \eta dW \right)_t$$

with (possible) market price of risk $\lambda = -\xi + \eta$ predictable s.t. $\Pi_t(\lambda_t) = -\xi_t$ and $\Pi_t^\perp(\lambda_t) = \eta_t$.

- For $Q \in Q^{\text{ngd}} \subset \mathcal{M}$ holds $|\lambda|^2 = |\xi|^2 + |\eta|^2 \leq h^2 \ (P \times dt$-a.e.)

- **Vice versa** any predictable λ with $|\lambda|^2 \leq h^2$ and $\Pi_t(\lambda_t) = -\xi_t \ (P \times dt$-a.e.) defines a density process Z for some $Q \in Q^{\text{ngd}}$ with $\eta = \Pi^\perp(\lambda)$.
Equivalent martingale measures

Convenient parameterization of Q^{ngd} by Girsanov kernels

- Any $Q \in \mathcal{M}$ has a density process of the form

$$Z_t := \left. \frac{dQ}{dP} \right|_t = \mathcal{E} \left(\int \lambda dW \right)_t = \mathcal{E} \left(- \int \xi dW \right)_t \mathcal{E} \left(\int \eta dW \right)_t$$

with (possible) market price of risk $\lambda = -\xi + \eta$ predictable s.t. $\Pi_t(\lambda_t) = -\xi_t$ and $\Pi_t^\perp(\lambda_t) = \eta_t$.

- For $Q \in Q^{ngd} \subset \mathcal{M}$ holds $|\lambda|^2 = |\xi|^2 + |\eta|^2 \leq h^2$ ($P \times dt$-a.e.)

- **Vice versa** any predictable λ with $|\lambda|^2 \leq h^2$ and $\Pi_t(\lambda_t) = -\xi_t$ ($P \times dt$-a.e.) defines a density process Z for some $Q \in Q^{ngd}$ with $\eta = \Pi^\perp(\lambda)$.

Dirk Becherer, Humboldt-Universität Berlin
BSDE description of good-deal valuation bounds

- Upper good-deal bound \(\pi_t^u(X) = \text{ess sup}_{Q \in Q_{\text{ngd}}} E_t^Q [X], X \in L^2 \)
- maximizing over linear BSDE generators
 \((-\xi_t^{\text{tr}} \Pi_t(Z_t) + \eta_t^{\text{tr}} \Pi_{\perp t}(Z_t)) \) yields upper good-deal valuation process

 \[\pi_t^u(X) = \text{ess sup}_{Q \in Q_{\text{ngd}}} E_t^Q [X] = E_t^{\tilde{Q}} [X] = Y_t, \quad t \leq \tilde{T} \]

- ...where \((Y, Z)\) is solution to the BSDE with \(Y_{\tilde{T}} = X\) and

 \[-dY_t = \left(-\xi_t^{\text{tr}} \Pi_t(Z_t) + \sqrt{h_t^2 - |\xi_t|^2} \left| \Pi_{\perp t}(Z_t) \right| \right) dt - Z_t \, dW_t \]

- Density of ‘worst case’ scenario measure \(\tilde{Q}\) is described too.
BSDE description of good-deal valuation bounds

- Upper good-deal bound $\pi^u_t(X) = \operatorname{ess sup}_{Q \in Q^{ngd}} E^Q_t[X]$, $X \in L^2$

- Maximizing over linear BSDE generators
 $(-\xi^\text{tr}_t \Pi_t(Z_t) + \eta^\text{tr}_t \Pi^\perp_t(Z_t))$ yields upper good-deal valuation process

 $\pi^u_t(X) = \operatorname{ess sup}_{Q \in Q^{ngd}} E^Q_t[X] = E^\tilde{Q}_t[X] = Y_t$, $t \leq \tilde{T}$

- ...where (Y, Z) is solution to the BSDE with $Y_{\tilde{T}} = X$ and

 $-dY_t = \left(-\xi^\text{tr}_t \Pi_t(Z_t) + \sqrt{h^2_t - |\xi_t|^2} \left|\Pi^\perp_t(Z_t)\right|\right) dt - Z_t dW_t$

- Density of ‘worst case’ scenario measure \tilde{Q} is described too.

Dirk Becherer, Humboldt-Universität Berlin
Good-deal hedging
Motivation

General

Itô processes

Good deals by BSDEs

Valuation bounds

Hedging

Ambiguity

Ambiguity

Fine

Illustration

Spanned by returns

Minimal Market Price of Risk

... and Orthogonal Component

Radius h

A-priori Pricing Measures

Good-Deal Pricing measures

Orthogonal subspace

Dirk Becherer, Humboldt-Universität Berlin

Good-deal hedging
What hedging notion can we associate to good-deal valuation bounds?

- Define dynamic ‘a-priori’ coherent risk measure

\[\rho_t(X) := \text{ess sup}_{Q \in \mathcal{P}^{ngd}} E_q^Q[X], \quad t \leq \bar{T}, \]

for \(\mathcal{P}^{ngd} := \left\{ Q \sim P \ \left| \ \frac{dQ}{dP} \bigg|_{\mathcal{F}} = \mathcal{E} \left(\int \lambda dW \right) \right. \right\} \) with \(|\lambda| \leq h\)

- Note 1) \(\mathcal{P}^{ngd} \supset Q^{ngd} \)
- 2) analogous ‘no-good-deal type’ structure as \(Q^{ngd} \)
- As before, get BSDE description for \(\rho_t(X) = Y_t \):

\[-dY_t = h_t|Z_t| \ dt - Z_t \ dW_t, \quad t \leq \bar{T} \quad \text{with} \quad Y_{\bar{T}} = X \]
Motivation General Itô processes Good deals by BSDEs Valuation bounds Hedging Ambiguity Ambiguity Fine

BSDE description for good-deal hedging

- Applying again the optimality methods for BSDEs...
- ... yields

\[
\pi^u_t(X) = Y_t = \operatorname{ess} \inf_{\phi \in \Phi} \rho_t \left(X - \int_t^\tilde{T} \phi \, d\tilde{W} \right) = \rho_t \left(X - \int_t^\tilde{T} \phi^* \, d\tilde{W} \right)
\]

- ... where the **hedging strategy** \(\phi^* \) is explicitly given in terms of the \(\pi^u \)-BSDE solution \((Y, Z)\) as

\[
\phi^* = \frac{|\Pi(Z)|}{\sqrt{h^2 - |\xi|^2}} \xi + \Pi(Z)
\]
BSDE description for good-deal hedging

Tracking error (cost process) of **hedging** strategy?

- **Tracking error** :=

\[
\pi_0^u(X) - \pi_t^u(X) + \int_0^t \phi_s^* \, d\hat{W}_s, \quad t \leq \bar{T}
\]

of the good-deal hedging strategy \(\phi^* \) is submartingale under any \(Q \in \mathcal{P}^{\text{ngd}} \) and a martingale under a worst-case measure \(Q^\lambda \in \mathcal{P}^{\text{ngd}} \), whose density is explicitly known in terms of the \(\pi^u \)-BSDE solution \((Y, Z)\).

- Hedging strategy is “**super-mean-self-financing**” under all generalized scenarios \(Q \in \mathcal{P}^{\text{ngd}} \).
BSDE description for good-deal hedging

Tracking error (cost process) of hedging strategy?

- Tracking error :=
 \[\underbrace{\pi^u_0(X) - \pi^u_t(X)}_{\text{regul. capital reqmmt}} + \underbrace{\int_0^t \phi^*_s \, d\hat{W}_s}_{\text{P+L from trading}}, \quad t \leq \bar{T} \]

of the good-deal hedging strategy \(\phi^* \) is submartingale under any \(Q \in \mathcal{P}^{\text{ngd}} \) and a martingale unter a worst-case measure \(Q^\lambda \in \mathcal{P}^{\text{ngd}} \), whose density is explicitly known in terms of the \(\pi^u \)-BSDE solution \((Y, Z) \).

- Hedging strategy is “super-mean-self-financing” under all generalized scenarios \(Q \in \mathcal{P}^{\text{ngd}} \).
BSDE description for good-deal hedging

Tracking error (cost process) of hedging strategy?

- Tracking error :=

\[
\pi^u_0(X) - \pi^u_t(X) + \int_0^t \phi^*_s \, d\tilde{W}_s \quad , \quad t \leq \bar{T}
\]

of the good-deal hedging strategy \(\phi^* \) is submartingale under any \(Q \in \mathcal{P}^{ngd} \) and a martingale unter a worst-case measure \(Q^\lambda \in \mathcal{P}^{ngd} \), whose density is explicitly known in terms of the \(\pi^u \)-BSDE solution \((Y, Z)\).

- Hedging strategy is “super-mean-self-financing” under all generalized scenarios \(Q \in \mathcal{P}^{ngd} \).
Problem: We do not really know market prices for risk

\[d\widehat{W} = \xi' dt + dW \]
Ambiguity

- **Aim:** Robustness wrt uncertainty of market prices for risk:

\[d\widehat{W} = \xi^\nu dt + dW^\nu := (\hat{\xi} + \nu)dt + dW^\nu \]

with \(\nu \in \{ \nu \in \text{Ker } \sigma_t : |\nu| \leq \delta \} \). (="Confidence region")

- Instead of single reference probability \(P = P^0 \) consider set

\[\{ P^\nu \mid dP^\nu = \mathcal{E}(\nu \cdot W^0) dP^0 \} \]

- \(\leadsto \) A-priori dynamic risk measure to be minimized becomes

\[\rho_t(X) = \text{ess sup}_\nu E^\nu_t[X] = \text{ess sup}_Q E^Q_t[X] \]

with \(\bar{\mathcal{P}} := \bigcup_{\nu} \mathcal{P}^{\text{ngd}}(P^\nu) \) being m-stable.
Robust Hedging

- **Note:** There is a ‘worst case’ measure $P^{ν^*}$ yielding the widest (highest) good-deal bounds $π^{u,ν}(X)$.

- **But:** Good-deal hedging strategy wrt to ‘worst case’ measure $P^{ν^*}$ does not ensure submartingale property for tracking errors of the hedge uniformly for all $P^{ν} \in \overline{P}$!
Robust Hedging

- BSDE solution

\[-dY_t = f(t, Z_t) \, dt - Z_t \, dW_t, \quad t \leq \bar{T}, \quad \text{with } Y_{\bar{T}} = X\]

for \(f(t, Z_t) = \min_{\phi \in \Phi} \left(-\xi_t^{tr} \phi_t + \delta \left| \phi_t - \Pi_t(Z) \right| + h \left| \phi_t - Z_t \right| \right) \)

for robust Valuation:

\[\bar{\pi}_t^u(X) = \operatorname{ess} \inf_{\phi} \operatorname{ess} \sup_{\nu} E_\nu^t \left[X - \int_t^{\bar{T}} \phi \, d\hat{W} \right] = Y_t\]

- and for robust Hedging:

\[\bar{\phi}^* = \operatorname{argmin}_{\phi \in \Phi} \left(-\xi_t^{tr} \phi_t + \delta \left| \phi_t - \Pi_t(Z) \right| + h \left| \phi_t - Z_t \right| \right)\]
Thank you!