Cross hedging, utility maximization and systems of FBSDE

U. Horst, Y. Hu, P. Imkeller, A. Réveillac, J. Zhang

HU Berlin, U Rennes

http://wws.mathematik.hu-berlin.de/~imkeller

Tamerza, October 27, 2010

1 Cross hedging, optimal investment, exponential utility

for convex constraints: (N. El Karoui, R. Rouge '00; J. Sekine '02; J. Cvitanic, J. Karatzas '92, Kramkov, Schachermayer '99, Mania, Schweizer '05, Pham '07, Zariphopoulou '01,...)

maximal expected exponential utility from terminal wealth

$$V(x) = \sup_{\pi \in \mathcal{A}} EU(x + X_T^{\pi} + H) = \sup_{\pi \in \mathcal{A}} E(-\exp(-\alpha(x + \int_0^T \pi_s[dW_s + \theta_s ds] + H)))$$

wealth on [0,T] by investment strategy π :

$$\int_0^T \langle \pi_u, \frac{dS_u}{S_u} \rangle = \int_0^T \pi_u [dW_u + \theta_u du] = X_T^{\pi},$$

H liability or derivative, correlated to financial market S

 $\pi \in \mathcal{A}$ subject to π taking values in C closed

aim: use **BSDE** to represent optimal strategy π^*

2 Martingale optimality

Idea: Construct family of processes $Q^{(\pi)}$ such that

(form 1)
$$\begin{array}{rcl} Q_0^{(\pi)} &= \text{ constant,} \\ Q_T^{(\pi)} &= -\exp(-\alpha(x+X_T^{\pi}+H)), \\ Q^{(\pi)} & \text{ supermartingale, } & \pi \in \mathcal{A}, \\ Q^{(\pi^*)} & \text{ martingale, for (exactly) one } & \pi^* \in \mathcal{A}. \end{array}$$

Then

$$E(-\exp(-\alpha[x + X_T^{\pi} + H])) = E(Q_T^{(\pi)})$$

$$\leq E(Q_0^{\pi})$$

$$= E(Q_0^{(\pi^*)})$$

$$= E(-\exp(-\alpha[x + X_T^{(\pi^*)} + H])).$$

Hence π^* optimal strategy.

3 Solution method based on BSDE

Introduction of BSDE into problem

Find generator f of BSDE

$$Y_t = H - \int_t^T Z_s dW_s - \int_t^T f(s, Z_s) ds, \quad Y_T = F,$$

such that with

$$Q_t^{(\pi)} = -\exp(-\alpha[x + X_t^{\pi} + Y_t]), \quad t \in [0, T],$$

we have

(form 2)

$$\begin{array}{lll} Q_0^{(\pi)} &=& -\exp(-\alpha(x+Y_0)) = \text{constant}, & (\text{fulfilled}) \\ Q_T^{(\pi)} &=& -\exp(-\alpha(x+X_T^{\pi}+H)) & (\text{fulfilled}) \\ Q^{(\pi)} & \text{supermartingale}, & \pi \in \mathcal{A}, \\ Q^{(\pi^*)} & \text{martingale, for (exactly) one} & \pi^* \in \mathcal{A}. \end{array}$$

This gives solution of valuation problem.

4 Construction of generator of BSDE How to determine *f*:

Suppose f generator of BSDE. Then by Ito's formula

$$Q_t^{(\pi)} = -\exp(-\alpha[x + X_t^{\pi} + Y_t])$$

= $Q_0^{(\pi)} + M_t^{(\pi)} + \int_0^t \alpha Q_s^{(\pi)} [-\pi_s \theta_s - f(s, Z_s) + \frac{\alpha}{2}(\pi_s - Z_s)^2] ds,$

with a local martingale $M^{(\pi)}$.

 $Q^{(\pi)}$ satisfies (form 2) iff for

$$q(\cdot,\pi,z)=-f(\cdot,z){-}\pi heta+rac{lpha}{2}(\pi-z)^2,\quad\pi\in\mathcal{A},z\in\mathbb{R},$$

we have

(form 3)
$$\begin{array}{ccc} q(\cdot,\pi,z) &\geq 0, & \pi \in \mathcal{A} \end{array}$$
 (supermartingale) $q(\cdot,\pi^*,z) &= 0, & ext{for (exactly) one} \quad \pi^* \in \mathcal{A} \end{aligned}$ (martingale).

4 Construction of generator of BSDE

Now

$$\begin{aligned} q(\cdot,\pi,z) &= -f(\cdot,z) - \pi\theta + \frac{\alpha}{2}(\pi-z)^2 \\ &= -f(\cdot,z) + \frac{\alpha}{2}(\pi-z)^2 - (\pi-z)\cdot\theta + \frac{1}{2\alpha}\theta^2 - z\theta - \frac{1}{2\alpha}\theta^2 \\ &= -f(\cdot,z) + \frac{\alpha}{2}[\pi - (z + \frac{1}{\alpha}\theta)]^2 - z\theta - \frac{1}{2\alpha}\theta^2. \end{aligned}$$

Under **non-convex constraint** $p \in C$:

$$[\pi - (z + \frac{1}{\alpha}\theta)]^2 \ge \operatorname{dist}^2(C, z + \frac{1}{\alpha}\theta).$$

with **equality** for at least one possible choice of π^* due to **closedness** of *C*. Hence (form 3) is solved by the choice (predictable selection)

(form 4)
$$\begin{array}{rcl} f(\cdot,z) &=& \frac{\alpha}{2} {\rm dist}^2(C,z+\frac{1}{\alpha}\theta) - z \cdot \theta - \frac{1}{2\alpha}\theta^2 & ({\rm supermartingale}) \\ \pi^* & : & {\rm dist}(C,z+\frac{1}{\alpha}\theta) = {\rm dist}(\pi^*,z+\frac{1}{\alpha}\theta) & ({\rm martingale}). \end{array}$$

5 Summary of results, exponential utility

Solve utility optimization problem

 $\sup_{\pi \in \mathcal{A}} EU(x + X_T^{\pi} + H)$

by considering FBSDE

$$dX_t^{\pi} = \pi_t [dW_t + \theta_t dt], \quad X_0^{\pi} = x,$$

$$dY_t = Z_t dW_t + f(t, Z_t) dt, \quad Y_T = H$$

with generator as described before; determine π^* by previsible selection; coupling through requirement of martingale optimality

 $\sup_{\pi \in \mathcal{A}} EU(x + X_T^{\pi} + H) = EU(x + X_T^{\pi^*} + H),$ $U'(x + X_t^{\pi^*} + Y_t) \quad \text{martingale.}$

for general U: forward part depends on π^* , get fully coupled FBSDE

6 Cross hedging, optimal investment, utility on $\ensuremath{\mathbb{R}}$

Lit: Mania, Tevzadze (2003)

 $U: \mathbb{R} \to \mathbb{R}$ strictly increasing and concave; maximal expected utility from terminal wealth

(1)
$$V(x) = \sup_{\pi \in \mathcal{A}} EU(x + X_T^{\pi} + H)$$

wealth on [0,T] by investment strategy π :

$$\int_0^T \langle \pi_u, \frac{dS_u}{S_u} \rangle = \int_0^T \pi_u [dW_u + \theta_u du] = X_T^{\pi},$$

H liability or derivative, correlated to financial market *S*, *W* d-dimensional Wiener process, W^1 first d_1 components of *W*

 $\pi \in \mathcal{A}$ subject to convex constraint $\pi = (\pi^1, 0)$, $\pi^1 d_1$ -dimensional, hence incomplete market

aim: use FBSDE system to describe optimal strategy π^*

7 Verification theorems

Thm 1

Assume *U* is three times differentiable, *U'* regular enough. If there exists π^* solving (1), and *Y* is the predictable process for which $U'(X^{\pi^*} + Y)$ is square integrable martingale, then with $Z = \frac{d}{dt} \langle Y, W \rangle$

$$(\pi^*)^1 = -\theta^1 \frac{U'}{U''} (X^{\pi^*} + Y) - Z^1.$$

Pf:

$$\alpha = \mathbb{E}(U'(X_T^{\pi^*} + H)|\mathcal{F}_{\cdot}), \ Y = (U')^{-1}(\alpha) - X^{\pi^*}.$$

Use Itô's formula and martingale property. Find

$$Y = H - \int_{.}^{T} Z_{s} dW_{s} - \int_{.}^{T} f(s, X_{s}^{\pi^{*}}, Y_{s}, Z_{s}) ds,$$

with

$$f(s, X_s^{\pi^*}, Y_s, Z_s) = -\frac{1}{2} \frac{U^{(3)}}{U''} (X^{\pi^*} + Y) |\pi_s^* + Z_s|^2 - \pi_s^* \theta_s$$

Use variational maximum principle to derive formula for π^* .

7 Verification theorems

From preceding theorem derive the FBSDE system

Thm 2

Assumptions of Thm 1; then optimal wealth process X^{π^*} given as component X of solution (X, Y, Z) of fully coupled FBSDE system

$$X = x - \int_{0}^{T} (\theta_{s}^{1} \frac{U'}{U''} (X_{s} + Y_{s}) + Z_{s}^{1}) dW_{s}^{1} - \int_{0}^{T} (\theta_{s}^{1} \frac{U'}{U''} (X_{s} + Y_{s}) + Z_{s}^{1}) \theta_{s}^{1} ds,$$

$$Y = H - \int_{.}^{T} Z_{s} dW_{s}$$

$$- \int_{.}^{T} [|\theta_{s}^{1}|^{2} ((-\frac{1}{2} \frac{U^{(3)}U'^{2}}{(U'')^{3}} + \frac{U'}{U''}) (X_{s} + Y_{s}) + Z_{s}^{1} \cdot \theta_{s}^{1})$$

$$- \frac{1}{2} |Z_{s}^{2}|^{2} \frac{U^{(3)}}{U''} (X_{s} + Y_{s})] ds. \quad (2)$$

Pf: Use expression for f and formula for π^* from Thm 1.

8 Representation of optimal strategy

Invert conclusion of Thm 2 to give representation of optimal strategy

Thm 3

Let (X, Y, Z) be solution of (2), $U(X_T + H)$ integrable, $U'(X_T + H)$ square integrable. Then

$$(\pi^*)^1 = -\theta^1 \frac{U'}{U''}(X+Y) + Z^1$$

is optimal solution of (1).

Pf:

By concavity for any admissible π

$$U(X^{\pi} + Y) - U(X + Y) \le U'(X + Y)(X^{\pi} - X).$$

Now prove that

$$U'(X+Y)(X^{\pi}-X) = U'(X^{\pi^*}+Y)(X^{\pi}-X^{\pi^*})$$
 is a martingale!

9 The complete case

Formula representing $\pi^* \longrightarrow$ martingale representation

 $U'(X^{\pi^*} + Y) = U'(x + Y_0)\mathcal{E}(-\theta \cdot W).$

Aim: show existence for fully coupled system of Thm 2.

Crucial observation: P = X + Y solves forward SDE

$$P = x + Y_0 - \int_0^{\cdot} \theta_s \frac{U'}{U''}(P_s) dW_s - \int_0^{\cdot} \frac{1}{2} \frac{U^{(3)}U'^2}{(U'')^3}(P_s) ds.$$

Idea: forward SDE

$$P^{m} = x + m - \int_{0}^{\cdot} \theta_{s} \frac{U'}{U''} (P_{s}^{m}) dW_{s} - \int_{0}^{\cdot} \frac{1}{2} \frac{U^{(3)}U'^{2}}{(U'')^{3}} (P_{s}^{m}) ds$$

has solution; now decouple again, by considering BSDE

$$Y^{m} = H - \int_{\cdot}^{T} Z_{s}^{m} dW_{s} - \int_{\cdot}^{T} (|\theta_{s}|^{2} [-\frac{1}{2} \frac{U^{(3)} U^{\prime 2}}{(U^{\prime \prime})^{3}} + \frac{U^{\prime}}{U^{\prime \prime}}] (P_{s}^{m}) + Z_{s}^{m} \theta_{s}) ds.$$

9 The complete case

Solve for (Y^m, Z^m) , use continuity of $m \mapsto Y_0^m$ to find m such that $Y_0^m = m$. This gives

Thm 4 Assume $\frac{U^{(3)}U^{\prime 2}}{(U^{\prime\prime})^3}$ and $\frac{U^{\prime}}{U^{\prime\prime}}$ are Lipschitz and bounded. Then the system of FBSDE

$$X = x - \int_{0}^{T} (\theta_{s} \frac{U'}{U''} (X_{s} + Y_{s}) + Z_{s}) dW_{s}^{1} - \int_{0}^{T} (\theta_{s} \frac{U'}{U''} (X_{s} + Y_{s}) + Z_{s}) \theta_{s} ds,$$

$$Y = H - \int_{T}^{T} Z_{s} dW_{s} - \int_{T}^{T} [|\theta_{s}|^{2} ((-\frac{1}{2} \frac{U^{(3)}U'^{2}}{(U'')^{3}} + \frac{U'}{U''})(X_{s} + Y_{s}) + Z_{s} \cdot \theta_{s})] ds (3)$$

has solution (X, Y, Z) such that $U(X_T + H)$ is integrable, $U'(X_T + H)$ square integrable.

10 Utility function on \mathbb{R}_+

Replace $U'(X^{\pi^*} + Y)$ with $U'(X^{\pi^*}) \exp(\tilde{Y})$. Then (X, Y, Z) satisfies (3) if and only if $(X, \tilde{Y}, \tilde{Z})$ satisfies (4) $(\tilde{Z} = \frac{d}{dt} \langle W, \tilde{Y} \rangle)$:

Thm 5

Let $(X, \tilde{Y}, \tilde{Z})$ be solution of the fully coupled FBSDE

$$X = x - \int_{0}^{T} \left(\frac{U'}{U''}(X_{s})(\theta_{s}^{1} + Z_{s}^{1})dW_{s}^{1} - \int_{0}^{T} \left(\frac{U'}{U''}(X_{s})(\theta_{s}^{1} + Z_{s}^{1})\theta_{s}^{1}ds\right)$$
$$Y = \ln\left(\frac{U'(X_{T} + H)}{U'(X_{T})}\right) - \int_{T}^{T} Z_{s}dW_{s}$$
$$- \int_{T}^{T} [|Z_{s}^{1} + \theta_{s}^{1}|^{2}((1 - \frac{1}{2}\frac{U^{(3)}U'}{(U'')^{2}})(X_{s}) - \frac{1}{2}|Z_{s}|^{2}]ds. \quad (4)$$

such that $U(X_T^{\pi^*} + H)$ is integrable and $U'(X_T^{\pi^*} + H)$ is square integrable. Then

$$(\pi^*)^1 = -\frac{U'}{U''}(X)(Z^1 + \theta^1)$$

11 The complete case

Using forward equation for $P = U'(X) \exp(Y)$ as above we obtain

Thm 6 Assume $\frac{U^{(3)}U'}{(U'')^2}$ and $\frac{U'}{U''}$ are Lipschitz and bounded. Then system of FBSDE

$$X = x - \int_{0}^{T} \left(\frac{U'}{U''}(X_{s})(\theta_{s} + Z_{s})dW_{s} - \int_{0}^{T} \frac{U'}{U''}(X_{s})(\theta_{s} + Z_{s})\theta_{s}ds\right)$$

$$Y = \ln\left(\frac{U'(X_{T} + H)}{U'(X_{T})}\right) - \int_{.}^{T} Z_{s}dW_{s}$$

$$- \int_{.}^{T} [|Z_{s} + \theta_{s}|^{2}((1 - \frac{1}{2}\frac{U^{(3)}U'}{(U'')^{2}})(X_{s}) - \frac{1}{2}|Z_{s}|^{2}]ds.$$

has solution (X, Y, Z) such that $U(X_T)$ is integrable, $U'(X_T)$ square integrable.

12 Link to stochastic maximum principle, complete case

H = 0, $\tilde{X}^{\pi} = U(X^{\pi})$; value function

 $J(\pi) = \mathbb{E}(U(X_T^{\pi})) = \mathbb{E}(\tilde{X}_T^{\pi})$

Using Peng (1993) obtain system of FBSDE

$$\begin{split} d\tilde{X}_{t}^{\pi} &= U'(U^{-1}(\tilde{X}_{t}^{\pi}))\pi_{t}dW_{t} + [U'(U^{-1}(\tilde{X}_{t}^{\pi}))\pi_{t}\theta_{t} + \frac{1}{2}U''(U^{-1}(\tilde{X}_{t}^{\pi}))|\pi_{t}|^{2}]dt, \\ \tilde{X}_{0}^{\pi} &= U(x), \\ -dp_{t} &= \frac{U''}{U'}(\tilde{X}_{t}^{\pi})k_{t}\pi_{t}dW_{t} + [\frac{U''}{U'}(U^{-1}(\tilde{X}_{t}^{\pi}))\pi_{t}\theta_{t} + \frac{1}{2}\frac{U^{(3)}}{U'}(U^{-1}(\tilde{X}_{t}^{\pi}))|\pi_{t}|^{2}]dt, \\ p_{T} &= 1 \ (5). \end{split}$$

maximization of Hamiltonian

$$H(x,\pi,p,k) = p[U'(U^{-1}(x))\pi\theta + \frac{1}{2}U''(U^{-1}(x)|\pi|^2] + kU'(U^{-1}(x))\pi$$

12 Link to stochastic maximum principle, complete case gives

$$\pi^* = -\frac{U'}{U''}(U^{-1}(\tilde{X}))[\frac{k}{p} + \theta].$$

Use this in (4), apply Cole-Hopf transformation

$$Y = \ln(p), \quad Z = \frac{d}{dt} \langle Y, W \rangle = \frac{k}{p}$$

to get

$$d\tilde{X}_{t}^{\pi^{*}} = -\frac{U'}{U''}(\tilde{X}_{t}^{\pi^{*}})(Z_{t} + \theta_{t})(dW_{t} + \theta_{t}dt), \quad \tilde{X}_{0}^{\pi^{*}} = U(x),$$

$$dY_{t} = [(Z_{t} + \theta_{t})^{2}(1 - \frac{1}{2}\frac{U^{(3)}U'}{(U'')^{2}}(\tilde{X}_{t}^{\pi^{*}}) - \frac{1}{2}|Z_{t}|^{2}]dt + Z_{t}dW_{t}, \quad Y_{T} = 0 \quad (6).$$

FBSDE system identical to the one obtained above, decouples if $\frac{U^{(3)}U'}{(U'')^2}$ is constant, i.e. for exponential, power and logarithmic utility Partially supported by the DFG research center MATHEON in Berlin

13 Example: power utility, general liability, incomplete case

Lit: Nutz (2010) for H = 0

 $U(x) = \frac{1}{\gamma}x^{\gamma}$ for some $\gamma < 1$, $W = (W^1, W^2)$ two-dimensional Wiener process, $dS_t^i = dW_t^i + \theta_t^i dt$, i = 1, 2, investment $dX_t^{\pi} = \pi_t dS_t^1$, liability $H = \phi(S_T^2)$, with ϕ positive, bounded

(4) transforms into

$$dX_t = \frac{1}{1-\gamma} X_s (Z_t^1 + \theta_t^1) (dW_t + \theta_t^1 dt), \ X_0 = x,$$

$$dY_t = -\left[\frac{\gamma}{2(\gamma - 1)} (Z_t^1 + \theta_t^1)^2 - \frac{1}{2} |Z_t|^2\right] dt + Z_t dW_t,$$

$$Y_T = (\gamma - 1) \ln(1 + \frac{H}{X_T}) \ (7).$$

optimal solution

$$(\pi^*)^1 = \frac{1}{1 - \gamma} (Z^1 + \theta^1)$$