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Introduction

Motivated by applications in financial mathematics and
probabilistic numerical schemes for PDEs, Soner, Touzi and Zhang
introduced recently the notion of second order backward stochastic
differential equations (2BSDEs for short) [10], which are connected
to the larger class of fully non-linear PDEs. They provided a
complete theory of existence and uniqueness for 2BSDEs under
uniform Lipschitz conditions similar to those of Pardoux and Peng,
so our aim here is twofold

we want to relax the Lipschitz assumptions on the driver to a
linear growth framework as in Lepeltier and San Martin [6] or
Matoussi [7].

we want to highlight the major difficulties and differences
from the classical BSDE case.
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The local martingale measures

Let Ω :=
{
ω ∈ C ([0, 1],Rd) : ω0 = 0

}
be the canonical space

equipped with the uniform norm ‖ω‖∞ := sup0≤t≤T |ωt |, B the
canonical process, P0 the Wiener measure, F := {Ft}0≤t≤T the

filtration generated by B, and F+ :=
{
F+
t

}
0≤t≤T the right limit of

F. We first recall the notations introduced Soner, Touzi and
Zhang.

P is a local martingale measure if the canonical process B is a local
martingale under P. By Föllmer [5], there exists an F-progressively
measurable process, denoted as

∫ t
0 BsdBs , which coincides with the

Itô’s integral, P− a.s. for all local martingale measure P. This
provides a pathwise definition of

〈B〉t := BtB
T
t − 2

∫ t

0
BsdBT

s and ât := lim sup
ε↘0

1

ε

(
〈B〉t − 〈B〉t−ε

)
.
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The local martingale measures

Let PW denote the set of all local martingale measures P such that

〈B〉t is absolutely continuous in t and â takes values in S>0
d , P−a.s.

We concentrate on the subclass Ps ⊂ PW consisting of all
probability measures

Pα := P0 ◦ (Xα)−1 where Xα
t :=

∫ t

0
α
1/2
s dBs , t ∈ [0, 1], P0 − a.s.

for some F-progressively measurable process α taking values in S>0
d

with
∫ T
0 |αt |dt < +∞, P0 − a.s.
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The non-linear generator

We consider a map Ht(ω, y , z , γ) : [0,T ]×Ω×R×Rd ×DH → R,
where DH ⊂ Rd×d is a given subset containing 0.

Define the corresponding conjugate of H w.r.t.γ by

Ft(ω, y , z , a) := sup
γ∈DH

{
1

2
Tr(aγ)− Ht(ω, y , z , γ)

}
for a ∈ S>0

d ,

F̂t(y , z) := Ft(y , z , ât) and F̂ 0
t := F̂t(0, 0).

We fix a constant κ ∈ (1, 2] and restrict to PκH ⊂ PS

aP ≤ â ≤ āP, dt × dP− as for some aP, āP ∈ S>0
d

sup
P∈PκH

EP

ess sup
0≤t≤T

P
(
EH,P
t

[∫ T

0

∣∣∣F̂ 0
s

∣∣∣κ ds

]) 2
κ

 < +∞
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The non-linear generator

We assume

(i) The domain DFt(y ,z) = DFt is independent of (ω, y , z).

(ii) For fixed (y , z , γ), F is F-progressively measurable in DFt .

(iii) We have the following uniform Lipschitz-type property

∀(y , z , z
′
, t),

∣∣∣F̂t(y , z)− F̂t(y , z
′
)
∣∣∣ ≤ C

∣∣∣â1/2t (z − z
′
)
∣∣∣ , PκH−q.s.

(iv) F is uniformly continuous in ω for the || · ||∞ norm.

(v) F is continuous in y and has the following growth property

∃C > 0 s.t. |Ft(ω, y , 0, a)| ≤ |Ft(ω, 0, 0, a)|+C (1+|y |), PκH−q.s.

(vi) We have the following monotonicity condition

∃µ > 0 s.t. (y1−y2)(Ft(ω, y1, z , γ)−Ft(ω, y2, z , γ)) ≤ µ |y1 − y2|2 .
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The non-linear generator

Let us comment on these assumptions

Assumptions (i) and (iv) are taken from [10] and are needed
to deal with the technicalities induced by the quasi-sure
framework.

Assumptions (ii) and (iii) are quite standard in the classical
BSDE litterature.

Assumptions (v) and (vi) where introduced by Pardoux in [8]
in a more general setting (namely with a general growth
condition in y) and are also quite commonplace in the
litterature (see e.g. Briand et al. [1], [2]).
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The spaces and norms

For p ≥ 1, Lp,κ
H denotes the space of all FT -measurable scalar r.v.

ξ with
‖ξ‖p

Lp,κH
:= sup

P∈PκH
EP [|ξ|p] < +∞.

Hp,κ
H denotes the space of all F+-progressively measurable

Rd -valued processes Z with

‖Z‖pHp,κ
H

:= sup
P∈PκH

EP

[(∫ T

0
|â1/2t Zt |2dt

) p
2

]
< +∞.

Dp,κ
H denotes the space of all F+-progressively measurable

R-valued processes Y with

PκH−q.s. càdlàg paths, and ‖Y ‖pHp,κ
H

:= sup
P∈PκH

EP

[
sup

0≤t≤T
|Yt |p

]
< +∞.
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The spaces and norms

For each ξ ∈ L1,κ
H , P ∈ PκH and t ∈ [0,T ] denote

EH,P
t [ξ] := ess sup

P′∈PκH (t+,P)

PEP′

t [ξ],

where PκH(t+,P) :=
{
P′ ∈ PκH : P′

= P on F+
t

}
.

Then we define for each p ≥ κ,

Lp,κ
H :=

{
ξ ∈ Lp,κ

H : ‖ξ‖Lp,κ
H
< +∞

}
,

where ‖ξ‖pLp,κ
H

:= sup
P∈PκH

EP

[
ess sup
0≤t≤T

P
(
EH,P
t [|ξ|κ]

) p
κ

]
.
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The spaces and norms

Finally, we denote by UCb(Ω) the collection of all bounded and
uniformly continuous maps ξ : Ω→ R with respect to the
‖·‖∞-norm, and we let

Lp,κH := the closure of UCb(Ω) under the norm ‖·‖Lp,κ
H
.
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Formulation

Definition

For ξ ∈ L2,κ
H , we say (Y ,Z ) ∈ D2,κ

H ×H2,κ
H is a solution to the

2BSDE if :

• YT = ξ PκH − qs.

• ∀P ∈ PκH , the process KP has non-decreasing paths P− as

KP
t := Y0 − Yt −

∫ t

0
F̂s(Ys ,Zs)ds +

∫ t

0
ZsdBs , 0 ≤ t ≤ T .

• The family
{

KP,P ∈ PκH
}

satisfies the minimum condition

KP
t = ess infP

P′∈PH(t+,P)
EP′

t

[
KP′

T

]
, 0 ≤ t ≤ T , P− as, ∀P ∈ PκH .
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Representation Formula

For any P ∈ PκH , F-stopping time τ , and Fτ -measurable random
variable ξ ∈ L2(P), consider the BSDE

yP
t = ξ +

∫ τ

t
F̂s(yP

s , z
P
s )ds −

∫ τ

t
zP
s dBs , 0 ≤ t ≤ τ, P− a.s.

Theorem

Assume ξ ∈ L2,κ
H and that (Y ,Z ) ∈ D2,κ

H ×H2,κ
H is a solution to

the 2BSDE. Then, for any P ∈ PκH and 0 ≤ t1 < t2 ≤ T ,

Yt1 = ess supP

P′∈PκH (t1,P)
yP′

t1 (t2,Yt2), P− a.s.

Consequently, the 2BSDE has at most one solution in D2,κ
H ×H2,κ

H .
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Comments on the proof of uniqueness

As in the Lipschitz case, uniqueness follows from a stochastic
representation suggested by the optimal control interpretation,
and because of the non-decreasing process KP, we were
unable to use fixed-point arguments.

For the proof to work, you need a comparison theorem for the
underlying BSDE.

With our assumptions the monotonicity condition is crucial to
obtain uniqueness.
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Approximation by inf-convolution

Lemma

Define

F̂ n
t (y , z) := inf

(u,v)∈Qd+1

{
F̂t(u, v) + n |y − u|+ n

∣∣∣â1/2t (z − v)
∣∣∣2}.

(i) F̂ n is well defined for n large enough and we have∣∣∣F̂ n
t (y , z)

∣∣∣ ≤ ∣∣∣F̂ 0
t

∣∣∣+ C (1 + |y |+ |â1/2t z |), P− as, ∀P ∈ PκH .

(ii) |F̂ n
t (y , z1)− F̂ n

t (y , z2)| ≤ C |â1/2t (z1 − z2)|, P− as, ∀P ∈ PκH .
(iii) |F̂ n

t (y1, z)− F̂ n
t (y2, z)| ≤ n |y1 − y2| , P− as, ∀P ∈ PκH .

(iv) F̂ n
t (y , z)↗.

(v) If F̂ is decreasing in y, then so is F̂ n.
Dylan Possamai 2BSDEs with Continuous Coefficients
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Approximation by inf-convolution

As usual with monotonicity condition in dimension 1 we can
assume without loss of generality that F̂ is decreasing in y .

Our aim is to use monotonic approximation in order to obtain
existence in our framework, by building on the results of
Soner, Touzi and Zhang in the Lipschitz case.

We do not use linear inf-convolution for our approximation, as
in Lepeltier and San Martin [6] or Matoussi [7] but a mix of
linear and quadratic inf-convolution. This is due to the fact
that we absolutely need our approximation to remain uniformly
Lipschitz in z with a constant which do not depend on n.

The major difficulty here is that since we are working with a
family of mutually singular probability measures, monotone
and dominated convergence theorem may fail.
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Approximation by inf-convolution

Therefore we need to assume a strong type of convergence for our
approximation. Namely, we assume that one of these assumptions
hold true

(i) The sequence F̂n converges uniformly in z for all y , uniformly
in y for all z .

(ii) The sequence F̂n converges uniformly globally in (y , z).

These are implicit assumptions on the driver F̂ , which are satisfied
if for example F̂ is uniformly continuous in y , uniformly in z , t and
ω or if F̂ takes the special form F̂t(y , z) := φt(z) + ψt(y) and the
first derivative of F̂ with respect to y (which exists a.e. since F̂ is
decreasing in y) is bounded near ±∞, uniformly in z .
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Sketch of the proof of existence

For a fixed n, consider the following 2BSDE

Y n
t = ξ+

∫ T

t
F̂ n
s (Y n

s ,Z
n
s )ds−

∫ T

t
Zn
s dBs+Kn

T−Kn
t , 0 ≤ t ≤ T , PκH−qs.

and the corresponding BSDE

yP,n
t = ξ+

∫ T

t
F̂ n
s (yP,n

s , zP,n
s )ds−

∫ T

t
zP,n
s dBs , 0 ≤ t ≤ T , P−as,

Then you start by proving a priori estimates uniform in n by using
standard arguments for the classical BSDE and then the
representation formula for the 2BSDE.
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Sketch of the proof of existence

Then, using the fact that the approximation is monotone and
comparison theorems, you obtain that Y n converges
quasi-surely to some processus Y , and a similar result for yP,n

for all P.

However, this is not sufficient to obtain convergence in an L2

sense, since we cannot use monotone convergence theorem ⇒
we use our uniform convergence assumption to conclude.

Use representation in order to control the D2,κ
H norm of

(Y n − Y ) by the supremum over P of the norms of
(yP,n − yP). You then get convergence of Y n.

Use classical estimates to get the convergence of Zn and then
our uniform convergence assumption to get the convergence
of KP,n.
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Limitations

The proof relies heavily on the approximation by
inf-convolution which is completely explicit and has very nice
properties ⇒ we probably won’t be able to prove uniform
convergence of the approximation for more general growth
conditions in y .

Can we relax the Lipschitz assumption on z ?
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Weak Compactness

Our problem earlier was that the monotone convergence
theorem did not hold. However, if we assume that the family
PκH is weakly relatively compact, then it will still hold.

As proven by Denis, Hu and Peng[4] or Denis and Martini [3],
it will be the case if for instance we assume uniform bounds in
P for the density of the quadratic variation of the canonical
process.
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New Hypotheses

We can now consider the weaker hypotheses

(i) The domain DFt(y ,z) = DFt is independent of (ω, y , z).

(ii) For fixed (y , z , a), F is F-progressively measurable in DFt .

(iii) F is uniformly continuous in ω for the || · ||∞ norm.

(iv) F is continuous in y and z and has the following growth
property

|Ft(ω, y , z , a)| ≤ |Ft(ω, 0, 0, a)|+C (1+|y |+
∣∣∣â1/2t z

∣∣∣), PκH−q.s.

and the following approximation

F̂ n
t (y , z) := inf

(u,v)∈Qd+1

{
F̂t(u, v) + n |y − u|+ n|â1/2t (z − v)|

}
.

A simple modification of the previous proofs gives us existence of a
minimal and a maximal solution.
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In the most general case, we cannot expect the monotonic
approximation to work.

You could try instead to use the regular conditional probability
distribution to prove existence and uniqueness for ξ ∈ UCb(Ω)
and pass to the limit in its closure L2,κH , but it will ignore our
second case where there is no uniqueness .

Current work on quadratic 2BSDEs with possible applications
to utility maximization and superhedging.
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Thank you for your attention !
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