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Introduction

Surge options: American-style options whose strike is adjusted
daily to the moving average of the underlying price:

Ht = (St − Xt)
+, Xt =

1

δ

∫ t

t−δ
Sudu.

The strike of indexed swing options (gas market) is linked to
moving averages of different oil prices.

Non-Markovian dynamics of the moving average leads to an
infinite-dimensional optimal stopping problem:

dXt =
1

δ
(St − St−δ) dt.

We propose a finite-dimensional approximation allowing to
price moving average options in PDE or LS Monte Carlo
framework.

Peter Tankov American options on movoing average



The approximation problem

We consider general moving average processes of the form

Mt =

∫ ∞
0

St−uµ(du)

where µ is a finite possibly signed measure on [0,∞) and we set
St = S0 for t ≤ 0.

We would like to find n processes Y 1, . . . ,Y n such that
(S ,Y 1, . . . ,Y n) are jointly Markov, and Mt is approximated by Mn

t

which depends deterministically on St ,Y
1
t , . . . ,Y

n
t .
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Assumptions on S

That the stock price S is a continuous Itô process:

St = S0 +

∫ t

0
bsds +

∫ t

0
σsdWs

with

E

[
sup

0≤t≤T
|bs |

]
<∞ and E

[
sup

0≤t≤T
|σs |1+γ

]
<∞, γ > 0

It can then be shown (Fischer and Nappo ’10) that the modulus of
continuity of S is integrable:

E

[
sup

t,s∈[0,T ]:|t−s|≤h
|St − Ss |

]
≤ Cε(h), ε(h) :=

√
h ln

(
2T

h

)
.
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Comparing moving averages

Lemma

Let µ and ν be finite signed measures on [0,∞) such that
µ+(R+) > 0, and let M and N be corresponding moving average
processes. Then

E

[
sup

0≤t≤T
|Mt − Nt |

]
≤ C |µ(R+)− ν(R+)|

+ Cε

(
1

µ+([0,T ])

∫ T

0
|Fµ(t)− Fν(t)|dt

)
where

Fν(t) := ν([0, t]) and Fµ(t) := µ([0, t]).
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Sketch of the proof

We first assume that µ and ν are probability measures. Let F−1µ

and F−1ν be generalized inverses of µ and ν respectively. Then,

E

[
sup

0≤t≤T
|Mt − Nt |

]
= E

[
sup

0≤t≤T

∫ 1

0
|St−F−1

µ (u) − St−F−1
ν (u)|du

]

≤ Cε

(∫ 1

0
|F−1µ (u) ∧ T − F−1ν (u) ∧ T |du

)
.

The expression inside the brackets is the Wasserstein distance
between µ and ν truncated at T . Therefore,

E

[
sup

0≤t≤T
|Mt − Nt |

]
≤ Cε

(∫ T

0
|Fµ(t)− Fν(t)|dt

)
.
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Laguerre approximation: idea

We assume

dYt = −AYdt + 1(αStdt + βdSt), Mn = B⊥Y

The solution can be written as

Mn
t =

∫ t

−∞
B⊥e−A(t−s)1(αSsds + βdSs)

= KnSt +

∫ t

−∞
hn(t − u)Sudu,

where hn is of the form (Hankel approximation)

hn(t) =
K∑

k=1

e−pk t
nk∑
i=0

ck
i t i , n1 + . . .+ nK + K = n

In this work we focus on a subclass for which hn is of the form

hn(t) = e−pt
n−1∑
i=0

ci t
i (Laguerre approximation)
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Laguerre polynomials and functions

Fix a scale parameter p > 0. The scaled Laguerre functions
(Lp

k)k≥0 are defined on [0,+∞) by

Lp
k(t) =

√
2p Pk(2pt)e−pt , ∀k ≥ 0

where (Pk)k≥0 are Laguerre polynomials:

Pk(t) =
k∑

i=0

(
k

k − i

)
(−t)i

i !
, ∀k ≥ 0

The Laguerre functions (Lp
k)k≥0 form an orthonormal basis of

L2([0,∞)).
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Laguerre approximations for moving averages

Let H(x) = µ([x ,+∞)).

Compute the Laguerre coefficients of the function H:

Ap
k = 〈H, Lp

k〉.

Set Hp
n (t) =

∑n−1
k=0 Ap

kLp
k(t) and hp

n(t) = − d
dt Hp

n (t).

Approximate the moving average M with

Mn,p
t = (H(0)− Hp

n (0))St +

∫ +∞

0
hp
n(u)St−udu.
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Laguerre approximations for moving averages

Introduce n random processes

X p,k
t =

∫ +∞

0
Lp
k(v)St−vdv , k = 0, . . . , n − 1.

They are related to the moving average approximation by

Mn,p
t = (H(0)− Hp

n (0))St +
n−1∑
k=0

apkX p,k
t , ∀t ≥ 0.

and have Markovian dynamics
dX p,0

t =
(√

2pSt − pX p,0
t

)
dt

. . .

dX p,k
t =

(√
2pSt − 2p

∑k−1
i=0 X p,i

t − pX p,k
t

)
dt

with initial values

X p,k
0 = S0(−1)k

√
2p

p
,∀k ≥ 0.
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Convergence rate

Theorem

Suppose that the moving average process M is of the form

Mt = K0St +

∫ ∞
0

St−uh(u)du

where K0 is a constant and the function h has compact support,
finite variation on R and is constant in the neighborhood of zero.
Then the approximation error admits the bound

E

[
sup

0≤t≤T
|Mt −Mn,p

t |

]
≤ Cε(n−

3
4 ).
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Approximating option prices

One can approximate

sup
τ∈T

E [φ (Sτ ,Mτ )] by sup
τ∈T

E [φ (Sτ ,M
n,p
τ )] .

Corollary

Let the payoff function φ be Lipschitz in the second variable, then
the pricing error admits the bound∣∣∣∣ sup

τ∈T
E [φ (Sτ ,Mτ )]− sup

τ∈T
E [φ (Sτ ,M

n,p
τ )]

∣∣∣∣ ≤ Cε(n−
3
4 ).

where C > 0 is a constant independent of n.
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Uniformly weighted moving averages

Let

µ(dx) = h(x)dx =
1

δ
1[0,δ]dx ⇒ H(x) =

1

δ
(δ − x)+

The coefficients Aδ,pk = 〈H, Lp
k〉 can be computed explicitly.

We determine the optimal scale parameter popt(δ, n) as

popt(δ, n) = argmin
p>0

‖H − Hp
n ‖2 = argmin

p>0

{
δ

3
−

n−1∑
k=0

∣∣∣Aδ,pk ∣∣∣2
}
.

It satisfies the scaling relation

popt(δ, n) =
popt(1, n)

δ
,

and the values popt(1, n) can be tabulated.
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Uniformly weighted moving average: illustration
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Simulated trajectory of the moving average process and its
Laguerre approximations.
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Least squares Monte Carlo

Replace the American option by a Bermudan one with a
discrete grid π = {0 = t0, t1, . . . , tN = T} of exercise dates.

Simulate M paths of stock price and Laguerre processes.

Compute optimal exercise times by backward induction:
1 Initialization: τπ,mN = T , m = 1, . . . ,M
2 Backward induction for i = N − 1, . . . ,Nδ, m = 1, . . . ,M:{

τπ,mi = ti1Am
i

+ τπ,mi+1 1{Am
i

Am
i =

{
φ
(
Sπ,mti ,Mn,π,m

ti

)
≥ EM

ti

[
φ
(

Sπτπi+1
,Mn,π

τπi+1

)]}
3 Estimation of the option price at time 0:

V π
0 =

1

M

M∑
m=1

φ

(
Sπ,m
τπ,mNδ

,Mn,π,m
τπ,mNδ

)
The conditional expectations are estimated by regression on
the basis functions of state variables
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Least squares Monte Carlo

In numerical examples, we find that best results are obtained
if the approximate moving average Mn,π is replaced by the
true moving average Mπ in the pay-off function, while
estimating the conditional expectations by regressions on
Sπ,X 0,π, . . . ,X n,π.

The suboptimal approach often used by practitioners consists
in estimating the conditional expectations by regression on
(Sπ,Mπ) only.
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Numerical examples: convergence
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Left: Laguerre approximation vs. the improved method.
Right: zoom for the improved method and the practitioner’
method.
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Numerical examples: delayed options
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For moving average options with time delay whose pay-off depends
on Xτ = 1

δ

∫ τ−l
τ−l−δ Sudu, the Laguerre approximation leads to a

substantial improvement compared to the practitioner’s method.
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