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Introduction

@ Surge options: American-style options whose strike is adjusted
daily to the moving average of the underlying price:

Hy = (5 — * / S,du.

@ The strike of indexed swing options (gas market) is linked to
moving averages of different oil prices.

@ Non-Markovian dynamics of the moving average leads to an
infinite-dimensional optimal stopping problem:

dXt - % (St - St—(S) dt

@ We propose a finite-dimensional approximation allowing to

price moving average options in PDE or LS Monte Carlo
framework.
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The approximation problem

We consider general moving average processes of the form

Mt:/ St—yp(du)
0

where p is a finite possibly signed measure on [0, 00) and we set
5: =5 for t <O0.

We would like to find n processes Y!,..., Y" such that

(S, Y1,..., Y") are jointly Markov, and M; is approximated by M/
which depends deterministically on S;, Y2, ..., Y{.
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Assumptions on S

That the stock price S is a continuous It process:
t t
St =50 —|—/ bsds+/ osdWs
0 0
with

E[ sup bs]] <oo and E

0<t<T

sup |os|'T7| <00, >0
0<t<T

It can then be shown (Fischer and Nappo '10) that the modulus of
continuity of S is integrable:

E

sup |Se — 55|] < Ce(h), e(h):=/hln (27—>

t,s€[0,T]:[t—s|<h h
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Comparing moving averages

Lemma

Let p and v be finite signed measures on [0, 00) such that
ut(Ry) >0, and let M and N be corresponding moving average
processes. Then

E| sup M~ Nl

0<t<T

< CluRy) — v(Ry)]

1 T
+ Ce (ﬁm/o |Fu(t) — Fy(t)|dt)

Fo(t) == v([0,t]) and Fu(t):= p([0, ¢]).

where

Peter Tankov American options on movoing average



Sketch of the proof

We first assume that p and v are probability measures. Let F 1
and F, ! be generalized inverses of 1 and v respectively. Then

1
]E 02[:57_/ ‘St—F;fl(u) - St—Fl,l(u)|du]

<C5</ |F u)ANT —F, ()/\T|du>.

E [ sup ‘Mt — Nt|
0<t<T

The expression inside the brackets is the Wasserstein distance
between 1 and v truncated at T. Therefore,

< Ce (/OT |Fu(t) — Fl,(t)|dt> .

E| sup_[M: — N

0<t<T
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Laguerre approximation: idea

@ We assume
dY; = —AYdt + 1(aS.dt + 3dS;), M"=B1Y

@ The solution can be written as

t
Mo — / BLe~At=)1(aS,ds + BdS,)

t
= KnS: —|—/ hn(t — u)S,du,

—0o0

where h,, is of the form (Hankel approximation)
K Ny
hn(t) = Ze*"kth,-kt", m+...+nk+K=n
k=1 i=0
In this work we focus on a subclass for which h, is of the form
n—1
hp(t) = e Pt Z cit'  (Laguerre approximation)
i=0
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Laguerre polynomials and functions

Fix a scale parameter p > 0. The scaled Laguerre functions
(LY ) k>0 are defined on [0, +00) by

LP(t) = \/2p Pc(2pt)e P, Vk >0

where (Py)k>0 are Laguerre polynomials:

Pu(t) =Zk: (kl:,-> (_,-f)i7 Vk >0

i=0

The Laguerre functions (L})x>o form an orthonormal basis of
L2([0, 00)).
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Laguerre approximations for moving averages

o Let H(x) = p([x, +00)).
@ Compute the Laguerre coefficients of the function H:

AL = (H,L}).

Set HE(t) = Soi—g ARLP(t) and hA(t) = — S HE(t).
@ Approximate the moving average M with

+00
MP? = (H(0) ~ HR(O)S: + [ Ho(u)Se-ud
0
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Laguerre approximations for moving averages

Introduce n random processes
P e
XP :/0 LP(v)Si—vdv, k=0,...,n—1.

They are related to the moving average approximation by
n—1
M{P = (H(0) — HE(0))Se + > alXP™, vt >o.
k=0
and have Markovian dynamics

dXP0 = (\ﬁst— Xpo)dt

x"v - (,ﬁst—zpzk L xpi prvk) dt
with initial values

XPHK = 50(—1)“5",v1< >0.
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Convergence rate

Theorem

Suppose that the moving average process M is of the form
o
Mt = K05t +/ St_uh(U)dU
0

where Ky is a constant and the function h has compact support,
finite variation on R and is constant in the neighborhood of zero.
Then the approximation error admits the bound

E

sup |[M, — M™|| < Cs(n™ ).
0<t<T
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Approximating option prices

One can approximate

sup E[6(S,.M,)] by supE[6(S,, MP)].
TET TET

Corollary

Let the payoff function ¢ be Lipschitz in the second variable, then
the pricing error admits the bound

sup E[¢ (S, M,)] — sup E[¢ (S, M™P)]| < Ce(n™?).
TeT TeT

where C > 0 is a constant independent of n.
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Uniformly weighted moving averages

Let

p(dx) = h(x)dx = 11[075]dx = H(x)=

; (6-x)"

SN

The coefficients Ai’p = (H, L) can be computed explicitly.
We determine the optimal scale parameter pot(d, n) as

5
popt(d, n) = argmin ||[H — HP||, = arg min ‘Aap‘ .
p>0 >0 k—0

It satisfies the scaling relation

Popt(1, n)

popt((s n) 5 )

and the values popt(1, n) can be tabulated.
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Uniformly weighted moving average: illustration
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Simulated trajectory of the moving average process and its
Laguerre approximations.
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Least squares Monte Carlo

@ Replace the American option by a Bermudan one with a
discrete grid m = {0 = to, t1,..., ty = T} of exercise dates.
@ Simulate M paths of stock price and Laguerre processes.
o Compute optimal exercise times by backward induction:
Q Initialization: 7" =T, m=1,.... M

@ Backward induction for i = N—-1,...,Ns, m=1,...,M:
T —tlAm+T+1 1EAm
ar = {o(spm mpmm) > B [o (7., Mo )]}

i+1

© Estimation of the option price at time 0:

@ The conditional expectations are estimated by regression on
the basis functions of state variables
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Least squares Monte Carlo

@ In numerical examples, we find that best results are obtained
if the approximate moving average M™7 is replaced by the
true moving average M7™ in the pay-off function, while
estimating the conditional expectations by regressions on
ST X0 L XM

@ The suboptimal approach often used by practitioners consists

in estimating the conditional expectations by regression on
(5™, M™) only.
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Numerical examples: convergence

435
[—— Lag-Ls
[o—0—2 Lag-Ls 2280

4.278

4276 . "
4274

4272

Option value

4.270

4.268

= (Lag-LS")

4.266 — Benchmark by (NM-LS)

4264

1 2 3 4 5 6 7 8

Left: Laguerre approximation vs. the improved method.
Right: zoom for the improved method and the practitioner’
method.
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Numerical examples: delayed options
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For moving average options with time delay whose pay-off depends
on X; = % TT__,I_(; S,du, the Laguerre approximation leads to a

substantial improvement compared to the practitioner’'s method.
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