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General setting

O ¢ : trading strategy

O Yf : wealth process, valued in R, initial wealth y

O X? : stocks, factors, valued in RY

O Target : E |[G(X?(T), Yf(T))} >p peR, G:RIXR—R
O Constraint : (X, YY) e Oupto T (O: t— O(t) C RIH)
O Price under risk constraint :

inf {y 3 st (X?,YP) € 0 and E|G(XH(T), Yf(T))} > p} .



Examples of dynamics : “usual”’ large investor
model

O Control ¢ : predictable process with values in U C RY.
dX? = px(X?, ¢)dr + ox(X?, ¢)dW
dY? = ¢/ ux(X?, ¢)dr + ¢ ox(X?, ¢)dW .

O = X? = stocks, Y? = wealth, ¢ = number of stocks in the
portfolio.



Examples of dynamics : proportional transaction
costs

O Control ¢ adapted non-decreasing process (component by
component)

Xi(s) = x +/ X(r)pdr + /Xl YodW?
2

X?%(s) = «x +/t );21¢> /dqbr /d¢2

Yi(s) = y+ /ts(l—A)dd— / (14 A)dg?

t

O = X! = stock, X2 = value invested in the stock, Y? = value
invested in cash

O ¢} = cumulated amount of stocks sold, ¢? = cumulated
amount of stocks bought.

O X € (0,1) : proportional transaction cost coefficient.



Examples of dynamics : model with immediate
proportional price impact

O Control ¢ adapted non-decreasing process (component by
component)

dX? = px(X?)dr + ox(X?)dW + Bx(X?)d¢
dY? = X%d¢ .
O = X? = stock, Y? = wealth, d¢ = number of stocks bought

at time t.
O Bx = immediate impact factor.



Examples of dynamics : model with immediate
non-proportional price impact

0 Control ¢ = >~ il 7,,) adapted

dX0 = ux(X?)dr + ox(X?)dW + 3 fx(X?, Ad)Ly,

i>1
dX*? =3 " Agl,
i>1
dY? =" By(X?, Ag)1,, .
i>1

0 = X1¢ = stock, X?? = number of stocks in the portfolio,
Y? = cash account, A¢,. = number of stocks bought/sold at
time 7.

O Bx = immediate impact factor, Sy = buying/selling cost.
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Other possible dynamics

O Dynamics with jumps (finance/insurance) : L. Moreau, B.

O Any mixed control type problems.
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Examples of constraints : super-hedging of
American option

O Problem :

v = inf {y 3 st (X9, Y9) € 0 and E |G(XH(T), Yf(T))] > p} .

O:={(x,y) : y>g(x)}, G=0and p=0.

O Super-hedging of an American option :

v ::inf{y cd ¢ st Yf > g(X?) up to T} .



Examples of constraints : P&L-hedging

O Problem :

v = inf {y 3 st (X9, YP) € 0 and E |G(XH(T), Yf(T))] > p} .

Take
O :=R¥* | Gi(x,y) = 1, g(x)>—ci and p' € (0,1] .
with

P |YI(T)—g(X*(T)) > —c'| > p’ with ¢/ 1, p' 1

= P&L constraint (work in progress with T. N. Vu).



Examples of constraints : shortfall-hedging

O Problem :

v = inf {y Fg st (X9, YY) €0 and E|G(X4(T), Yj’(T))] > p} .

Take
O =R G(x,y) =y —g(x)]")and p<O0.

= Shortfall-hedging of European option.



Examples of constraints : indifference pricing

O Problem :

v = inf {y 3st (X2, V) eOand E [G(W(T), Yf(T))] > p} :

Take

O =R, G(x.y) = Ubo+y—g(x)) and p = supE | U(Yyo(T))]

= Utility indifference price.
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Aim
O Provide a PDE characterization in the (Markovian) situations
where
e markets are incomplete
e markets have frictions

e models without any notion of martingale measure. Ex : WVAP
guaranteed liquidation contracts.

O Based on a “risk” criteria.

O We want a direct approach :
e one (non-linear) pricing equation
e no-numerical inversion procedure
(inf, maxy E [G(X¢, Yf)} >p=v).

O If one can allow for high dimensions : include liquid options as
assets = automatically calibrated.
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Geometric Dynamic
Programming

O Problem extension : Z(Zj = (ijx, Y,_fbxy)

v(t,x, p) :=
inf{y;3¢s.t. z¢.,€0on[t,T], IE[ (22, ,( ))} }

O Assumption : y’ >y and (x,y) € O = (x,y') € O, t — O(t)
is right-continuous and G T in y.



The P — a.s. case
O Problem extension : Zf?z =(

X Yisey)
V(t,X) — |nf {y . 3 ¢ s.t. Zgjxhy

€O on [t,T]} .
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The P — a.s. case

0O Theorem : For all ¢ and 6 € T}, 77 :
GDP1 :

ZP, € Oon [t, Tl = Y, (0) > v(0, X, (0))
GDP2 :
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The P — a.s. case

0O Theorem : For all ¢ and 6 € T}, 77 :
GDP1 :

ZP, € Oon [t, Tl = Y, (0) > v(0, X, (0))
GDP2 :
y < v(t,x) =P [ijz(e) > v(6, X, (0)) and Z¢, € O on [t, e]} <1

O First introduced by Soner and Touzi for super-hedging under
Gamma constraints. Extended to American type contraints :
obstacle version of B. and Vu.
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Constraints in expectations

0O Theorem : For all ¢ and 0 € 7} 77 :
GDP1 :

Zl, e Oon [t, Tl = Y, (0) > v(8, X0 (6), Pep(9))
with
0
P:p(0) :=E G(ZSZ(T)) ] .7-"9} = p—i—/ asdWs |
t

ithIU(WS, s< t).
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Constraints in expectations

O Problem reduction : For all ¢ :
Z¢,cOon|t, T]and E [G(z:fz(r))] >p
if and only if 3 « such that

(20,.Pg,) € OxRon[t, T] and G(Z£,(T)) > P&, (T)

t,z»
with .
Pip :=E [G(Zf?z(T)) | .F] = p—i—/ asdWs .

t



Constraints in expectations

O Problem reduction : For all ¢ :
Z¢,cOon|t, T]and E [G(zgfz(r))] >p
if and only if 3 « such that

(zf

L., P2) €O xRon t, T and G(Z/,(T)) > P2,(T)
with

Pip=E [G(z;{’z(T)) y f.] :p—l-/. asdWs .

t

O Can use the GDP with an increased controlled process.
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PDE derivation

O Previous works

e Soner and Touzi : Brownian filtration and bounded controls
(apart from particular cases in finance). P — a.s. criteria.
Problems with Gamma constraints with Zhang, Cheridito.

B. : Jump diffusion with bounded control and locally bounded
jumps. P — a.s. criteria.

B., Elie and Touzi : Brownian filtration with unbounded
controls. Criteria in expectation (concentrating on the case of
a criteria in expectation).

e B. and Vu : “American” case.
e Moreau : Extension of B., Elie and Touzi to jump diffusions.

O In the following, we consider the case with controls of bounded
variations types (simplification of a work with M. N. Dang).
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The general model

O Set of controls : L € L set of continuous non-decreasing
R9-valued adapted processes L s.t. E [|L[3] < oo.

O Dynamics of Z = (X,Y) e RY x R :
dXt = px(XB)dr + ox(XE)dW + Bx(Xh)dL
dYt =y (ZY)dr + oy (ZH)dW + By (Zh)dL

O Problem :

v(t,x,p):=inf{y:3LeL )zt €O, E[G(Z, (T))] >p}

O Reduction : A set of predictable square integrable processes

inf{y:3(LLa)eLx A/ Zt, , €O, G(ZE (T)) > P2, (T)} .
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Assume that v is smooth and the inf is achieved.

For y = v(t,x,p), 3 (L, @) such that Zéz € Qon [t,T] and
G(Zty(T)) = P2,(T).

Then thz(t+) > v(t+,thX(t+), Pg,(t+)) and

(hy(2) = L pv(t,x, p)) dt
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Formal derivation of the PDE

(nv(2) = L pv(t,x,p)) dt
> (o ( ) — Dev(t, x, p)ox(x) — Dpv(t, x, p)oe) dW;
+(6

y(z) = Dyv(t,x, p)Bx(x)) dL:



Formal derivation of the PDE

(:U’Y(z) - ‘C?QPV(taX)p)) dt
> (oy(z) — Dev(t,x, p)ox(x) — Dpv(t, x, p)at) dW

Ok if :U’Y(Xa V(taXa p)) - E?(,PV(RXy p) >0
with oy (x, v(t,x, p)) = Dxv(t, x, p)ox(x) — Dpv(t, x, p)c.



Formal derivation of the PDE

(,U,y(Z) - ‘C?(,Pv(tv X, P)) dt
> (oy(z) — Dyxv(t, x, p)ox(x) — Dpv(t, x, p)at) dW,

+ (By(2) — Dxv(t, x, p)Bx(x)) dLt

Ok if :U’Y(Xa V(t,X, P)) - ‘C?(,PV(RXy p) >0
with oy (x, v(t,x, p)) = Dxv(t, x, p)ox(x) — Dpv(t, x, p)c.

Or  (By(x,v(t,x, p)) — Dxv(t,x, p)Bx(x)) £ >0
with £ € A, := 0B1(0) NRY.



Formal derivation of the PDE

Set
Fv = sup{uy(,,v)— LY pv, a € Nv}
Gv = max{[By(:,v) — Dyv(t,x)Bx(x)]¢, £ € AL}
with
Nv = {a:oy(-,v)= Dvox + Dpva}
Ay = RYINIB(0).

PDE characterization in the interior of the domain
max{Fv, Gv} =0 on (t,x, v(t,x)) € int(D)

where D := {(t,x,y) : (x,y) € O(t)}.
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PDE on the space boundary (x,y) € 00(t)

Domain is
D:={(t,x,y) : (x,y) € O(t)}.

Assumption : D € C1? (or intersection of C%? domains).

Take § € CY2 such that 6 > 0 in int(D), § =0 on 9D and § < 0
elsewhere.

The state constraints imposes dd(t, Zf,(t)) > 0 if (t,z) € OD.

As above it implies : or

max{Dd(t, x, y)Bz(x,y)l, L € AL} >0.



PDE on the space boundary (x,y) € 00(t)

The GDP and the need for a reflexion on the boundary leads to the
definition of

N2y = {a € Nv:Di(-,v)oz(-,v) =0}
F%y = sup min {,uy(-,v)—ﬁ%,;v , L76(-,v)}
aeNiny
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PDE on the space boundary (x,y) € 00(t)

The GDP and the need for a reflexion on the boundary leads to the
definition of

N2y = {a € Nv:Di(-,v)oz(-,v) =0}

F®y := sup min {uy (- v) =LY pv, L20(-,v)}
aeNny

G"v = maxmin{[By(-,v) — DxvBx]t, DS(-,v)B.(-,v){}
leNy

Then, the PDE on the boundary reads

max{F"v, G™v} =0 on (t,x,v(t,x)) € 9D .



Example

Pricing of the WVAP-guaranteed
liquidation contract
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The VWAP guaranted pricing problem

O K stocks to liquidate.

O Has an impact on prices

O Ensure that will guarantee a mean selling price of v x the mean
selling price of the market.

O What is the price of the guarantee?
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The VWAP guaranted pricing problem

O Controls : L 1 adapted and continuous. L; = # of sold stocks.
O Price dynamics :

dXbh = XELu(XE)de 4+ X o(XEY)dW, — XETB(XE(8)dL

O Cumulated gain from liquidation : dYt = Xb1dL,

O Volume weighted market price : dXb? = Xb1dy.

O Cumulated # of sold stocks : XL3:= L e [AA] — {K}
O Pricing function (with W(x,y) = (y — vKx?), v > 0)

v(t,x,p) ==inf{y > 0:3L st. X;3> € [AA], E [W(ZE, (T))| > p} .



PDE characterization

Proposition Under “good assumptions”, vy is a viscosity
supersolution on [0, T) of

max {Fp , x' + x' 3D — Dap} =0 if A< x> <A

and v* is a subsolution on [0, T) of

min{¢, max{Fy, x* + x}BDap — Dsp}} =0 if A<x®<A
min {go, x1+BDX1g0—DX3g0} =0 if A=x3
min{¢, Fp} =0 if x3=A,
where
(X10)2

Fp = —Lxp—"— (IDxlsO/DpsD\zDﬁ@*2(DX1¢/DpsO)D(2X1,p)¢) :

Moreover, v, (T,x,p) = v*(T,x,p)=WV"1(x,p).



PDE characterization

Proposition Under “good assumptions”, vy is a viscosity
supersolution on [0, T) of

max {Fp , x' + x' 3D — Dap} =0 if A< x> <A

and v* is a subsolution on [0, T) of

min{¢, max{Fy, x* + x}BDap — Dsp}} =0 if A<x®<A
min {go, x1+BDX1g0—DX3g0} =0 if A=x3
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The “good assumptions”

0 OnAA:
AANe Cl, A<Aon[0,T), DA, DA € (0, M]
O On the loss function ¢ :
Je>0st.e<D L, DH<el,

and lim D™4(r) = lim D 4(r).

r—o0 r—oo



Control on the gradients
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Control on the gradients

O Proposition v, is a viscosity supersolution of

min{Dpp — €, (Dap — CDpp)laso, —Dap + CDpp} =0 (x)

and v* is a viscosity subsolution of

max{—Dpp + €, (Dap — CDpp)Lasg, —Dap + CDpp} = 0. (xx)
where C is continuous and depends only on x.

O Provides a control on the ratio D,1¢/Dpp in

(xo)?
2

Fo:= —Lxp— (1D20/ Do D2 = 2(Da o/ D) Dt py )



More controls on v

<O «Fr «=)»
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More controls on v

O It also implies that 3 7 > 0 s.t.

0 < v(t,x,p) < e p—L0) +yn(L+|x]),

O and that for (tn, Xn, pn)n S-t. (tn, xn) — (t,x) :

lim vi(tn, Xn, pn) = lim v*(tn, Xn, pn) =0 if pp — —00 ,
n—oo n—oo

lim Vi (tn,Xn,Pn) = |im v*(tn,Xn,Pn) — 1

n—oo Pn n—o0 Pn Di(o0) if Pn =0



More controls on v

O It also implies that 3 7 > 0 s.t.

0 < v(t,x,p) < e p—L0) +yn(L+|x]),

O and that for (tn, Xn, pn)n S-t. (tn, xn) — (t,x) :

lim vi(tn, Xn, pn) = nll_)rrgo v*(tny Xn, pn) = 0 if pp — —00 ,

n—oo

. tn,X pn) H V*(tn Xn Pn) 1 H

lim YeltnXnPn) _ i, b} — if p, — 00 .
noo  Pn e Pn Di(s0) T Pn —

O A little more : v is continuous in p and x3.
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Uniqueness

O Want a comparison resul in the class of function with the above
limit and growth conditions.
O Recall that

(xlo)?
2

Fo = —Lxp— (1D0/ Do D2 = 2Ds o/ D) Dy )

O We now control D,1¢/Dpep.

This is not enough... If we need to penalize in x* (stock price) then
the term ]Dxlgo/DpchDggo will blow up as n — oo, where n comes
from the usual penalisation n|xi — x2|2 due to the doubling of
constants.



Uniqueness

O Want a comparison resul in the class of function with the above
limit and growth conditions.

O Recall that

(xlo)?
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Fo = —Lxp— (1D20/ Do D2p = 2(Ds o/ D) D py )
0 We now control D,1p/Dpep.

Assumption :

It >0st p(x) <0=0(x).



Uniqueness

O Want a comparison resul in the class of function with the above
limit and growth conditions.

O Recall that

(xlo)?
2

Fo = —Lxp— (1D20/ Do D2p = 2(Ds o/ D) D py )
0 We now control D,1p/Dpep.
Assumption :

It >0st p(x) <0=0(x).

O Bound on the stock price...



Comparison

O Theorem : Let U (resp. V) be a non-negative super- and
subsolutions which are continuous in x3. Assume that

U(t,x,p) > V(t,x,p)if t = T or x* € {0,2%'},

and that 3 ¢; > 0and c. € Rs.t.

lim sup V(t,x', p)p <c < lim inf uit',y', /e,
(t',x",p")—(t,x,00) (t'.y",p')—(t,y,00)
lim sup V(t,x',p)<c < liminf uit',y',pr') .
(t'x",p")—(t,x,—0) (t"y',p’)—=(t,y,—o0)

If either U is a supersolution of (*) which is continuous in p, or V
is a subsolution of (**) which is continuous in p, then

u>v.



Additional remarks



Optimal management under shortfall constraints

O Serves as a building block for problems of the form

sup E |U(X{(T), Y (T))
oAt 2

with A.,:={p€A:Z, cOonltT]}.



Optimal management under shortfall constraints

O Serves as a building block for problems of the form

sup E |U(X{(T), Y (T))
PEA:, 2

with A.,:={p€A:Z, cOonltT]}.

O Amongs to say that Yffz > v(~,Xt¢jX)
where v(t,x) :=inf {y :doe Ast. Zg’z € Oon[t, T]} ,

see B., Elie and Imbert (2010).



BSDE with moment conditions
O Look for the minimal solution (Y, Z) of
T T
Y: = Yf—+t/m f(s,Y;,Zg)ds——h/m ZsdW
t t

such that
E[G(YT,8)]>p.
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BSDE with moment conditions

O Look for the minimal solution (Y, Z) of
T T
Yy = Yr+ f(s,Ys, Zs)ds — / ZsdW
t t

such that
E[G(YT,§)]>p

O Can use the same approach : for o € A set

;
Y& =G PS¢ f (s, Y&, Z%) ds—/ ZodW,
t

O The minimal solution is (formally) given by Y = essinf Y .
«
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Optimal control vs stochastic targets

O Consider the control problem :

w = infE [U(X@ﬁ(T))}

O Then, it can be written as a stochastic target problem
- inf{p 13 (¢,a) st. UXH(T)) < P;(T)}

with Py := p + fo asdWs.



Optimal control vs stochastic targets

O Consider the control problem :

w = inf E [U(X‘z’(T))}

O Then, it can be written as a stochastic target problem
W=y o= inf{p 13 (¢,a) st. UXH(T)) < P,C,“(T)}
with Py := p + fo asdWs.

O Allows for a unified approach (obviously obtains -immediately-
the same HJB PDE)



