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Let B := (Bt)t≤T a BM on a probability space

(Ω,F , P ) ; (Ft)t≤T the completed natural fil-

tration of B.

A switching problem is a stochastic control

where the decision maker moves amongm states

or modes when she decides according to the

best profitability.

There are several works on the switching prob-

lem (H.-Jeanblanc, Djehiche-H.-Popier, H.-Zhang,

Hu-Tang, Zervos (s.p.), Ly Vath-Pham, Ly

Vath-Pham-XYZ , Zervos,

Porchet-Touzi, Carmona-Ludkowski,...).

Examples of a switching problems

• In financial markets when a trader invests

his/her money between several assets (economies)

according their profitability



• In the energy market when a manager of a

power plant puts it in the mode which occurs

the best profitability. in assets investor puts

his money in in the case

A strategy of switching has two components

(when m ≥ 3):

- (τn)n≥0 an increasing sequence of stopping

times: they are the times when the decision

maker decides to switch.

- a sequence (ξn)n≥0) of r.v. with values in

J := {1, ...,m} (the different states) such that

ξn is Fτn-measurable which stands for the state

to which the system is switched at τn from its

current one.

Remark: When m = 2, a strategy has only one

component, i.e., stopping times.



With a strategy (δ, ξ) = ((τn)n≥0, (ξn)n≥0) is

associated an indicator of the state of the sys-

tem which is (ut)t≤T given by:

u0 = 1 and ut = ξn if t ∈]τn, τn+1] (n ≥ 0).

When a strategy (δ, ξ) is implemented usually

the yield is given by:

J(δ, ξ) :=

E[
∫ T

0
ψus(s)ds−

∑
n≥1

ℓuτn−1,uτn
(τn)11[τn<T ]]

where

• ψk(t, ω) is the instantaneous profit in the

state k

• ℓkl(t, ω) ≥ c > 0 is the switching cost from

state k to state l at t.



The problem is to focus on

J∗ := sup
(δ,ξ)

J(δ, ξ).

This problem is linked to systems of Reflected

BSDEs with inter-connected obstacles or oblique

reflection of the following type: for i ∈ J :=

{1, ....,m},



Y it =
∫ T

t
ψi(u)du−

∫ T

t
ZiudBu+Ki

T −Ki
t

Y it ≥ maxj∈J−i{−ℓij(t) + Y
j
t },∫ T

0
(Y iu − max

j∈J−i
{−ℓij(u) + Y ju})dKi

u = 0.

(1)

where Ki are continuous and non-decreasing

and J−i := J − {i}.



The solution of (6) provides the optimal strat-

egy (δ∗, ξ∗) and J∗1 = Y 1
0 (Djehiche, H., Popier,

07).

Knightian uncertainty: means that the proba-

bility of the future is not fixed and a family of

probabilities Pu are likewise.

Risk-sensitiveness: means that the criterion is

of type

E[eθζ]

where θ is related to risk attitude of the con-

troller.

So let us set:

J(δ, ξ;u) :=

Eu[exp{
∫ T

0
(ψus(s,Xs) + h(s,Xs, us))ds−AδT}]

where



• X verifies

dXt = ϱ(t,Xt)dt+ σ(t,Xt)dBt, t ≤ T

are factors which determine prices in the mar-

ket and

∀λ > 0, E[eλ supt≤T |Xt|] <∞.

• u := (ut)t≤T is a stochastic process valued in

U (not bounded)

• Pu is a probability such that:

dPu

dP
= ET (

∫ .

0
b(t,Xt)dBt)

• AδT :=
∑
n≥1 ℓuτn−1,uτn

(τn, Xτn)11[τn<T ]

• h is a premium which satisfies:

l(u) ≤ h(t, x, u) ≤ C(1 + |x|+ l(u))

with l(u) → ∞ as |u| → ∞.



Problem: Characterization, properties and com-

putation of

J∗ = sup
δ

inf
u
J(δ, ξ;u).

Does an optimal strategy (δ∗, u∗) exist?

So let H be the hamiltonian of the problem,

H(t, x, z, u) := zb(t, x, u) + h(t, x, u)

and

H∗(t, x, z) := inf
u∈U

H(t, x, z, u).

Assume hereafter m = 2.

The system of reflected BSDEs associated with

the problem is:





•Y 1
t =

∫ T

t
[ψ1(s,Xs) +H∗(s,Xs, Z1

s )+
1
2|Z

1
s |2]ds−

∫ T
t Z

1
s dBs+K1

T −K1
t ;

•Y 2
t =

∫ T

t
[ψ2(s,Xs) +H∗(s,Xs, Z2

s )+
1
2|Z

2
s |2]ds−

∫ T
t Z

2
s dBs+K2

T −K2
t ;

•Y 1
t ≥ Y 2

t − ℓ12(t,Xt);
[Y 1
t − Y 2

t + ℓ12(t,Xt)]dK
1
t = 0;

•Y 2
t ≥ Y 1

t − ℓ21(t,Xt);
[Y 2
t − Y 1

t + ℓ21(t,Xt)]dK
2
t = 0.

(2)

Verification theorem: If there exist two triplets

of processes (Y i, Zi,Ki), i = 1,2 which satisfy

(2) then we have:

exp{Y 1
0 } = sup

δ∈D
inf
u∈U

J(δ, u)

and the optimal strategy (δ∗, u∗) is given by



τ∗0 := 0 and for n = 0, · · · ,

τ∗2n+1 := inf{t ≥ τ∗2n : Y 1
t = Y 2

t − ℓ12(t,Xt)}
τ∗2n+2 := inf{t ≥ τ∗2n+1 : Y 2

t = Y 1
t − ℓ21(t,Xt)}.

and

u∗t :=
∑
n≥0

[u∗(t,Xt, Z
1
t )1[τ∗2n,τ

∗
2n+1)

(t) +

u∗(t,Xt, Z
2
t )1[τ∗2n+1,τ

∗
2n+2)

(t)].

Sketch of the proof: the problems are related

to the lack of integrability and of regularity of

the data of the problem.

Step 1: Expression of the payoffs via BSDEs

Let (δ, u) admissible. Then there exists a unique

pair of P-measurable processes (Y δ,u, Zδ,u) such

that P -a.s,
∫ T
0 |Zδ,us |2ds <∞, the process

(Lut e
Y
δ,u
t +

∫ t
0 h(s,Xs,us)ds)t≤T is of class [D] and



for any t ≤ T ,

Y
δ,u
t = −AδT +

∫ T
t (ψδ(s,Xs) +H(s,Xs, us, Z

δ,u
s )

+1
2|Z

δ,u
s |2)ds−

∫ T
t Z

δ,u
s dBs.

(3)

Moreover, we have:

exp{Y δ,u0 } = Eu[exp{
∫ T
0 (ψδ(s,Xs)

+h(s,Xs, us))ds−AδT}]
= J(δ, u).

(4)

Step 2: Let δ ∈ D, then there exists a unique

pair of P-measurable processes (Y δ,∗, Zδ,∗) such

that (eY
δ,∗
t )t≤T ∈ E :=

∩
p≥1 Sp,

(eY
δ,∗
t Z

δ,∗
t )t≤T ∈ H2,d and for any t ≤ T ,

Y
δ,∗
t = −AδT +

∫ T
t (ψδ(s,Xs) +H∗(s,Xs, Z

δ,∗
s )

+1
2|Z

δ,∗
s |2)ds−

∫ T
t Z

δ,∗
s dBs.

(5)



Moreover, ∀t ≤ T , ∀δ ∈ D,

Y
δ,∗
t = essinfu∈UY

δ,u
t .

Step 3: Reduction of the problem

sup
δ∈D

inf
u∈U

J(δ, u) = sup
δ∈B

inf
u∈U

J(δ, u).

where

B := {δ := (τn)n≥0 ∈ D, ∃Kδ, such that
τn = T, for any n ≥ Kδ}.

Step 4: end of the proof by induction.

Let δ ∈ B then by a backward induction we
have:

Y 1
0 ≥ Y

δ,∗
0 .

As (in using the system of reflected BSDEs)
we have:

Y 1
0 = Y

δ∗,∗
0



therefore

Y 1
0 = sup

δ∈D
Y
δ,∗
0 = sup

δ∈D
inf
u∈U

Y
δ,u
0

which implies that

exp(Y 1
0 ) = sup

δ∈D
inf
u∈U

J(δ, u) = J(δ∗, u∗).

Therefore the problem turns into solving the

system (2).

Theorem: The system of reflected BSDEs with

inter-connected obstacles (2) has a unique so-

lution.

Sketch of the proof:

Step 1: Let us consider the following system:



For i = 1, ...,m,

Y it = ξi+
∫ T

t
fi(u, Y

1
u , ..., Y

m
u , Ziu)du

−
∫ T

t
ZiudBu+Ki

T −Ki
t

Y it ≥ maxj∈J−i hij(ω, t, Y
j
t )∫ T

0
(Y iu − max

j∈J−i
hij(ω, u, Y

j
u ))dK

i
u = 0.

(6)

We first extend the result by H.-Zhang (07) to

the case of continuous coefficients fj with lin-

ear growth in using inf-convolution techniques.

Step 2: We use an exponential transform for

(2) and we obtain:



•Ȳ 1
t = 1+

∫ T

t
(Ȳ 1
s )+[ψ1(s,Xs)+

H∗(s,Xs,
Z̄1
s

(̄Y 1
s )+

)]ds−
∫ T
t Z̄

1
s dBs+ K̄1

T − K̄1
t ;

•Ȳ 2
t = 1+

∫ T

t
(Ȳ 2
s )+[ψ2(s,Xs)+

H∗(s,Xs,
Z̄2
s

(̄Y 2
s )+

)]ds−
∫ T
t Z̄

2
s dBs+ K̄2

T − K̄2
t ;

•Ȳ 1
t ≥ e−g12(t,Xt)Ȳ 2

t ; Ȳ 2
t ≥ e−g21(t,Xt)Ȳ 1

t

•(Ȳ 1
t − e−g12(t,Xt)Ȳ 2

t )dK̄1
t = 0 and

(Ȳ 2
t − e−g21(t,Xt)Ȳ 1

t )dK̄2
t = 0

(7)

Finally we show that this system has a solution

and we go back to (2).

Dynamic Programming Principle: Y 1 and Y 2

satisty the following DPP:



Y 1
t = esssupδ=(τn)n≥0∈D1

t
E[

∫ τn

t
Φus(s,Xs, Z

us
s )ds

−
∑
k=1,n ℓuτk−1,uτk

1[τk<T ] + Y
uτn
τn 1[τn<T ]|Ft]

where

• D1
t is the set of admissible strategies such

that τ1 ≥ t and u0 = 1

•

Φi(t, x, z) = ψi(t, x) +H∗(t, x, z) +
1

2
|z|2.

The same is true for Y 2.

With the help of this DPP we show that:

Theorem: Assume that:

(i) U is compact and h is bounded



(ii) the functions ϱ and σ are jointly continuous

(iii) the functions ψi(t, x) and Φi(t, x, z) are

continuous.

Then there exists two bounded deterministic

functions v1(t, x) and v2(t, x) such that Y i,t,xs =

vi(s,Xt,x
s ) for any s ∈ [t, T ]. Moreover (v1, v2)

is a unique solution in viscosity sense for its

associated HJB equation. : i = 1,2 (j ̸= i),

min{vi(t, x)− vj(t, x) + ℓ(t, x);
−∂vi − Lvi(t, x)−Φi(t, x, (∇vi)σ(t, x))} = 0

where L is the generator associated with X.

The problem is continuity of vi, i = 1,2. Exis-

tence is classical.

Step 1: the optimal strategy (τn) satisfies

P [τn < T ] ≤ Cn−1, ∀n ≥ 1.



Then we write

v1(t, x) =

supδ=(τn)n≥0∈D̃1E[
∫ τn

t
1[s≥t]Φus(s,X

t,s
s , Zuss )ds

−
∑
k=1,n ℓuτk−1,uτk

(τk, X
t,x
τk )1[τk<T ] + Y

uτn
τn 1[τn<T ]|Ft]

Finally we use the results by M.Kobylanski (00)

to show that vi are viscosity solutions. Unique-

ness is classical.


