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Let B = (Bt)th a BM on a probability space
(2, F,P) ;, (Ft)i<r the completed natural fil-
tration of B.

A switching problem is a stochastic control
where the decision maker moves among m states
or modes when she decides according to the
best profitability.

There are several works on the switching prob-
lem (H.-Jeanblanc, Djehiche-H.-Popier, H.-Zhang,
Hu-Tang, Zervos (s.p.), Ly Vath-Pham, Ly
Vath-Pham-XYZ , Zervos,

Porchet-Touzi, Carmona-Ludkowski,...).

Examples of a switching problems

e In financial markets when a trader invests
his/her money between several assets (economies)
according their profitability



e In the energy market when a manager of a
power plant puts it in the mode which occurs
the best profitability. in assets investor puts
his money in in the case

A strategy of switching has two components
(when m > 3):

- (Tn)n>0 an increasing sequence of stopping
times: they are the times when the decision
maker decides to switch.

- a sequence (&n)p>0) of r.v. with values in
J = {1,...,m} (the different states) such that
&n IS Fr -measurable which stands for the state
to which the system is switched at 7,, from its
current one.

Remark: When m = 2, a strategy has only one
component, i.e., stopping times.




With a strategy (6,§) = ((Tn)n>0, (§n)n>0) IS
associated an indicator of the state of the sys-

tem which is (u¢)i<7 given by:

uo = 1 and u; = &, if t €]mn, 7,41] (n > 0).

When a strategy (6, €&) is implemented usually
the yield is given by:

J(6,8) =
T
Bl bu(s)ds = 3 lur,_y aum, (7o) L 1]
0 n>1
where

e Y.(t,w) is the instantaneous profit in the
state &

e /1 (t,w) > ¢ > 0 is the switching cost from
state k to state [ at t.



The problem is to focus on

J* = sup J(4,&).
(6,€)

T his problem is linked to systems of Reflected
BSDEs with inter-connected obstacles or oblique
reflection of the following type: for : € J =

{1,.....m},

y;:/ ¢Z(u)du—/ ZidBy + Kb — K
V2 maxe 60+ Y7}
/ (Yi — max {- 0 (u) + Y PdK: =0,

7\

(1)

where K' are continuous and non-decreasing
and 77t := 7 — {i}.



The solution of (6) provides the optimal strat-
egy (6*,¢*) and Ji = Y4 (Djehiche, H., Popier,
07).

Knightian uncertainty: means that the proba-
bility of the future is not fixed and a family of
probabilities P% are likewise.

Risk-sensitiveness: means that the criterion is
of type

E[e?]

where 6 is related to risk attitude of the con-
troller.

So let us set:
J(6,&u) =
T
E[exp{ /O (Yo (s, Xs) + h(s, Xs,us))ds — ASY]

where



e X verifies

dX¢ = Q(t7 Xt)dt + O(ta Xt)dBt7 t<T

are factors which determine prices in the mar-
ket and

YA > 0, B[eSUP<T [Xt]] « oo,

o U .= (Ut)th IS a stochastic process valued in
U (not bounded)

e PY is a probability such that:

dP"
dP

= & ( /O b(t, X;)dBy)

O A‘% L= anl euTn_l,um (Tna XTn)]l[Tn<T]

e h iSs a premium which satisfies:

[(u) < h(t,z,u) < C(1+ [z] + 1(u))

with [(u) — oo as |u| — oo.



Problem: Characterization, properties and com-
putation of

J* =supinf J(,&; u).
5 u

Does an optimal strategy (6*,u*) exist?

So let H be the hamiltonian of the problem,

H(t,z,z,u) ;= zb(t,z,u) + h(t,x,u)
and

H*(t,z,z) = inf H(t,z,z,u).
uelU

Assume hereafter m = 2.

The system of reflected BSDESs associated with
the problem is:



T
¥ = [ [as, Xo) + H (s, Xo, Z)
3123 PYds — |7 Z3dBs + K} — K}

T
o¥2 = [ lals, Xo) + H (s, X, 224
) £122|%ds — [ Z2dBs + K2 — K7,

oVl > V72— t15(t, Xyp);
VI — Y2 + £15(t, Xp)]dK} = 0;

oY2 > Y1 — lr (¢, Xyp);
[Y? = Y + £o1 (¢, Xp)]dKF = 0.

(2)
Verification theorem: If there exist two triplets
of processes (Y, Z, K*), i« = 1,2 which satisfy
(2) then we have:

O} = SR it/

and the optimal strategy (6*,u*) is given by



75 -= 0 and for n =0,---,

T5,p1 = Inf{t>73 V! =2 Y2 —1512(75,Xt)}
Topdo = INf{t>75 1Y =Y —001(¢, X))}
and
* . * 1
up = Y [u*(t, Xy, Zj Mg ez )+

n>0

* 2
u (t7 Xt, Zt )1[T§<n+1’7_§n—|—2)(t)].

Sketch of the proof: the problems are related

to the lack of integrability and of regularity of
the data of the problem.

Step 1: Expression of the payoffs via BSDEs

Let (4, u) admissible. Then there exists a unique
pair of P-measurable processes (Y%, Z%%) such
that P-a.s, fg|Z§’“|2ds < oo, the process

o,u t
(Lielt "‘foh(3>XS’“8)dS)t§T is of class [D] and



for any t < T,

Y = — AL 4 [T (0 (s, Xs) + H(s, Xs, us, Z0™)
+3128"2)ds — Ji 23" aBs.

(3)
Moreover, we have:
exp{YJ™"} = Ev[exp{/d (4 (s, Xs)

+h(s, Xs,us))ds — A5T}] (4)
= J(6,u).

Step 2: Let § € D, then there exists a unique
pair of P-measurable processes (Y %*, Z%*) such

0, %
that (ey;f )tST c& = ﬂPZl SP,
0, %
(¥t Z0%),cr € H24 and for any t < T,

)" = — AL+ [T (0 (s, Xs) + H* (5, X, Z°)
1 57* 2 T 57*
+1128*2yds — [ 23+ aB..

(5)



Moreover, YVt < T, Vo € D,

)

Y% = essinf, e Y.

Step 3: Reduction of the problem
sup inf J(6,u) = sup inf J(I,u).
scD ueU scBucl

where

B:= {6 := (mn)n>0 € D,3Kj, such that
™ =T, for any n > Kgs}.

Step 4: end of the proof by induction.

Let 6 € B then by a backward induction we
have:

Yg > Yo,

As (in using the system of reflected BSDESs)
we have:

Yg =Yy "



therefore

Yg = sup Yg’* — sup inf Yg’“
€D seD ueU

which implies that

exp(Yol) — ?25&25 J(5,u) = J(5%,u").

T herefore the problem turns into solving the
system (2).

Theorem: The system of reflected BSDEs with
inter-connected obstacles (2) has a unique so-
lution.

Sketch of the proof:

Step 1: Let us consider the following system:



For:=1,...,m,
v = z-+/tTfi<u,Yu1,.-.,Y$,Zz>du
—/ngdBquK}—Kg
Y > maxjejtz- hij(w,t,ytj)

(6)

(Y, — max h;j(w,u,Y))dK}, = 0.
\ 0 jedg—t

We first extend the result by H.-Zhang (07) to
the case of continuous coefficients f; with lin-
ear growth in using inf-convolution techniques.

Step 2: We use an exponential transform for
(2) and we obtain:



_ T _
o7 =14 [ (TH (s Xo)+
H*(s, X, (Y11)+)]ds [ ZdBs + K1 — K}

¥ =1+ / (T2 F (s, Xo)+
H*(s, X, (Y2)+)]d5 [F Z2dBs + K2 — K?;

o¥ 1 > e—glz(t,Xt){/tQ; V2> 6—921(15,Xt)§7t1
o(V1 — e 912t X0)¥2)gRK! = 0 and

(V2 — 6_921(t7Xt)Y;51)d[_(tQ =0
(7)

Finally we show that this system has a solution
and we go back to (2).

Dynamic Programming Principle: Y1 and Y?2
satisty the following DPP:



Tn
Y;fl = esssup5=(7n)n206Dt1E[/t CDuS(S, Xs, Z;;LS)dS

o Zk=1,n guTk_l,uTk 1 [Tk<T] _I_ YTII;I:LTn 1 [Tn<T] |Ft]
where

e D} is the set of admissible strategies such
that 71 >t and ug =1

@it 7, 2) = wilt, @) + H (1,2, ) + 5|2

The same is true for Y2,
With the help of this DPP we show that:
Theorem: Assume that:

(7) U is compact and h is bounded



(41) the functions p and o are jointly continuous

(#33) the functions ¥;(t,z) and ®,(¢,xz,z) are
continuous.

Then there exists two bounded deterministic
functions v1(t,z) and v2(t, z) such that Y0 =
vi(s, XL) for any s € [t,T]. Moreover (vl,v?2)
IS a unique solution in viscosity sense for its
associated HJB equation. : i =1,2 (j # 1),

min{vi(t, T) — vI(t, z) + 4(t, T);
—ov' — Lo*(t,x) — D;(t, x, (Vv)o(t,x))} =0

where L is the generator associated with X.

The problem is continuity of v*, i = 1,2. Exis-
tence is classical.

Step 1: the optimal strategy (7,) satisfies

Plrn<T]<Cn~1vn>1.



Then we write
vl(t,z) =

™ ¢ .
Sup5=(7n)n206151E[/t 1[82t]¢us(37Xs’Sazg )ds

t) ™
o Zkzl,n euTk—l’uTk (Tka XT]::) 1 [Tk:<T] + Yquj;, 1 [Tn<T] |Ft]

Finally we use the results by M.Kobylanski (00)
to show that v are Viscosity solutions. Unique-
ness is classical.



