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Introduction

We want to study the problem
v(t, z,p) := inf {y > —k:E [\IJ (Xfm(T),Yt”my)] > p for some V}

introduced by Bouchard, Elie, Touzi (2009) for Brownian controlled SDEs, in
the case of jump diffusion processes X" and Y”.

dX:,uX(X,u)ds—i—UX(X,l/)dW—i—/ Bx(X,v,e)J(de,ds)
E

dY = py(Z,v)ds + oy (Z, V)dW—l—/ By (Z,v,e)J(de,ds)
E

where Z stands for (X,Y).
Notations : The controls v are in &/ and take values in U.



Examples

Financial Market

XV : Stocks (possibly influenced by a large investor strategy v)
Y . Portfolio process of the large investor

The market is incomplete

We do not treat the dual problem, but directly the primal



Examples

Insurance Market

XY : Sources of risks
Y : Portfolio process of the insurance



Examples
Superhedging

U(z,y) = Liy>g(a))

o(t,z,1) =inf {y > —k: el st. P}, (T) > g (X{,(T))] =1}.

Remark

» For U compact and no jumps, Soner and Touzi (2002)
» For U compact and bounded jumps, Bouchard (2002)
» For the American case, Bouchard and Vu (2009)

If g(x) = (x — K)T, then
: v v +
v(t,z,1) :=inf {y >—k:3dveU st Y (T)> (X{.(T) - K) IF’—a.s.} .

Hedging a European call option with finite credit line.



Examples
Quantile Hedging

U(z,y) = Liy>g())

v(t,z,p) = inf {y > k:dvecldst. P [K”xy(T) >gq (Xt”x(T))] > p} .

Remark

» In "standard” financial models, Follmer and Leukert (1999)
» In general settings, but no jumps, Bouchard, Elie and Touzi (2009)



Examples

Loss Function

U(z,y) :=—p((y —g(x))”), with p convex non-decreasing

v(t,z,p) =
inf {y > k:welst E [p ((}Qi’x,y(T) - g(ng(T)))‘)} < p} .
Remark

» In "standard” financial models, Follmer and Leukert (1999)
» In general settings, but no jumps, Bouchard, Elie and Touzi (2009)



Examples

Success Ratio

V(z,y) = Lig)<y} + 505 Hg@)>yp for y 20,

Vi) 1] . p}
FAL =Dy

v(t,z,p)=infy>0:IJveld st E =
G0 { 9(X, (D)

Remark

» In "standard” financial models, Follmer and Leukert (1999)
» In general settings, but no jumps, Bouchard, Elie and Touzi (2009)



Examples

Utility indifference Price in incomplete Markets

U(z,y) :=U (y — g(z)), with U concave non-decreasing,

v(t,z,p) =
inf {y > —k:velUst E [U (Y”

t,x,y0+y

(T) - 9(X¢,(T)))] = p}-

(v=swB [0 (0 ()

veld



Geometric Dynamic Programming Principle
(Soner Touzi (2002) , Bouchard Vu (2009))

Fix (¢t,x) and {6”,v € U} a family of [t, T]-valued stopping times,

(GDP1) : y > v(t,z,1) = I v U s.t.

Yoy (0) 2 v (0, X, (6),1)



Geometric Dynamic Programming Principle
(Soner Touzi (2002) , Bouchard Vu (2009))

Fix (t,z) and {0, v € U} a family of [t, T]-valued stopping times,

(GDP1) : y > v(t,z,1) = I v U s.t.

Yoy (0) 2 v (0, X, (6),1)

(GDP2) : For every —x <y < v(t,z,1),v €U

P[Yy,, (0) > v (6, X, (0"),1)] <1.



Formal GDPP with Jumps

(Bouchard Elie Touzi (2009) , Bouchard Vu (2009))

y>v(t,x,p) & I v el st Y;’jz’y(e”) EU(QV,XEx(H”),p),

but



Formal GDPP with Jumps

(Bouchard Elie Touzi (2009) , Bouchard Vu (2009))

y>v(t,x,p) & Ivelst, (9”)21}(9”,)(,5”796(6”),19),

twy
but

y>o(t,z,p) =3veldst Y, (0")>v (0", XY, (0"),P)

where P:=E [V (X/,(T),Y%,,(T))| Fi], and E[P] = p, i.e.

P—p—i—/as dW—i—//XS deds)
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Formal GDPP with Jumps

(Bouchard Elie Touzi (2009) , Bouchard Vu (2009))

Main difficulties in Bouchard Elie Touzi (2009) :

> « possibly unbounded = unbounded controls

= Local relaxation.
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Formal GDPP with Jumps

(Bouchard Elie Touzi (2009) , Bouchard Vu (2009))

Main difficulties here :

» « and y possibly unbounded = unbounded controls and
unbounded jumps

= Non-local Relaxation.

» The control x is a measurable function



Reduction of the Problem

We then reduce to the problem :

v(t,z,p) =inf{y>—k:3 (va,x) €U x L? x H2 s.t.
v (Xél,x(T)7 }/tl,/:p,y(T)) Z Pt?épéX(T) }

where H3 denotes the set of maps x : 2 x [0,7] x E — R s.t.

U/Xt A(de)dt

and \(de)dt is the intensity of J(de, dt).



Set

Geometric Dynamic Programming Principle

P (')—p+/a5 dW+//Xs J(de, ds).



Geometric Dynamic Programming Principle

Py ()—p—i—/as dW+//xs J(de, ds).

(GDP1) : y > v(t,x,p) = 3 (v,a,x) €U x L? x Hj s.t.

Set

(60") > v (0", X7, (67), P2 (67))

t ,T,Y

for all stopping times 6”.



Geometric Dynamic Programming Principle

Set

PX() ::p—l—/t as-dWs—l—/O /Exs(e)j(de,ds).
(GDP1) : y > v(t,x,p) = 3 (v,a,x) €U x L? x Hj s.t.
Yoy (07) 2 v (0%, Xy, (67), PpX (67))

for all stopping times 6”.

(GDP2) : y < w(t,x,p) = forall 0¥ < T, (v,a,x) €U x L? x H3

P Yy, (07) > v (0¥, XY, (0"), PpX (67))] < 1.



Formal PDE Derivation

We hence study the problem
v(t,z) := inf {y >k U (Xfx(T),Kf’xy(T)) > ( for some v € L{}
with
dX = px(X,v)ds + ox (X, v)dW —I—/EﬁX(X, v,e)J(de,ds)
dY = py(Z,v)ds + oy (Z,v)dW + /Eﬂy(Z, v,e)J(de,ds)
where Z stands for (X,Y).

Notations : The controls v are in U/ and take values in U...



Formal PDE Derivation

We hence study the problem
v(t,z) := inf {y >k U (Xfx(T),Kf’xy(T)) > ( for some v € L{}
with
dX = px(X,v)ds+ ox(X,v)dW + /EﬂX(X,l/(e),e)J(de, ds)
dY = py(Z,v)ds + oy (Z,v)dW + /E By (Z,v(e),e)J(de,ds)
where Z stands for (X,Y).

Notations : The controls v are in U and take values in U... is a space of
unbounded measurable functions



Formal PDE Derivation
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E
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Formal PDE Derivation

A7, = uy (X, Y,0)ds + oy (X, Y, v)dW, + / By (X, Y, v(c), e)J (de, ds)
E
> do(s, X(s))

= LYv(-)ds + Dyv(-)ox (-)dWs + /E [v(-+Bx(-) —v(-)] J(de,ds)

which leads to

sup {min {uy (z,y,u) — L(t,z), G v(t,x)}} =0

uENo

where
G v(t, ) = int {By(v(),€) —v (- + Bx(e) +v()}
and

N :={u€eUst. |oy(z,y,u) — Dv(t,x)ox(z,u)| <e}.



The Relaxation of Bouchard Elie Touzi (2009)

H*(©) = limsup H.(©) H,(©) = liminf H.(0),
e\0,0/’—6 e\0,0’—6

with © = (¢, 2/, y, k,q, A), © = (-,v(-), 8v(-), Dv(-), D*v(-)) (¢, z)
and

H.(©) = useuj\;; {,uy(z,u) —k—px(z,u)-q— %Tr [UXU};(:L“,U)A] }

and
Ne(z,y,q) == {u e Ust. |oy(z,y,u) — gox(z,u)| <e}.



Our Relaxation

The relaxation of is no longer sufficient to ensure the upper (resp. lower) semi
continuity of H* (resp. H,) in the non-local term G“v(t, z, p).

H*(©,¢) = limsup H.(0',¢)  Hi(O,p) = limsup H.(0',9),

e\0,0’'—06 e\0,0'—06
d’;ﬂﬁ 1/);?%0

with © = (', 2/, y,k,q, A), © = (-,v('),atv(-),Dv(-),DQU(-)) (t,z)

where ©» — ¢ has to be understood in the sense that ¢ converges
u.c.

uniformly on compact sets towards ¢, and

Ne(xay7Q) = {U eUst. |0y($,y,U) - QO'X(x,U)‘ < 8}'



Our Relaxation

The relaxation of is no longer sufficient to ensure the upper (resp. lower) semi
continuity of H* (resp. H,) in the non-local term G“v(t, z, p).

H*(©,¢) = limsup H.(0',¢)  Hi(O,p) = limsup H.(0',9),

e\0,0’'—06 e\0,0'—06
d’;ﬂﬁ 1/’;?%0

with © = (', 2/, y,k,q, A), © = (-,v('),atv(-),Dv(-),DQU(-)) (t,z) and

1
H.(©,1) = sup {min {,uy(z, u) —k —px(z,u) - q— §Tr [UXU)T((QJ, u)A] ,
ueN;

i (B (o) = 0 (62 + Bx(,.0) + 02} |

where ©» — ¢ has to be understood in the sense that ¢ converges
u.c.

uniformly on compact sets towards ¢, and

Ne(xay7Q) = {U eUst. |0'y(.fC,y,U) - QO'X(IE,U)‘ < 8}'
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Theorem
The function v, is viscosity supersolution on [0,T) x X of

H*v, > 0.



Our main results

Theorem
The function v, is viscosity supersolution on [0,T) x X of

H*v, > 0.
Under some extra assumption of regularity of the set N'°, the function v* is a
viscosity subsolution on [0,T) x X of

min {H,v*,v* + k} <0.



Sketch of the Proof (Supersolution) :
Let ¢ be a test function, and assume that

H*p(to, o) =: =217 < 0.

Define
Gt ) := o(t,z) — 1|z — xo|* for ¢ > 0.

By the definition of H*, we may find € > 0 and ¢ > 0 small enough such that
min {/'LY (LU, Y, u) - ‘Cu@(ta l‘), gu(z(ta :E)} <-n
for all w € N (z,y, Dp(t, x))
and (t,z,y) s.t.(t,z) € B:(to,zo) and |y — p(t, z)| < e.



We then have
(v = ) (8:2) > ¢ Ais" =5 € > 0 for (t,2) € Va(to, 20)
with

Va(t07 x()) = apBg(t(), 1’0) U [to, to + E) X BEC(JJ())

Let (tn,l'n)nzl — (to,{L‘o) s.t. U(tn,l‘n) — ’U*(to,l'o) and set
Yn = V(tn, Tn) +n L.



For each n > 1, y,, > v(tn, z,) together with (GDP1) : there exists some
vt eU s.t.

Y'"tNO) >v(tNOp, X (tNOR)) > @(tNO, X" (EANG)), t2>ty,
where
00 :={s>t,:(s,X"(s)) ¢ Be(to,x0)}
O :={s>t,: |Y"(s) — @ (s,X"(s))| > e} NO;.
We then have

Y'"tNO) — @ (tNAOn, X" (tNGy)) [Eﬂ{9n<9%} ar 5]1{%:93}] 1{729"}'

>
> (e A f)]l{tzen} > 0.

We conclude by using It6's lemma, and by making a "change of measure” to
obtain a contradiction. Ol



On the terminal condition (formally)

In the expected loss case
v(t,x,p) :=inf {y > —k: v E[¥ (X{,(T),Y,(T)] > p}
leads to

o(t,z,p) = inf {y > =k : Fv,0,x : O (X{(T), Y,

(T)) = PX(T)} -



On the terminal condition (formally)

In the expected loss case
v(t,x,p) :=inf {y > —k: v E[¥ (X{,(T),Y,(T)] > p}
leads to

o(t,z,p) = inf {y > =k : Fv,0,x : O (X{(T), Y,

(T)) = PX(T)} -

Define
Y(z,p) = inf {y: ¥(x,y) > p}.



On the terminal condition (formally)

In the expected loss case
v(t, z,p) := inf {y > —k:3dv:E [\IJ (Xé’x(T),Y;’;Jy(T))] > p}
leads to
o(t,z,p) =inf {y > —k:Iv,a,x: O (X{,(T), Y, (1)) = PXNT)}
Define
U(z,p) = nf{y : U(z,y) = p}.

We may expect that
U(T7 x?p) = w(a’:7p)'



On the terminal condition (formally)

For the Quantile Hedging (Bouchard Elie Touzi (2009))

¥(z,y) == Ly g}
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¢(9€,p) = g(x)]l{p>0}'



On the terminal condition (formally)

For the Quantile Hedging (Bouchard Elie Touzi (2009))
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On the terminal condition (formally)

For the Quantile Hedging (Bouchard Elie Touzi (2009))

¥(z,y) == Ly g}

leads to

Y(z,p) = g(x)L{p>0y-

Discontinuous in p, we hedge or not!!
= If v is convex in its p-variable

U(T,x,p) = Conv W(%P)) = pg(.CU).



On the terminal condition (formally)

We may generalize it :
If v is convex in its p-variable

(T, z,p) = Conv (¢(x,p)) .
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Conclusion

» When the image of VU is of the form [m, M], with m and/or M are
finite, we proved boundary conditions at p = m and/or p = M.

» In the B&S model and a complete market, using the Fenchel-Legendre
transform of v with respect to the p-variable in the PDE, Bouchard, Elie
and Touzi recover the dual problem, which is a control problem
In incomplet markets, we recover in the same way a control problem, but
we need a comparison theorem to conclude as they do.
= Need to specify a model
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