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PDEs with polynomial growth coefficients

We study

glt](t,x) = —Zu(t,x) — f(t,x,u(t,x),(c"Vu)(s,x)), t €0, T],

u(T,x) = h(x).

d *
where & = 3 3771 (00%);i(x )axaxj + 25 bix) -

£(s,x,y,2)| < C(lfo(s, x)| + |y|? + |z]),
where p > 1 and fOT Jge [fa(s,x)|2Pp (x)dxds < oco.
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Time Variables Transformation

If f is independent of t, defining v(t,-) £ u(T —t,-), we have

%(t,x) = ZLv(t,x)+ f(x, v(t, x), (J*Vv)(s,x)), te[0, T],

v(0, x) = h(x),
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Definition for Weak Solutions of PDEs

Banach space L7(R?; R') is the p-weighted L™(R?; R!) space

with the norm ( [q |u(x)\mp_1(x)dx)%, where p(x) = (1 + |x|)9,
qg>d.

We call u a weak solution if (u,0*Vu) € L2P([0, TJ; Lﬁp(Rd;Rl))
®L2([0, T; L3(R?; RY)) and for Vo € C2°(RY;RY),

/]Rd u(t, x)p(x)dx — /Rd u( T, x)p(x)dx
_% /t ' /R (" Vu)(s, X)) (0" Vip) (x) dxds
_/tT/Rd u(s,x)div((b— /z\)go) (x)dxds

_ /t ! /R (5%, u(s, %), (0" Tu)(s, %)) p(x)dcds.
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Corresponding Backward SDEs

= T
Yst’x _ h(X;_,X) _|_/ f‘(r’er,x, Yrt,x7 Zrt’x)df _ / <Zrt»X’ dWr>.
s s

S S
xtx = xt [ bR+ [Ca(xe)aw,, s>t
t

t

Definition

We call ( X ZE8X) a solution of corresponding BSDE if

(Y, 25) € S%([t, T; L2P(RY RY) @ M2((t, T L3 (RY; R))
and (Yst X, Z5X) satisfies the form of corresponding BSDE for a.e.
x, with probability one.
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Solution Space of BSDE

(Y5, Z5) € $2°([t, T]; LiP(RY; RY)) @ MA([t, T]; L2(RY; RY))
means

o (Y&, Z%) is adapted to the filtration generated by W

o Y is continuous w.rt. s in L3°(RY;RY)

o (Y, Z") satisfies

1

(E[ses[utpT] s H L2P(RY; Rl)] 2 E[/ 1Z; ”Lz (RY: Rd)ds])

N|=
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Nonlinear Feynman-Kac formula of weak solutions of PDEs
with polynomial growth coefficients

Function u(t,-) £ Y/} is the unique weak solution of PDE with
polynomial growth coefficient. Moreover,

u(s, X)) = Y5, (6"Vu)(s, X)) = ZL for a.e. s € [t, T] a.s.

g
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Some Existing Correspondence Results in the Sense of
Classical Solutions or Viscosity Solutions of PDEs

@ Peng 1991 (Stochastics)
PDEs/BSDEs with smooth coefficients (classical solutions)

@ Pardoux & Peng 1992
PDEs/BSDEs with Lipschitz coefficients (viscosity solutions)

@ Pardoux & Tang 1999 (PTRF)
PDEs/BSDEs with linear growth coefficients

e Pardoux 1999
PDEs/BSDEs with continuous increasing coefficients

o Kobylanski 2000 (AOP), Briand & Hu 2006 (PTRF)
PDEs/BSDEs with quadratic growth coefficients on z
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Some Existing Correspondence Results in the Sense of
Weak Solutions of PDEs

@ Barles & Lesigne 1997, Bally & Matoussi 2001 (JTP)
PDEs/BSDEs, SPDEs/BDSDEs with Lipschitz coefficients

@ Zhang & Zhao 2010 (JDE)
SPDEs/BDSDEs with linear growth coefficients

e Matoussi & Xu 2008 (EJP)
PDEs with obstacle

They used a different method to get weak convergence for a
fixed x and the choice of subsequence depends on x.
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Conditions

(H.1). For a given p > 1, [oq |h(x)|?Pp~1(x)dx < oo.
(H.2). There exist C > 0 and a function fy with
T Jra 1fo(s, x)[2Pp~ 1 (x)dxds < oo s.t.

£(s,x,y,2)] < C(Ifo(s, x)| + yIP + |z]).

(H.3). There exists 1 € R! s.t. for any s € [0, T], y1,y2 € R?,
x,z €RY,

(v1 — v2) (F(s,x, 31, 2) — £(5,%,¥2.2)) < plyr — yo|*.

(H.4). Function y — f(s, x,y, z) is continuous and
z — f(s,x,y, z) is globally Lipschitz continuous.
(H.5). Coefficients b € C2(R?;R?), 0 € C3(RY;R9 x R9) and
o satisfies the uniform ellipticity condition.
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Simplify Condition (H.3)

For a.e. x € RY, (YJ™, Z:™) solves the studied BSDE if and only
if (Y&X, Z5%) = (e Y™, et ZE) solves the following BSDE:

T T
Ve = o)+ [ Fr X in, 20— [ (20, dw),

where f(r,x,y,z) = e f(r,x,e "y, e " z) — py and f satisfies

(}/1 - yz)(?(S,Xa)/LZ) - ?(57X>)/2,Z)) <0.

We can replace Condition (H.3) by
(H.3)*. Forany s € [0, T], y1,y2 € R}, x,z € RY,

0 — yg)(f(s,x,yl,z) = f(s,x,yg,z)) < 0.
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Generalized Equivalence of Norm Principle

Lemma

Ifse[t, T], ¢ : Q@ RY — R is independent of F}{ and
op~t € 11(Q®@RY;RY), then there exist c,C > 0 s.t.

cE[/ 0)d] < E| / [o(XE) 1 (x) ]
< CE[/ x)lo™ ()]
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Truncated BSDEs

We define for each ne N
fu(s, x,y,z) = f(s,x, I_I,,(y),z),
where M,(y) = '"f(‘"||}’|)y Then f, satisfies
(H.2). Foranys €[0,T], y € R}, x,z € R? and C given in (H.2),
|fals,x, v, 2)| < C(Ifo(s,x)| + [nlP~Hy| + |2])-
(H.3). Forany s € [0, T], y1,y» € R}, x € R¥,
O — yg)(f,,(s,x,yl,z) — f,,(s,x,yg,z)) <0.

(H.4)". Function y — f,(s, x, y, z) is continuous and
z — fo(s,x,y,z) is globally Lipschitz continuous.
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Results on BSDEs with linear growth coefficients

BSDEs with linear growth coefficient f;:
YEON = h(XEY 4 [T for, XEX, YO ZEMY dr — [T(ZEO7, dw,).

The truncated BSDE has a unique solution
(Y&or, Zo*M) e S2([t, TT; LA(RY; RY)) @ M2([t, T]; L2(R; RY)).
un(t, x) £ Y™ is the unique weak solution of truncated PDE:

Oup *
B (t,x) = —ZLup(t, x) — fo(t, x, up(t, x), (6" Vu)(t, x)),

un(T,x) = h(x).

Moreover, for a.e. s € [t, T], x € RY a.s. w € Q,

Un(S,ngx) = Yst7X,n’ (J*vun)(s’XJ,X) — Zst,x,n'
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Identification of the limiting BSDEs

Under Conditions (H.1), (H.2), (H.3)*, (H.4) and (H.5), if
(Y5" Z5") are the solutions of truncated BSDEs, then we have

)
| / i /R Y222 x) ]
t n

!
+ sup E| / / | Y Exn|2P=2) Zz6x012 =1 () dxdls] < o0.
n t R4
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Weak Convergence Limit of BSDEs

Define U™ £ f,(s, X&™, YE*", ZE*™), s > t, then

-
sup E[/ / (]Yst’x’”
n t R4

Therefore by Alaoglu lemma, there exists a subsequence, still
denoted by (Y&™", ZE" UL, s.t.

2 + ‘Zst,x,n|2 + |Ust,x,n

2)p1(x)dxds] < oc.

(YExn zbon ybxn) — (YEX ZEX UL) weakly
in 2(Q®[t, T|; 3(R%RY) @ 5(RY; RY) © L3(RY; RY)).
Taking the weak limit in [2(Q ® [t, T]; L3(R?; R')) to truncated

BSDEs, we know that (Y&, Z&*, US™) satisfies

T T
Ve = by + [ umar = [z aw).
S

S
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Rellich-Kondrachov Compactness Theorem

The following theorem comes from Robinson 2001.

Theorem

Let X CC H C Y be Banach spaces, with X reflexive. Here

X CC H means X is compactly embedded in H. Suppose that u,
is a sequence which is uniformly bounded in L?([0, T]; X), and
du,/dt is uniformly bounded in LP([0, T]; Y), for some p > 1.
Then there is a subsequence which converges strongly in

L2([0, T]; H).

In our case: Note that H}(U;; RY) cC L5(Uj; RY), where
Ui ={x €R9: |x| < i} are closed balls in RY. We take

1 .l _ 2 .l _oyl* .l
X = HY(U;RY), H=L2(U;RY) and Y = HY'(U; RY).
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To Derive a Strongly Convergent Subsequence

Lemma

Let (Y&, ZE™) be the solutions of truncated BSDEs and Y<™
is its weak limit in [>(Q ® [t, T]; L%(Rd; R1)), then there is a
subsequence of Y™, still denoted by Y™", converges strongly
to Yo in L2(Q® [t, T]; L2(RY; RY)).

Moreover,

-
E[/ / | YEX|2P o=t (x)dxds] < oo.
t JRI
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Proof. Let upn(s,x) = Y™, then by Zhang & Zhao 2010,
Un(s, X&) = Y& (0*Vup)(s, X&) = Z&" for ae. s € [t, T],
x € R? as. and u,(s,x), 0 < s < T, satisfies

dup(s,x)/ds = —ZLup(s,x) — fo(s, x, un(s, x), (6*Vup)(s, x)).

We verify u, are uniformly bounded in L2([0, T]; H;(]Rd;]Rl)) as
follows:

sup [lun 22 to, e 1)
T
= sup/ /(|un(s,x)\2+\Vu,,(s,x)|2)p1(X)dxds
n Jo R4
T
< Goswp [ [ (unls. 0+ [(o" Tun)(s. )P)p ()b
n Jo JRd

)
< GosupE[[ [ (YOROP |20 2)p ()] < cx.
n 0 R
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Also du,/ds are uniformly bounded in L2([0, TJ; H;*(Rd;Rl))
since

2
SUp (|2 [ 2 g0, 73+ ety <
n

and
e Hfnﬂfz([o,T];H;*(Rd;Rl)) < .
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Apply Rellich-Kondrachov compactness theorem to U; and pick up
the diagonal subsequence of u,. The diagonal subsequence
converges strongly in all L2([0, T]; L3(U;;RY)), i € IN.

Let up(t,x) be the weak solutions of truncated PDEs, then

Then, u, converges strongly in L%([0, T]; L2(R?; R?)) and Y{™"
converges strongly in L2(Q ® [t, T]; L%(]Rd; R1)) to its weak limit
WV
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If we define u(s,x) £ Y, then by equivalence of norm principle
we further have

Un(s, x) — u(s, x) strongly in L3([0, T]; Li(Rd; RY))

and
YIX = u(s, X2X) for a.e. s € [t, T], x € R? a.s.
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Moreover, we can prove E[ftT Jro | YsX|?Pp~1(x)dxds] < co. For
this, we only need to prove fOT Jgea [u(s, x)|?Pp~1(x)dxds < co.

Since fOT Jga lun(s,x) — u(s, x)[2p~(x)dxds — 0, we can derive a
subsequence u,(s, x) s.t. for a.e. s € [t, T], x € R,
un(s,x) — u(s, x) and sup,, |un(s, x)| < oo.

(Borrowing ideas from Lepeltier & San Martin 1997)

Therefore, by Holder inequality, for any § > 0,

I|m sup/ / |un(s, x) _5I{|un(s’x)|zp75>,\,}(s,x)p_l(x)dxds:O.

N—o0 n
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Noticing (s, x) — u(s, x) for a.e. s € [0, T], x € RY, we have

'
| [ ettt o
= Iim/ / x)|?P° p~1(x) dxds

sup/ / |un(s, x)[2P~2 p~1(x)dxds
n Jo Jrd
T Bt
< Cp(SUP/ / lun(s, x)|?Pp~t(x )dxds) % < Cp,
n Jo Jrd

where the last C, < oo is a constant independent of n and §. Then
using Fatou lemma to take the limit as § — 0 in above inequality,
we can get fOT Jge lu(s, x)|?Pp~t(x)dxds < oo.

IN
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By Itd's formula and the strong convergence of the subsequence
Y5 " — Y5 we can deduce

Corollary

ZH" — 78 strongly in L2(Q @ [t, T]; Li(Rd? RY)) also.

| \

Corollary

Y5 — Y5 strongly in S?([t, T; [2(R?;R')) and
Y5 € $2°([t, T]; LiP(RY; RY)).
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Identification of the Limiting BSDEs

The random field U, Y and Z have the following relation:

USX = f(s, XEX, YEX, ZE%) for ae. se[t, T], x e RY as.

Proof. Similarly as before, we can find a subsequence
(YEXN, ZEXMY satisfying (V&7 ZE9M) s (YEX, ZE) and
sup, | Y| 4 sup, | Z57"| < oo for ae. s € [t, T], x e RY ass.

Let K be asetin Q®[t, T|®@RY s.t.

sup | Y2 4 sup | Z5"| + | fo(s, XE¥)| < K.
n n

Thenas K T oo, KT Q®[t, T|@RY.
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Thus, by Lebesgue's dominated convergence theorem,

=
L E[/ / |fa(s, X5, Yo", Z50") I (s, x)
n—oo " Rd
—f(S, Xst,Xv Yst’x’ Zst’X)/]C(S; X)‘zpil(X)dXdS]
=
< 26[[ [ lim [ Xt vine, ZE)
t Rd N—00
if( X;’X’ Yst,X,n’ ZSt’X’n)|2IlC(S7X)p_l(X)dXdS]
s2el [ [ (s v, 2o
d N—0o0
—f(s, XEX, YEX, ZEX) Pl (s, x)p ™ (x) dxds].
Obviously, due to the continuity of (y,z) — f(s, x,y, z),

[ |f(s,Xst’X, Yst,x,n, Zst,x,n) _ f(57XSt,x’ Y5t7X7 Z;,X),z =0

n—00

fora.e. s€[t, T], x € R ass.
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Since Yo" — Y&* fora.e. s € [t, T], x € R? as., there exists a
N(s,x,w) s.t. when n > N(s,x,w), |Y&™" < |Ye™| + 1. So
taking n > max{N(s, x,w), |Ys™| + 1}, we have

t,x t,x,n t,x,n\ _ t,x t,x,n t,x,n
fo(s, Xg7™, Yoo ZoM) = f(s, XX, Y7o, Z570M),

thus lim,_oo |fu(s, X&X, Y&, ZE50M) — f(s, XX, YE*", ZE9M)|2 =0
for a.e. s € [t, T], x € R? a.s. Therefore

U  Iic(s, x) — (s, XEX, YEX, ZEX) Ik (s, x) strongly
in L2(Q® [t, T]; L3(R%; R')). On the other hand,
UL (s, x) — UL I (s, x) weakly
in 2(Q® [t, T]; 3(RY;RY)). So

f(s, XEX, YEX, ZEV I (s, x) = U*Ixc(s, x) for a.e. r € [t, T], x € RY a.s.

Qi ZHANG Fudan University Weak Solutions of PDEs with Polynomial Growth Coefficients



Corresponding PDEs with Polynomial Growth Coefficients

Outline

© Corresponding PDEs with Polynomial Growth Coefficients

Qi ZHANG Fudan University Weak Solutions of PDEs with Polynomial Growth Coefficients



Corresponding PDEs with Polynomial Growth Coefficients

Existence and Uniqueness Theorem of PDE

Theorem

Define u(t,x) £ Y, then u(t,x) is the unique weak solution to

%(t,x) = —Zu(t,x) — f(t,x,u(t,x), (0" Vu)(s,x)),
u(T,x) = h(x).
Moreover,

u(s, Xg7™) = Yo, (0" Vu)(s, X37™) = 2.~

forae. s€[t, T], x €RY as.
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Existence

Let u"(s, x) be the weak solutions of truncated PDEs. Then
(un, 0*Vuy,) € L2([0, T]; Lg(Rd;Rl)) ® L2([0, T]; L%(]Rd;Rd)) and
for Vip € C°(RY; RY),

/ u,,(t,x)gp(x)dx—/ un( T, x)p(x)dx
Rd Rd
T
—;/t /]Rd ((6*Vun)(s,x)) (6" V)(x)dxds
T
/t /Rd un(s, x)div((b— A)QO) (x)dxds
T
— / / fo (s, x, un(s, x), (¥ Vup)(s, x))¢(x)dxds.
t JRI

We can prove along a subsequence that each term of the above
formula converges to the corresponding term of test function form
of studied PDE.
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Uniqueness

The uniqueness of PDE comes from the uniqueness of BSDE. Let u
be a solution. Define F(s,x) £ f(s, x, u(s, x), (6*Vu)(s, x)), then

-
/ / |F(s,x)|?p~1(x)dxds < co.
0 JRd
If we define Y& 2 u(s, X2) and Z&* £ (6*Vu)(s, X&), then by
Bally & Matoussi 2001, ( Y+, Z&™) is a solution of the following
linear BSDE:
T T
YE¥ = h(X3) +/ F(r,X}*)dr — / (ZPX, dW,).

Noting the definition of F(s,x), (Y&, Z&) is a solution of
corresponding nonlinear BSDE.

Qi ZHANG Fudan University Weak Solutions of PDEs with Polynomial Growth Coefficients



Thank You !!

Tunisia Pavilion at EXPO 2010 Shanghai
(picture from www.expo2010.cn)

Qi ZHANG Fudan University Weak Solutions of PDEs with Polynomial Growth Coefficients



	Introduction
	PDEs with polynomial growth coefficients
	Corresponding Backward SDEs
	Some Existing Results

	BSDEs with Polynomial Growth Coefficients
	Weak Convergence
	Strong Convergence
	Identification of the limiting BSDEs

	Corresponding PDEs with Polynomial Growth Coefficients
	Thank You

