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Peng's G-Expectation

@ Intuition: Volatility is uncertain, but prescribed to lie in a fixed
interval D = [a, b].

o £C(X) is the worst-case expectation of a random variable X over all
these scenarios for the volatility.
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Peng's G-Expectation

@ Intuition: Volatility is uncertain, but prescribed to lie in a fixed
interval D = [a, b].
o £C(X) is the worst-case expectation of a random variable X over all

these scenarios for the volatility.

Q: canonical space of continuous paths on [0, T].

B: canonical process.
PC = martingale laws under which d(B);/dt € D, then

EE(X) = sup EP[X], X e [°(F%) regular enough.
Pep¢C

£§ is a sublinear functional.
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Conditional G-Expectation

Extension to a conditional G-expectation £ for t > 0.

Nontrivial as measures in P¢ are singular.

Peng’s approach: for X = f(Bt) with f Lipschitz, define
EL(X) = u(t, By) where

—ur — G(u) =0, u(T,x)=1F; G(x):= E Sup xy.
2yED

Extend to X = f(By,, ..., B,) and pass to completion.
Time-consistency property: £8 0 EF = £S for s < t.

Marcel Nutz (ETH) Random G-Expectations 4 /17



Short (and Incomplete) History

@ Uncertain volatility model: Avellaneda, Levy, Paras (95),

T. Lyons (95).

BSDEs and g-expectations: Pardoux, Peng (90), ...

Capacity-based analysis of volatility uncertainty: Denis, Martini (06).
G-expectation and related calculus were introduced by Peng (07).
Dual description via P is due to Denis, M. Hu, Peng (10).

Constraint on law of By Galichon, Henry-Labordére, Touzi (17).

@ Relations to 2BSDEs Cheridito, Soner, Touzi, Victoir (07),
Soner, Touzi, J. Zhang (10).

e Bion-Nadal, Kervarec (10).
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Random G-Expectation

@ Allow for updates of the volatility bounds.

@ Take into account historical volatility: path-dependence.
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Random G-Expectation

@ Allow for updates of the volatility bounds.

@ Take into account historical volatility: path-dependence.

@ Replace D = [a, b] by a stochastic interval D¢(w) = [a¢(w), be(w)].
(In general: a progressive set-valued process.)

@ This corresponds to a random function G (possibly infinite).

o At t = 0 define &(X) = suppep EF[X] for corresponding set P.
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Our Approach

o At t > 0: want &(X) “=" suppp EF'[X|FS].
@ We shall construct &(X) such that

E(X) = esssup”EX (X|F?]  P-as. forall P e P,
P'eP(t,P)

where P(t,P):={P € P: P'= P on F;}.

Marcel Nutz (ETH) Random G-Expectations 7/ 17



Our Approach
o At t > 0: want &(X) “=" suppp EF'[X|FS].
o We shall construct &(X) such that

E(X) = esssup”EX (X|F?]  P-as. forall P e P,
P'eP(t,P)

where P(t,P):={P' € P: P'=P on F?}.

Non-Markov problem: PDE approach not suitable.
o Pathwise definition: condition D, P, X on w up to t:

E(X)(w):= sup EP[X'™], weq
PeP(t,w)

Benefits: Control arguments, D need not be bounded.

Time consistency corresponds to dynamic programming principle.
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Our Approach
o At t > 0: want &(X) “=" suppp EF'[X|FS].
o We shall construct &(X) such that

E(X) = esssup”EX (X|F?]  P-as. forall P e P,
P'eP(t,P)

where P(t,P):={P' € P: P'=P on F?}.

Non-Markov problem: PDE approach not suitable.
o Pathwise definition: condition D, P, X on w up to t:
E(X)(w):= sup EP[X'™], weq
PeP(t,w)
Benefits: Control arguments, D need not be bounded.
Time consistency corresponds to dynamic programming principle.
Approach follows Soner, Touzi, Zhang (10).

Here P(t,w) is path-dependent. Regularity of w +— P(t,w) is needed.
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Strong Formulation of Volatility Uncertainty

@ Py Wiener measure, F° raw filtration of B.
o Ps={P*:=Pyo ([a?dB)™!, a >0, foTadt < 00}

o Define (B) and 3 = d(B)/dt simultaneously under all P € Ps.
(E.g. by Follmer's (81) pathwise calculus.)
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Strong Formulation of Volatility Uncertainty

@ Py Wiener measure, F° raw filtration of B.
o Ps={P*:=Pyo ([a?dB)™!, a >0, foTadt < 00}

o Define (B) and 3 = d(B)/dt simultaneously under all P € Ps.
(E.g. by Follmer's (81) pathwise calculus.)

o P:={PcPs:acInt’Ddsx P-a.e. for some § > 0},
where Int’ D := [a + 6, b — 8] for § > 0.
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Conditioning and Regularity

@ To condition X to w up to t, set X5¥(-) := X(w @ +),
where ®; is the concatenation at t.

@ X% is an r.v. on the space Qf of paths starting at time t.
o On Qf we have Bt, Pt, at, Pg, ... as for t = 0.

o P(t,w):={Pe Ps: 5" € Int’ D' dsx P-a.e. on [t, T|xQF, 6 > 0}.
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Conditioning and Regularity

@ To condition X to w up to t, set X5¥(-) := X(w @ +),
where ®; is the concatenation at t.

@ X% is an r.v. on the space Qf of paths starting at time t.

e On Qf we have B, P§, 3, fts, ... asfort =0.

o P(t,w):={Pe Ps: 5" € Int’ D' dsx P-a.e. on [t, T|xQF, 6 > 0}.
@ Define &(X) as the value function

EX)(w):= sup EP[X™], weq.
PeP(t,w)

@ Regularity: X € UC,(€2) and D uniformly continuous:
for all 6 > 0 and (t,w) € [0, T] x Q there exists ¢ = ¢(t,w, ) > 0 s.t.

jw—u]f <e = Int®DE¥(@)C Int" DI (@) Y (s,@) € [t, T] x Q.
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Consequences of Uniform Continuity

o w i &(X)(w) is FP-measurable and LSC for X € UC(Q).

Marcel Nutz (ETH) Random G-Expectations



Consequences of Uniform Continuity

o w i &(X)(w) is FP-measurable and LSC for X € UC(Q).

Theorem (DPP, time consistency)
Let X €e UCKH(RQ) and 0 < s <t < T. Then

o &(X)(w)= sup EP [E(X)*] forallw e Q,
PeP(s,w)

o &(X) = esssup”EF [E(X)|FS] P-as. forall PP,
P'cP(s,P)

where P(s,P) :={P' € P: P' =P on F¢}.

On the proof:

@ Main problem due to stochastic D: admissibility of pastings.
@ Regularity of £(X) turns out not to be a problem.
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Extension to Completion of UCy(£2)

o L} = space of r.v. X such that HXHL%) = suppep || X[ 11(p) < 0.

o L} = closure of UC, C L} (can be described explicitly).
e DPP implies that & is 1-Lipschitz wrt. || - HL%D, hence extends to

& LL = LL(FY).
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Extension to Completion of UCy(£2)

o L} = space of r.v. X such that ||XHL%) = suppep || X[ 11(p) < 0.

o L} = closure of UC, C L} (can be described explicitly).
e DPP implies that &; is 1-Lipschitz wrt. || - HL%), hence extends to

& LL = LL(FY).

@ Theorem. For X € ]L%) the DPP holds:

Es(X) = esssup” E” [&(X)‘]-"so] P-a.s. forall P e P.
P'eP(s,P)

In particular, £(X) is characterized by

Es(X) = esssupPEP [X|FS] P-as. forall P P.
P'EP(s,P)
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© Axiomatic Framework and Superhedging (joint work with Mete Soner)
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Axiomatic Setup
For the random G-expectations, we had:
@ aset P C Ps with a time consistency is a property,

e an aggregated r.v. for esssup” E”’ (X|F], PP,
PIP(s,P)

o for X in a subspace L}, C L},
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Axiomatic Setup
For the random G-expectations, we had:
@ aset P C Ps with a time consistency is a property,

e an aggregated r.v. for esssup” E”’ (X|Fs], PeP,
PIP(s,P)

o for X in a subspace L}, C L},

Axiomatic approach:

@ start with some set P C Ps.

@ P is assumed to be stable under F°-pasting (&~ time consistency):
for all P € P and P, P, € P(F?,P) and A € F¢,

P(-) := EP[P1(-|F)1In + Pa( - |[F7)1Ac] € P.

o aggregated rv. £2(X) = esssup” EX (X|F¢] P-as., PEP
P'eP(F2,P)

o for all X in some subspace H C L},.
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Getting Path Regularity
o " = {ﬁt}OStST, where F; = Fiy VNP and NP = P-polar sets.

Take right limits of {£2(X), t € [0, T]}:

Theorem

For X € H, there exists a unique cadlag "-adapted process Y,
o Y, =& (X) P-q.s. forall t.
o Y is the minimal (I, P)-supermartingale with Y1 = X.

o Y. = esssup” EF'[X|F] P-a.s. for all P € P.
P'€P(F+,P)

e Y is a P-modification of {£7(X), t € [0, T|} in regular cases
but there are counterexamples.

e The process £(X) := Y is called the (cadlag) £-martingale associated
with X € H.
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Stopping Times and Optional Sampling

o Typically, the construction of £° is not compatible with stopping times
(e.g. G-expectation).

@ But we can easily define £ at a stopping time.

Theorem

Let 0 < o <7 < T be I"-stopping times and X € H. Then

E,(X) = esssup’EP'[X|F,] P-as. forall P e P;

P'eP(F5,P)
E,(X) = esssup’ EP'[E.(X)|F,] P-as. forall P eP.
P'eP(F,,P)
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Decomposition of £-Martingales

Theorem
Let X € H. There exist

o an IF-progressive process ZX

o a family (KP)pep of F' -pred. increasing processes, EP[IKE|] < o,
such that

(P)pt
E:(X) = &(X) + / ZX dBs — KP,  P-as. forall P € P.
0
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Decomposition of £-Martingales

Theorem
Let X € H. There exist

@ an I@‘—progressive process ZX

e a family (KP)pep of T -pred. increasing processes, EP[IKE|] < o,
such that

(P)pt
E(X) = &(X) + / ZXdBs — KP, P-as. forall P cP.
0

e ZX does not depend on P, but the integral may do.

o Cf. optional decomposition: El Karoui, Quenez (95), Kramkov (96).

e Construction as in the theory of 2BSDEs: Soner, Touzi, Zhang (10)

e Here we only need Doob-Meyer decomposition + martingale represent.
+ pathwise integration (Bichteler 81).

e More precise results for G-expectation: Peng (07), Xu, B. Zhang (09),
Soner, Touzi, Zhang (10), Song (10), Y. Hu, Peng (10).
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Superhedging

Interpretation for decomposition

P)T
X =E7(X) = &(X) + / ZX dBs — KE -
0

&o(X) = Fo-superhedging price,
ZX = superhedging strategy,

KE = overshoot for the scenario P
Minimality of the overshoot:

essinf "EFP' [KE' — KF'
P'eP(Fe,P)

Fi] =0 P-as. forall PeP.

replicable claims correspond to KP =0 for all P € P.
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2BSDE for £(X)
(Y, Z) is a solution of the 2BSDE if there exists a family (K”)pcp of
F"-adapted increasing processes satisfying EP[|KE|] < oo such that
(Pt
Y, =X — / ZsdBs+ K —KP, 0<t<T, PasforallPep
t
and such that

essiprEP/ [K?l = Ktpl‘]:"t] =0 P-as.forall PeP.
P'eP(F1,P)

Theorem (X € H)

o (£(X),ZX) is the minimal solution of the 2BSDE.
e If(Y,Z) is a solution of the 2BSDE such that Y is of class (D,P),
then (Y, Z) = (£(X), Z%).

In particular, if X € HP for some p € (1,00), then (£(X), ZX) is the
unique solution of the 2BSDE in the class (D,P).
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Pasting and Time Consistency

e P is maximally chosen for H if P contains all P € Ps such that
EP[X] < supprep EF'[X] for all X € H.
e P is time-consistent on H if

! !/ 17
esssup” EF'| esssup” EFPU[X|FP]
Pep(FzP)  LPrep(F P

f;’] = esssup” EP[X|FY]
P'eP(F2,P)

P-as. forall Pe P,0<s<t<Tand X € H.
Theorem

@ stability under pasting = time consistency.

e If P is maximally chosen: time consistency = stability under pasting

e Similar results by Delbaen (06) for classical risk measures.
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Time Consistency of Mappings

o Consider a family (&;)o<¢<7 of mappings & : H — Lk (Fy).
o He:=HNLH(FY).

Definition
(Et)o<t<T is called time-consistent if

Es(X) < (=) &(p) forall ¢ € Hy such that Ei(X) < (>) ¢
and (H¢-) positively homogeneous if

E(Xp) = &(X)p for all bounded nonnegative ¢ € H;

forall 0 <s<t<Tand X € H.
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1
More on Ly

e By arguments of Denis, Hu, Peng (10):

IL%;:{XEL%;

X is P-quasi uniformly continuous, }
limp [ X14x)>n3 112, =0

o If D is uniformly bounded, we retrieve the space of Denis, Hu, Peng:

» L is also the closure of Cp C L},
» ‘quasi uniformly continuous’ = ‘quasi continuous'.

o If D is uniformly bounded, & maps L1, into LL(Fy).
Hence time consistency can be expressed as £ 0 & = &s.
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