Random G-Expectations

Marcel Nutz

ETH Zurich

New advances in Backward SDEs for financial engineering applications Tamerza, Tunisia, 28.10.2010

Outline

2 Axiomatic Framework and Superhedging (*joint work with Mete Soner*)

Peng's G-Expectation

- Intuition: Volatility is uncertain, but prescribed to lie in a fixed interval D = [a, b].
- $\mathcal{E}^{G}(X)$ is the worst-case expectation of a random variable X over all these scenarios for the volatility.
- Ω : canonical space of continuous paths on [0, T].
- B: canonical process.
- \mathcal{P}^{G} = martingale laws under which $d\langle B
 angle_{t}/dt \in D$, then

 $\mathcal{E}_0^G(X) = \sup_{P \in \mathcal{P}^G} E^P[X], \quad X \in L^0(\mathcal{F}_T^\circ) \text{ regular enough}.$

• \mathcal{E}_0^G is a sublinear functional.

Peng's G-Expectation

- Intuition: Volatility is uncertain, but prescribed to lie in a fixed interval D = [a, b].
- $\mathcal{E}^{G}(X)$ is the worst-case expectation of a random variable X over all these scenarios for the volatility.
- Ω : canonical space of continuous paths on [0, T].
- B: canonical process.
- \mathcal{P}^{G} = martingale laws under which $d\langle B
 angle_t/dt \in D$, then

$$\mathcal{E}^{\mathcal{G}}_0(X) = \sup_{P \in \mathcal{P}^{\mathcal{G}}} E^P[X], \quad X \in L^0(\mathcal{F}^\circ_T) ext{ regular enough}.$$

• \mathcal{E}_0^G is a sublinear functional.

Conditional G-Expectation

- Extension to a conditional G-expectation \mathcal{E}_t^G for t > 0.
- Nontrivial as measures in $\mathcal{P}^{\mathcal{G}}$ are singular.
- Peng's approach: for $X = f(B_T)$ with f Lipschitz, define $\mathcal{E}_t^G(X) = u(t, B_t)$ where

$$-u_t - G(u_{xx}) = 0, \quad u(T, x) = f; \quad G(x) := \frac{1}{2} \sup_{y \in D} xy.$$

- Extend to $X = f(B_{t_1}, \ldots, B_{t_n})$ and pass to completion.
- Time-consistency property: $\mathcal{E}_s^G \circ \mathcal{E}_t^G = \mathcal{E}_s^G$ for $s \leq t$.

Short (and Incomplete) History

- Uncertain volatility model: Avellaneda, Levy, Parás (95), T. Lyons (95).
- BSDEs and g-expectations: Pardoux, Peng (90), ...
- Capacity-based analysis of volatility uncertainty: Denis, Martini (06).
- G-expectation and related calculus were introduced by Peng (07).
- Dual description via \mathcal{P}^{G} is due to Denis, M. Hu, Peng (10).
- Constraint on law of B_T Galichon, Henry-Labordère, Touzi (1?).
- Relations to 2BSDEs Cheridito, Soner, Touzi, Victoir (07), Soner, Touzi, J. Zhang (10).
- Bion-Nadal, Kervarec (10).

Random G-Expectation

- Allow for updates of the volatility bounds.
- Take into account historical volatility: path-dependence.
- Replace D = [a, b] by a stochastic interval $D_t(\omega) = [a_t(\omega), b_t(\omega)]$. (In general: a progressive set-valued process.)
- This corresponds to a random function G (possibly infinite).
- At t = 0 define $\mathcal{E}_0(X) = \sup_{P \in \mathcal{P}} E^P[X]$ for corresponding set \mathcal{P} .

- Allow for updates of the volatility bounds.
- Take into account historical volatility: path-dependence.
- Replace D = [a, b] by a stochastic interval $D_t(\omega) = [a_t(\omega), b_t(\omega)]$. (In general: a progressive set-valued process.)
- This corresponds to a random function G (possibly infinite).
- At t = 0 define $\mathcal{E}_0(X) = \sup_{P \in \mathcal{P}} E^P[X]$ for corresponding set \mathcal{P} .

Our Approach

• At t > 0: want $\mathcal{E}_t(X)$ "=" $\sup_{P' \in \mathcal{P}} E^{P'}[X|\mathcal{F}_t^\circ]$.

• We shall construct $\mathcal{E}_t(X)$ such that

 $\mathcal{E}_t(X) = \underset{P' \in \mathcal{P}(t,P)}{\operatorname{ess \, sup}} E^{P'}[X \big| \mathcal{F}_t^\circ] \quad P\text{-a.s. for all } P \in \mathcal{P},$

where $\mathcal{P}(t, P) := \{P' \in \mathcal{P} : P' = P \text{ on } \mathcal{F}_t^\circ\}.$

- Non-Markov problem: PDE approach not suitable.
- Pathwise definition: condition $\mathbf{D}, \mathcal{P}, X$ on ω up to t:

$$\mathcal{E}_t(X)(\omega) := \sup_{P \in \mathcal{P}(t,\omega)} E^P[X^{t,\omega}], \quad \omega \in \Omega.$$

- Benefits: Control arguments, **D** need not be bounded.
- Time consistency corresponds to dynamic programming principle.
- Approach follows Soner, Touzi, Zhang (10).
- Here $\mathcal{P}(t,\omega)$ is path-dependent. Regularity of $\omega \mapsto \mathcal{P}(t,\omega)$ is needed.

Our Approach

• At t > 0: want $\mathcal{E}_t(X)$ "=" $\sup_{P' \in \mathcal{P}} E^{P'}[X|\mathcal{F}_t^\circ]$.

• We shall construct $\mathcal{E}_t(X)$ such that

 $\mathcal{E}_t(X) = \underset{P' \in \mathcal{P}(t,P)}{\operatorname{ess \, sup}} E^{P'} [X \big| \mathcal{F}_t^\circ] \quad P\text{-a.s. for all } P \in \mathcal{P},$

where $\mathcal{P}(t, P) := \{ P' \in \mathcal{P} : P' = P \text{ on } \mathcal{F}_t^\circ \}.$

- Non-Markov problem: PDE approach not suitable.
- Pathwise definition: condition $\mathbf{D}, \mathcal{P}, X$ on ω up to t:

$$\mathcal{E}_t(X)(\omega) := \sup_{P \in \mathcal{P}(t,\omega)} E^P[X^{t,\omega}], \quad \omega \in \Omega.$$

- Benefits: Control arguments, **D** need not be bounded.
- Time consistency corresponds to dynamic programming principle.
- Approach follows Soner, Touzi, Zhang (10).
- Here $\mathcal{P}(t,\omega)$ is path-dependent. Regularity of $\omega \mapsto \mathcal{P}(t,\omega)$ is needed.

Our Approach

• At t > 0: want $\mathcal{E}_t(X)$ "=" $\sup_{P' \in \mathcal{P}} E^{P'}[X|\mathcal{F}_t^\circ]$.

• We shall construct $\mathcal{E}_t(X)$ such that

 $\mathcal{E}_t(X) = \underset{P' \in \mathcal{P}(t,P)}{\operatorname{ess \, sup}} E^{P'}[X \big| \mathcal{F}_t^{\circ}] \quad P\text{-a.s. for all } P \in \mathcal{P},$

where $\mathcal{P}(t, P) := \{ P' \in \mathcal{P} : P' = P \text{ on } \mathcal{F}_t^\circ \}.$

- Non-Markov problem: PDE approach not suitable.
- Pathwise definition: condition $\mathbf{D}, \mathcal{P}, X$ on ω up to t:

$$\mathcal{E}_t(X)(\omega) := \sup_{P \in \mathcal{P}(t,\omega)} E^P[X^{t,\omega}], \quad \omega \in \Omega.$$

- Benefits: Control arguments, **D** need not be bounded.
- Time consistency corresponds to dynamic programming principle.
- Approach follows Soner, Touzi, Zhang (10).
- Here $\mathcal{P}(t,\omega)$ is path-dependent. Regularity of $\omega \mapsto \mathcal{P}(t,\omega)$ is needed.

Strong Formulation of Volatility Uncertainty

- P_0 Wiener measure, \mathbb{F}° raw filtration of B.
- $\overline{\mathcal{P}}_{S} = \left\{ P^{\alpha} := P_{0} \circ \left(\int \alpha^{1/2} dB \right)^{-1}, \ \alpha > 0, \ \int_{0}^{T} \alpha \, dt < \infty \right\}.$
- Define ⟨B⟩ and â = d⟨B⟩/dt simultaneously under all P ∈ P̄_S. (E.g. by Föllmer's (81) pathwise calculus.)
- $\mathcal{P} := \{ P \in \overline{\mathcal{P}}_{S} : \hat{a} \in \operatorname{Int}^{\delta} \mathbf{D} \ ds \times P \text{-a.e. for some } \delta > 0 \},$ where $\operatorname{Int}^{\delta} \mathbf{D} := [a + \delta, b - \delta] \text{ for } \delta > 0.$

Strong Formulation of Volatility Uncertainty

- P_0 Wiener measure, \mathbb{F}° raw filtration of B.
- $\overline{\mathcal{P}}_{S} = \left\{ P^{\alpha} := P_{0} \circ \left(\int \alpha^{1/2} dB \right)^{-1}, \ \alpha > 0, \ \int_{0}^{T} \alpha \, dt < \infty \right\}.$
- Define ⟨B⟩ and â = d⟨B⟩/dt simultaneously under all P ∈ P̄_S. (E.g. by Föllmer's (81) pathwise calculus.)
- $\mathcal{P} := \{ P \in \overline{\mathcal{P}}_{S} : \hat{a} \in \operatorname{Int}^{\delta} \mathbf{D} \ ds \times P \text{-a.e. for some } \delta > 0 \},$ where $\operatorname{Int}^{\delta} \mathbf{D} := [a + \delta, b - \delta] \text{ for } \delta > 0.$

Conditioning and Regularity

- To condition X to ω up to t, set $X^{t,\omega}(\cdot) := X(\omega \otimes_t \cdot)$, where \otimes_t is the concatenation at t.
- $X^{t,\omega}$ is an r.v. on the space Ω^t of paths starting at time t.
- On Ω^t we have B^t , P_0^t , \hat{a}^t , $\overline{\mathcal{P}}_S^t$, ... as for t = 0.

•
$$\mathcal{P}(t,\omega) := \left\{ P \in \overline{\mathcal{P}}_{\mathcal{S}}^{t} : \ \hat{a}^{t} \in \operatorname{Int}^{\delta} \mathbf{D}^{t,\omega} \ ds \times P$$
-a.e. on $[t,T] \times \Omega^{t}, \delta > 0 \right\}.$

• Define $\mathcal{E}_t(X)$ as the value function

$$\mathcal{E}_t(X)(\omega) := \sup_{P \in \mathcal{P}(t,\omega)} E^P[X^{t,\omega}], \quad \omega \in \Omega.$$

• Regularity: $X \in UC_b(\Omega)$ and D uniformly continuous: for all $\delta > 0$ and $(t, \omega) \in [0, T] \times \Omega$ there exists $\varepsilon = \varepsilon(t, \omega, \delta) > 0$ s.t. $|\omega - \omega'||_t \le \varepsilon \implies \operatorname{Int}^{\delta} \mathsf{D}_s^{t, \omega}(\tilde{\omega}) \subseteq \operatorname{Int}^{\varepsilon} \mathsf{D}_s^{t, \omega'}(\tilde{\omega}) \quad \forall (s, \tilde{\omega}) \in [t, T] \times \Omega^t.$

Conditioning and Regularity

- To condition X to ω up to t, set $X^{t,\omega}(\cdot) := X(\omega \otimes_t \cdot)$, where \otimes_t is the concatenation at t.
- $X^{t,\omega}$ is an r.v. on the space Ω^t of paths starting at time t.
- On Ω^t we have B^t , P_0^t , \hat{a}^t , $\overline{\mathcal{P}}_S^t$, ... as for t = 0.
- $\mathcal{P}(t,\omega) := \left\{ P \in \overline{\mathcal{P}}_{\mathcal{S}}^t : \ \hat{a}^t \in \operatorname{Int}^{\delta} \mathbf{D}^{t,\omega} \ ds \times P \text{-a.e. on } [t,T] \times \Omega^t, \delta > 0 \right\}.$
- Define $\mathcal{E}_t(X)$ as the value function

$$\mathcal{E}_t(X)(\omega) := \sup_{P \in \mathcal{P}(t,\omega)} E^P[X^{t,\omega}], \quad \omega \in \Omega.$$

• Regularity: $X \in UC_b(\Omega)$ and D uniformly continuous: for all $\delta > 0$ and $(t, \omega) \in [0, T] \times \Omega$ there exists $\varepsilon = \varepsilon(t, \omega, \delta) > 0$ s.t. $\|\omega - \omega'\|_t \le \varepsilon \implies \operatorname{Int}^{\delta} \mathsf{D}^{t, \omega}_s(\widetilde{\omega}) \subseteq \operatorname{Int}^{\varepsilon} \mathsf{D}^{t, \omega'}_s(\widetilde{\omega}) \quad \forall (s, \widetilde{\omega}) \in [t, T] \times \Omega^t.$

Consequences of Uniform Continuity

• $\omega \mapsto \mathcal{E}_t(X)(\omega)$ is \mathcal{F}_t° -measurable and LSC for $X \in UC_b(\Omega)$.

Theorem (DPP, time consistency) Let $X \in UC_b(\Omega)$ and $0 \le s \le t \le T$. Then • $\mathcal{E}_s(X)(\omega) = \sup_{P \in \mathcal{P}(s,\omega)} E^P[\mathcal{E}_t(X)^{s,\omega}]$ for all $\omega \in \Omega$, • $\mathcal{E}_s(X) = \operatorname{ess\,sup}_{P' \in \mathcal{P}(s,P)} E^{P'}[\mathcal{E}_t(X)|\mathcal{F}_s^\circ]$ P-a.s. for all $P \in \mathcal{P}$, where $\mathcal{P}(s, P) := \{P' \in \mathcal{P} : P' = P \text{ on } \mathcal{F}_s^\circ\}$.

On the proof:

- Main problem due to stochastic D: admissibility of pastings.
- Regularity of $\mathcal{E}_t(X)$ turns out not to be a problem.

Consequences of Uniform Continuity

• $\omega \mapsto \mathcal{E}_t(X)(\omega)$ is \mathcal{F}_t° -measurable and LSC for $X \in UC_b(\Omega)$.

Theorem (DPP, time consistency) Let $X \in UC_b(\Omega)$ and $0 \le s \le t \le T$. Then • $\mathcal{E}_s(X)(\omega) = \sup_{P \in \mathcal{P}(s,\omega)} E^P[\mathcal{E}_t(X)^{s,\omega}]$ for all $\omega \in \Omega$, • $\mathcal{E}_s(X) = \operatorname{ess\,sup}_{P' \in \mathcal{P}(s,P)} E^{P'}[\mathcal{E}_t(X) | \mathcal{F}_s^\circ]$ P-a.s. for all $P \in \mathcal{P}$, where $\mathcal{P}(s, P) := \{P' \in \mathcal{P} : P' = P \text{ on } \mathcal{F}_s^\circ\}$.

On the proof:

- Main problem due to stochastic **D**: admissibility of pastings.
- Regularity of $\mathcal{E}_t(X)$ turns out not to be a problem.

Extension to Completion of $UC_b(\Omega)$

- $L^1_{\mathcal{P}} = \text{space of r.v. } X \text{ such that } \|X\|_{L^1_{\mathcal{P}}} := \sup_{P \in \mathcal{P}} \|X\|_{L^1(P)} < \infty.$
- $\mathbb{L}^{1}_{\mathcal{P}}$ = closure of UC_b $\subset L^{1}_{\mathcal{P}}$ (can be described explicitly).
- DPP implies that \mathcal{E}_t is 1-Lipschitz wrt. $\|\cdot\|_{L^1_{\mathcal{D}}}$, hence extends to

 $\mathcal{E}_t: \mathbb{L}^1_{\mathcal{P}} \to L^1_{\mathcal{P}}(\mathcal{F}_t^\circ).$

• **Theorem.** For $X \in \mathbb{L}^1_{\mathcal{P}}$ the DPP holds:

$$\mathcal{E}_{s}(X) = \operatorname{ess\,sup}_{P' \in \mathcal{P}(s,P)}^{P} E^{P'} \left[\mathcal{E}_{t}(X) \big| \mathcal{F}_{s}^{\circ} \right] \quad P\text{-a.s. for all } P \in \mathcal{P}.$$

In particular, $\mathcal{E}_s(X)$ is characterized by

$$\mathcal{E}_{s}(X) = \operatorname{ess\,sup}_{P' \in \mathcal{P}(s,P)}^{P} E^{P'} [X \big| \mathcal{F}_{s}^{\circ}] \quad P\text{-a.s. for all } P \in \mathcal{P}.$$

Extension to Completion of $UC_b(\Omega)$

- $L^1_{\mathcal{P}} = \text{space of r.v. } X \text{ such that } \|X\|_{L^1_{\mathcal{P}}} := \sup_{P \in \mathcal{P}} \|X\|_{L^1(P)} < \infty.$
- $\mathbb{L}^{1}_{\mathcal{P}}$ = closure of UC_b $\subset L^{1}_{\mathcal{P}}$ (can be described explicitly).
- DPP implies that \mathcal{E}_t is 1-Lipschitz wrt. $\|\cdot\|_{L^1_{\mathcal{D}}}$, hence extends to

$$\mathcal{E}_t: \mathbb{L}^1_\mathcal{P} \to L^1_\mathcal{P}(\mathcal{F}_t^\circ).$$

• **Theorem.** For $X \in \mathbb{L}^1_{\mathcal{P}}$ the DPP holds:

$$\mathcal{E}_{s}(X) = \operatorname{ess\,sup}_{P' \in \mathcal{P}(s,P)}^{P} E^{P'} \big[\mathcal{E}_{t}(X) \big| \mathcal{F}_{s}^{\circ} \big] \quad P\text{-a.s. for all } P \in \mathcal{P}.$$

In particular, $\mathcal{E}_s(X)$ is characterized by

$$\mathcal{E}_{s}(X) = \operatorname{ess\,sup}_{P' \in \mathcal{P}(s,P)}^{P} E^{P'} [X \big| \mathcal{F}_{s}^{\circ}] \quad P\text{-a.s. for all } P \in \mathcal{P}.$$

Outline

Axiomatic Setup

For the random G-expectations, we had:

- a set $\mathcal{P} \subseteq \overline{\mathcal{P}}_S$ with a time consistency is a property,
- an aggregated r.v. for $\operatorname{ess\,sup}_{P' \in \mathcal{P}(s,P)}^{P} E^{P'} [X | \mathcal{F}_s^{\circ}], P \in \mathcal{P},$
- for X in a subspace $\mathbb{L}^1_{\mathcal{P}} \subseteq L^1_{\mathcal{P}}$.

Axiomatic approach:

- start with some set $\mathcal{P} \subseteq \overline{\mathcal{P}}_S$.
- \mathcal{P} is assumed to be stable under \mathbb{F}° -pasting (\approx time consistency): for all $P \in \mathcal{P}$ and $P_1, P_2 \in \mathcal{P}(\mathcal{F}_t^{\circ}, P)$ and $\Lambda \in \mathcal{F}_t^{\circ}$,

$$\bar{P}(\cdot) := E^{P} \big[P_{1}(\cdot | \mathcal{F}_{t}^{\circ}) \mathbf{1}_{\Lambda} + P_{2}(\cdot | \mathcal{F}_{t}^{\circ}) \mathbf{1}_{\Lambda^{c}} \big] \in \mathcal{P}.$$

- aggregated r.v. $\mathcal{E}_{s}^{\circ}(X) = \operatorname{ess\,sup}_{P' \in \mathcal{P}(\mathcal{F}_{s}^{\circ}, P)}^{P} E^{P'}[X | \mathcal{F}_{s}^{\circ}] P$ -a.s., $P \in \mathcal{P}$
- for all X in some subspace $\mathcal{H} \subseteq L^1_{\mathcal{P}}$.

Axiomatic Setup

For the random G-expectations, we had:

- a set $\mathcal{P} \subseteq \overline{\mathcal{P}}_S$ with a time consistency is a property,
- an aggregated r.v. for $\operatorname{ess\,sup}_{P' \in \mathcal{P}(s,P)}^{P} E^{P'} [X | \mathcal{F}_s^{\circ}], P \in \mathcal{P},$
- for X in a subspace $\mathbb{L}^1_{\mathcal{P}} \subseteq L^1_{\mathcal{P}}$.

Axiomatic approach:

- start with some set $\mathcal{P} \subseteq \overline{\mathcal{P}}_S$.
- *P* is assumed to be stable under ℝ°-pasting (≈ time consistency): for all *P* ∈ *P* and *P*₁, *P*₂ ∈ *P*(*F*[°]_t, *P*) and Λ ∈ *F*[°]_t,

$$\overline{P}(\cdot) := E^{P} \big[P_{1}(\cdot | \mathcal{F}_{t}^{\circ}) \mathbf{1}_{\Lambda} + P_{2}(\cdot | \mathcal{F}_{t}^{\circ}) \mathbf{1}_{\Lambda^{c}} \big] \in \mathcal{P}.$$

- aggregated r.v. $\mathcal{E}_{s}^{\circ}(X) = \underset{P' \in \mathcal{P}(\mathcal{F}_{s}^{\circ}, P)}{\operatorname{ess \, sup}} \mathcal{E}^{P'}[X | \mathcal{F}_{s}^{\circ}] P$ -a.s., $P \in \mathcal{P}$
- for all X in some subspace $\mathcal{H} \subseteq L^1_{\mathcal{P}}$.

Getting Path Regularity

• $\hat{\mathbb{F}} = {\{\hat{\mathcal{F}}_t\}_{0 \leq t \leq T}}$, where $\hat{\mathcal{F}}_t := \mathcal{F}_{t+}^{\circ} \vee \mathcal{N}^{\mathcal{P}}$ and $\mathcal{N}^{\mathcal{P}} = \mathcal{P}$ -polar sets.

Take right limits of $\{\mathcal{E}_t^{\circ}(X), t \in [0, T]\}$:

Theorem

For $X \in \mathcal{H}$, there exists a unique càdlàg $\hat{\mathbb{F}}$ -adapted process Y,

•
$$Y_t = \mathcal{E}_{t+}^{\circ}(X) \mathcal{P}$$
-q.s. for all t.

• Y is the minimal $(\hat{\mathbb{F}}, \mathcal{P})$ -supermartingale with $Y_T = X$.

•
$$Y_t = \operatorname{ess\,sup}^P E^{P'}[X|\hat{\mathcal{F}}_t] \ P\text{-a.s. for all } P \in \mathcal{P}.$$

 $P' \in \mathcal{P}(\hat{\mathcal{F}}_t, P)$

- Y is a \mathcal{P} -modification of $\{\mathcal{E}_t^{\circ}(X), t \in [0, T]\}$ in regular cases but there are counterexamples.
- The process $\mathcal{E}(X) := Y$ is called the (càdlàg) \mathcal{E} -martingale associated with $X \in \mathcal{H}$.

Marcel Nutz (ETH)

Stopping Times and Optional Sampling

- Typically, the construction of \mathcal{E}° is not compatible with stopping times (e.g. *G*-expectation).
- But we can easily define ${\mathcal E}$ at a stopping time.

Theorem

Let $0 \le \sigma \le \tau \le T$ be $\hat{\mathbb{F}}$ -stopping times and $X \in \mathcal{H}$. Then

$$\mathcal{E}_{\sigma}(X) = \operatorname{ess\,sup}^{P} E^{P'}[X|\hat{\mathcal{F}}_{\sigma}] \quad P\text{-a.s. for all } P \in \mathcal{P};$$

$$\mathcal{E}_{\sigma}(X) = \operatorname{ess\,sup}^{P} E^{P'}[\mathcal{E}_{\tau}(X)|\hat{\mathcal{F}}_{\sigma}] \quad P\text{-a.s. for all } P \in \mathcal{P}.$$

Decomposition of \mathcal{E} -Martingales

Theorem

- Let $X \in \mathcal{H}$. There exist
 - an $\hat{\mathbb{F}}$ -progressive process Z^X

• a family $(K^P)_{P\in\mathcal{P}}$ of $\overline{\mathbb{F}}^P$ -pred. increasing processes, $E^P[|K^P_T|] < \infty$, such that

$$\mathcal{E}_t(X) = \mathcal{E}_0(X) + \int_0^{t} Z_s^X dB_s - K_t^P, \quad P\text{-a.s. for all } P \in \mathcal{P}.$$

- Z^X does not depend on P, but the integral may do.
- Cf. optional decomposition: El Karoui, Quenez (95), Kramkov (96).
- Construction as in the theory of 2BSDEs: Soner, Touzi, Zhang (10)
- Here we only need Doob-Meyer decomposition + martingale represent.
 + pathwise integration (Bichteler 81).
- More precise results for *G*-expectation: Peng (07), Xu, B. Zhang (09), Soner, Touzi, Zhang (10), Song (10), Y. Hu, Peng (10).

Decomposition of \mathcal{E} -Martingales

Theorem

- Let $X \in \mathcal{H}$. There exist
 - an $\hat{\mathbb{F}}$ -progressive process Z^X

• a family $(K^P)_{P\in\mathcal{P}}$ of $\overline{\mathbb{F}}^P$ -pred. increasing processes, $E^P[|K^P_T|] < \infty$, such that

$$\mathcal{E}_t(X) = \mathcal{E}_0(X) + \int_0^{(P)} \int_0^t Z_s^X dB_s - K_t^P, \quad P\text{-a.s. for all } P \in \mathcal{P}.$$

- Z^X does not depend on P, but the integral may do.
- Cf. optional decomposition: El Karoui, Quenez (95), Kramkov (96).
- Construction as in the theory of 2BSDEs: Soner, Touzi, Zhang (10)
- Here we only need Doob-Meyer decomposition + martingale represent. + pathwise integration (Bichteler 81).
- More precise results for G-expectation: Peng (07), Xu, B. Zhang (09), Soner, Touzi, Zhang (10), Song (10), Y. Hu, Peng (10).

Superhedging

Interpretation for decomposition

$$X = \mathcal{E}_T(X) = \mathcal{E}_0(X) + \int_0^{(P)} \int_0^T Z_s^X dB_s - K_T^P :$$

- $\mathcal{E}_0(X) = \hat{\mathcal{F}}_0$ -superhedging price,
- $Z^X =$ superhedging strategy,
- K_T^P = overshoot for the scenario P
- Minimality of the overshoot:

ess inf
$${}^{P}E^{P'}[\mathcal{K}^{P'}_{T} - \mathcal{K}^{P'}_{t}|\hat{\mathcal{F}}_{t}] = 0$$
 P-a.s. for all $P \in \mathcal{P}$.
 $P' \in \mathcal{P}(\hat{\mathcal{F}}_{t}, P)$

• replicable claims correspond to $K^P \equiv 0$ for all $P \in \mathcal{P}$.

2BSDE for $\mathcal{E}(X)$

(Y, Z) is a solution of the 2BSDE if there exists a family $(K^P)_{P \in \mathcal{P}}$ of $\overline{\mathbb{F}}^P$ -adapted increasing processes satisfying $E^P[|K_T^P|] < \infty$ such that

$$Y_t = X - \int_t^{(P)} \int_t^T Z_s \, dB_s + K_T^P - K_t^P, \quad 0 \le t \le T, \quad P\text{-a.s. for all } P \in \mathcal{P}$$

and such that

$$\operatorname{ess\,inf}_{P'\in\mathcal{P}(\hat{\mathcal{F}}_{t},P)}^{P} \left[\mathcal{K}_{T}^{P'} - \mathcal{K}_{t}^{P'} \big| \hat{\mathcal{F}}_{t} \right] = 0 \quad P\text{-a.s. for all } P \in \mathcal{P}.$$

Theorem $(X \in \mathcal{H})$

- $(\mathcal{E}(X), Z^X)$ is the minimal solution of the 2BSDE.
- If (Y, Z) is a solution of the 2BSDE such that Y is of class (D, \mathcal{P}) , then $(Y, Z) = (\mathcal{E}(X), Z^X)$.

In particular, if $X \in \mathcal{H}^p$ for some $p \in (1, \infty)$, then $(\mathcal{E}(X), Z^X)$ is the unique solution of the 2BSDE in the class (D, \mathcal{P}) .

Pasting and Time Consistency

- \mathcal{P} is maximally chosen for \mathcal{H} if \mathcal{P} contains all $P \in \overline{\mathcal{P}}_S$ such that $E^P[X] \leq \sup_{P' \in \mathcal{P}} E^{P'}[X]$ for all $X \in \mathcal{H}$.
- \mathcal{P} is time-consistent on \mathcal{H} if

$$\operatorname{ess\,sup}_{P'\in\mathcal{P}(\mathcal{F}_{s}^{\circ},P)}^{P} E^{P'} \left[\operatorname{ess\,sup}_{P''\in\mathcal{P}(\mathcal{F}_{t}^{\circ},P')}^{P'} E^{P''}[X|\mathcal{F}_{t}^{\circ}] \middle| \mathcal{F}_{s}^{\circ} \right] = \operatorname{ess\,sup}_{P'\in\mathcal{P}(\mathcal{F}_{s}^{\circ},P)}^{P} E^{P'}[X|\mathcal{F}_{s}^{\circ}]$$

P-a.s. for all $P \in \mathcal{P}$, $0 \leq s \leq t \leq T$ and $X \in \mathcal{H}$.

Theorem

- stability under pasting \Rightarrow time consistency.
- If \mathcal{P} is maximally chosen: time consistency \Rightarrow stability under pasting
- Similar results by Delbaen (06) for classical risk measures.

Time Consistency of Mappings

Consider a family (*E_t*)_{0≤t≤T} of mappings *E_t* : *H* → *L*¹_P(*F*^o_t). *H_t* := *H* ∩ *L*¹_P(*F*^o_t).

Definition

 $(\mathcal{E}_t)_{0 \leq t \leq T}$ is called *time-consistent* if

 $\mathcal{E}_s(X) \leq (\geq) \mathcal{E}_s(arphi) \hspace{0.2cm} ext{ for all } arphi \in \mathcal{H}_t ext{ such that } \mathbb{E}_t(X) \leq (\geq) \, arphi$

and $(\mathcal{H}_t$ -) positively homogeneous if

 $\mathcal{E}_t(X\varphi) = \mathcal{E}_t(X)\varphi$ for all bounded nonnegative $\varphi \in \mathcal{H}_t$ for all $0 \le s \le t \le T$ and $X \in \mathcal{H}$.

More on $\mathbb{L}^1_\mathcal{P}$

• By arguments of Denis, Hu, Peng (10):

$$\mathbb{L}_{\mathcal{P}}^{1} = \begin{cases} X \in L_{\mathcal{P}}^{1} \\ \lim_{n} \|X\mathbf{1}_{\{|X| \ge n\}}\|_{L_{\mathcal{P}}^{1}} = 0 \end{cases}$$

• If D is uniformly bounded, we retrieve the space of Denis, Hu, Peng:

- $\mathbb{L}^1_{\mathcal{P}}$ is also the closure of $\mathcal{C}_b \subset L^1_{\mathcal{P}}$,
- 'quasi uniformly continuous' = 'quasi continuous'.
- If D is uniformly bounded, \mathcal{E}_t maps $\mathbb{L}^1_{\mathcal{P}}$ into $\mathbb{L}^1_{\mathcal{P}}(\mathcal{F}_t^\circ)$. Hence time consistency can be expressed as $\mathcal{E}_s \circ \mathcal{E}_t = \mathcal{E}_s$.