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Peng's G -Expectation

Intuition: Volatility is uncertain, but prescribed to lie in a �xed

interval D = [a, b].

ℰG (X) is the worst-case expectation of a random variable X over all

these scenarios for the volatility.

Ω: canonical space of continuous paths on [0,T ].

B : canonical process.

PG = martingale laws under which d⟨B⟩t/dt ∈ D, then

ℰG0 (X ) = sup
P∈PG

EP [X ], X ∈ L0(ℱ∘T ) regular enough.

ℰG
0

is a sublinear functional.
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Conditional G -Expectation

Extension to a conditional G -expectation ℰGt for t > 0.

Nontrivial as measures in PG are singular.

Peng's approach: for X = f (BT ) with f Lipschitz, de�ne

ℰGt (X ) = u(t,Bt) where

−ut − G (uxx) = 0, u(T , x) = f ; G (x) :=
1

2
sup
y∈D

xy .

Extend to X = f (Bt1 , . . . ,Btn) and pass to completion.

Time-consistency property: ℰGs ∘ ℰGt = ℰGs for s ≤ t.
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Short (and Incomplete) History

Uncertain volatility model: Avellaneda, Levy, Parás (95),

T. Lyons (95).

BSDEs and g -expectations: Pardoux, Peng (90), . . .

Capacity-based analysis of volatility uncertainty: Denis, Martini (06).

G -expectation and related calculus were introduced by Peng (07).

Dual description via PG is due to Denis, M. Hu, Peng (10).

Constraint on law of BT Galichon, Henry-Labordère, Touzi (1?).

Relations to 2BSDEs Cheridito, Soner, Touzi, Victoir (07),

Soner, Touzi, J. Zhang (10).

Bion-Nadal, Kervarec (10).
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Random G -Expectation

Allow for updates of the volatility bounds.

Take into account historical volatility: path-dependence.

Replace D = [a, b] by a stochastic interval Dt(!) = [at(!), bt(!)].
(In general: a progressive set-valued process.)

This corresponds to a random function G (possibly in�nite).

At t = 0 de�ne ℰ0(X ) = supP∈P EP [X ] for corresponding set P.
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Our Approach

At t > 0: want ℰt(X ) � = � supP′∈P EP′ [X ∣ℱ∘t ].

We shall construct ℰt(X ) such that

ℰt(X ) = ess sup
P′∈P(t,P)

PEP′
[
X
∣∣ℱ∘t ] P-a.s. for all P ∈ P,

where P(t,P) := {P ′ ∈ P : P ′ = P on ℱ∘t }.

Non-Markov problem: PDE approach not suitable.

Pathwise de�nition: condition D,P,X on ! up to t:

ℰt(X )(!) := sup
P∈P(t,!)

EP [X t,!], ! ∈ Ω.

Bene�ts: Control arguments, D need not be bounded.

Time consistency corresponds to dynamic programming principle.

Approach follows Soner, Touzi, Zhang (10).

Here P(t, !) is path-dependent. Regularity of ! 7→ P(t, !) is needed.
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Strong Formulation of Volatility Uncertainty

P0 Wiener measure, F∘ raw �ltration of B .

PS =
{
P� := P0 ∘ (

∫
�1/2dB)−1, � > 0,

∫ T
0
� dt <∞

}
.

De�ne ⟨B⟩ and â = d⟨B⟩/dt simultaneously under all P ∈ PS .
(E.g. by Föllmer's (81) pathwise calculus.)

P :=
{
P ∈ PS : â ∈ Int� D ds × P-a.e. for some � > 0

}
,

where Int� D := [a + �, b − �] for � > 0.

Marcel Nutz (ETH) Random G-Expectations 8 / 17



Strong Formulation of Volatility Uncertainty

P0 Wiener measure, F∘ raw �ltration of B .

PS =
{
P� := P0 ∘ (

∫
�1/2dB)−1, � > 0,

∫ T
0
� dt <∞

}
.
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Conditioning and Regularity

To condition X to ! up to t, set X t,!(⋅) := X (! ⊗t ⋅),
where ⊗t is the concatenation at t.

X t,! is an r.v. on the space Ωt of paths starting at time t.

On Ωt we have Bt , Pt
0
, ât , PtS , . . . as for t = 0.

P(t, !) :=
{
P ∈ PtS : ât ∈ Int� Dt,! ds×P-a.e. on [t,T ]×Ωt , � > 0

}
.

De�ne ℰt(X ) as the value function

ℰt(X )(!) := sup
P∈P(t,!)

EP [X t,!], ! ∈ Ω.

Regularity: X ∈ UCb(Ω) and D uniformly continuous:

for all � > 0 and (t, !) ∈ [0,T ]×Ω there exists " = "(t, !, �) > 0 s.t.

∥! − !′∥t ≤ " ⇒ Int� Dt,!
s (!̃)⊆ Int"Dt,!′

s (!̃) ∀ (s, !̃) ∈ [t,T ]× Ωt .
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Consequences of Uniform Continuity

! 7→ ℰt(X )(!) is ℱ∘t -measurable and LSC for X ∈ UCb(Ω).

Theorem (DPP, time consistency)

Let X ∈ UCb(Ω) and 0 ≤ s ≤ t ≤ T. Then

ℰs(X )(!) = sup
P∈P(s,!)

EP
[
ℰt(X )s,!

]
for all ! ∈ Ω,

ℰs(X ) = ess sup
P′∈P(s,P)

PEP′
[
ℰt(X )

∣∣ℱ∘s ] P-a.s. for all P ∈ P,

where P(s,P) := {P ′ ∈ P : P ′ = P on ℱ∘s }.

On the proof:

Main problem due to stochastic D: admissibility of pastings.

Regularity of ℰt(X ) turns out not to be a problem.
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Extension to Completion of UCb(Ω)

L1P = space of r.v. X such that ∥X∥L1P := supP∈P ∥X∥L1(P) <∞.

L1
P = closure of UCb ⊂ L1P (can be described explicitly).

DPP implies that ℰt is 1-Lipschitz wrt. ∥ ⋅ ∥L1P , hence extends to

ℰt : L1
P → L1P(ℱ∘t ).

Theorem. For X ∈ L1
P the DPP holds:

ℰs(X ) = ess sup
P′∈P(s,P)

PEP′
[
ℰt(X )

∣∣ℱ∘s ] P-a.s. for all P ∈ P.

In particular, ℰs(X ) is characterized by

ℰs(X ) = ess sup
P′∈P(s,P)

PEP′
[
X
∣∣ℱ∘s ] P-a.s. for all P ∈ P.
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Axiomatic Setup
For the random G -expectations, we had:

a set P ⊆ PS with a time consistency is a property,

an aggregated r.v. for ess sup
P′∈P(s,P)

PEP′
[
X
∣∣ℱ∘s ], P ∈ P,

for X in a subspace L1
P ⊆ L1P .

Axiomatic approach:

start with some set P ⊆ PS .
P is assumed to be stable under F∘-pasting (≈ time consistency):

for all P ∈ P and P1,P2 ∈ P(ℱ∘t ,P) and Λ ∈ ℱ∘t ,

P̄(⋅) := EP
[
P1( ⋅ ∣ℱ∘t )1Λ + P2( ⋅ ∣ℱ∘t )1Λc

]
∈ P.

aggregated r.v. ℰ∘s (X ) = ess sup
P′∈P(ℱ∘s ,P)

PEP′
[
X
∣∣ℱ∘s ] P-a.s., P ∈ P

for all X in some subspace ℋ ⊆ L1P .
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Getting Path Regularity
∙ F̂ = {ℱ̂t}0≤t≤T , where ℱ̂t := ℱ∘t+ ∨NP and NP = P-polar sets.

Take right limits of {ℰ∘t (X ), t ∈ [0,T ]}:

Theorem

For X ∈ ℋ, there exists a unique càdlàg F̂-adapted process Y ,

Yt = ℰ∘t+(X ) P-q.s. for all t.
Y is the minimal (F̂,P)-supermartingale with YT = X.

Yt = ess sup
P′∈P(ℱ̂t ,P)

PEP′ [X ∣ℱ̂t ] P-a.s. for all P ∈ P.

∙ Y is a P-modi�cation of {ℰ∘t (X ), t ∈ [0,T ]} in regular cases

but there are counterexamples.

∙ The process ℰ(X ) := Y is called the (càdlàg) ℰ-martingale associated

with X ∈ ℋ.
Marcel Nutz (ETH) Random G-Expectations 13 / 17



Stopping Times and Optional Sampling

Typically, the construction of ℰ∘ is not compatible with stopping times

(e.g. G -expectation).

But we can easily de�ne ℰ at a stopping time.

Theorem

Let 0 ≤ � ≤ � ≤ T be F̂-stopping times and X ∈ ℋ. Then

ℰ�(X ) = ess sup
P′∈P(ℱ̂� ,P)

PEP′ [X ∣ℱ̂�] P-a.s. for all P ∈ P;

ℰ�(X ) = ess sup
P′∈P(ℱ̂� ,P)

PEP′ [ℰ� (X )∣ℱ̂�] P-a.s. for all P ∈ P.
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Decomposition of ℰ-Martingales

Theorem

Let X ∈ ℋ. There exist

an F̂-progressive process ZX

a family (KP)P∈P of FP -pred. increasing processes, EP [∣KP
T ∣] <∞,

such that

ℰt(X ) = ℰ0(X ) +
(P)∫ t

0

ZX
s dBs − KP

t , P-a.s. for all P ∈ P.

∙ ZX does not depend on P , but the integral may do.

∙ Cf. optional decomposition: El Karoui, Quenez (95), Kramkov (96).

∙ Construction as in the theory of 2BSDEs: Soner, Touzi, Zhang (10)

∙ Here we only need Doob-Meyer decomposition + martingale represent.

+ pathwise integration (Bichteler 81).

∙ More precise results for G -expectation: Peng (07), Xu, B. Zhang (09),

Soner, Touzi, Zhang (10), Song (10), Y. Hu, Peng (10).
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Superhedging

Interpretation for decomposition

X = ℰT (X ) = ℰ0(X ) +

(P)∫ T

0

ZX
s dBs − KP

T :

ℰ0(X ) = ℱ̂0-superhedging price,

ZX = superhedging strategy,

KP
T = overshoot for the scenario P

Minimality of the overshoot:

ess inf
P′∈P(ℱ̂t ,P)

PEP′
[
KP′
T − KP′

t

∣∣ℱ̂t] = 0 P-a.s. for all P ∈ P.

replicable claims correspond to KP ≡ 0 for all P ∈ P.
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2BSDE for ℰ(X )
(Y ,Z ) is a solution of the 2BSDE if there exists a family (KP)P∈P of

FP -adapted increasing processes satisfying EP [∣KP
T ∣] <∞ such that

Yt = X −
(P)∫ T

t

Zs dBs + KP
T − KP

t , 0 ≤ t ≤ T , P-a.s. for all P ∈ P

and such that

ess inf
P′∈P(ℱ̂t ,P)

PEP′
[
KP′
T − KP′

t

∣∣ℱ̂t] = 0 P-a.s. for all P ∈ P.

Theorem (X ∈ ℋ)

(ℰ(X ),ZX ) is the minimal solution of the 2BSDE.

If (Y ,Z ) is a solution of the 2BSDE such that Y is of class (D,P),
then (Y ,Z ) = (ℰ(X ),ZX ).

In particular, if X ∈ ℋp for some p ∈ (1,∞), then (ℰ(X ),ZX ) is the

unique solution of the 2BSDE in the class (D,P).
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Pasting and Time Consistency

P is maximally chosen for ℋ if P contains all P ∈ PS such that

EP [X ] ≤ supP′∈P EP′ [X ] for all X ∈ ℋ.
P is time-consistent on ℋ if

ess supP

P′∈P(ℱ∘s ,P)
EP′
[

ess supP
′

P′′∈P(ℱ∘t ,P′)
EP′′ [X ∣ℱ∘t ]

∣∣∣∣ℱ∘s ] = ess supP

P′∈P(ℱ∘s ,P)
EP′ [X ∣ℱ∘s ]

P-a.s. for all P ∈ P, 0 ≤ s ≤ t ≤ T and X ∈ ℋ.

Theorem

stability under pasting ⇒ time consistency.

If P is maximally chosen: time consistency ⇒ stability under pasting

∙ Similar results by Delbaen (06) for classical risk measures.
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Time Consistency of Mappings

Consider a family (ℰt)0≤t≤T of mappings ℰt : ℋ → L1P(ℱ∘t ).

ℋt := ℋ ∩ L1P(ℱ∘t ).

De�nition

(ℰt)0≤t≤T is called time-consistent if

ℰs(X ) ≤ (≥) ℰs(') for all ' ∈ ℋt such that Et(X ) ≤ (≥)'

and (ℋt-) positively homogeneous if

ℰt(X') = ℰt(X )' for all bounded nonnegative ' ∈ ℋt

for all 0 ≤ s ≤ t ≤ T and X ∈ ℋ.
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More on L1
P

By arguments of Denis, Hu, Peng (10):

L1
P =

{
X ∈ L1P

∣∣∣∣ X is P-quasi uniformly continuous,

limn ∥X1{∣X ∣≥n}∥L1P = 0

}
If D is uniformly bounded, we retrieve the space of Denis, Hu, Peng:

▶ L1

P is also the closure of Cb ⊂ L1P ,
▶ `quasi uniformly continuous' = `quasi continuous'.

If D is uniformly bounded, ℰt maps L1
P into L1

P(ℱ∘t ).
Hence time consistency can be expressed as ℰs ∘ ℰt = ℰs .

Marcel Nutz (ETH) Random G-Expectations 20 / 17


	Random G-Expectations
	Axiomatic Framework and Superhedging (joint work with Mete Soner)

