MAP562 Optimal design of structures

by Grégoire Allaire, Thomas Wick

Ecole Polytechnique Academic year 2016-2017

Exercise 1, Jan 4, 2017 in amphi Grégory

Exercise 1

Let Ω be a regular bounded and connected open set of \mathbb{R}^n . Let Γ_N and Γ_D be boundary parts such that $\partial \Omega = \Gamma_N \cup \Gamma_D$ of negligible intersection, each of them being of non zero surface measure. Let $g \in L^2(\Gamma_N)$ and $f \in L^2(\Omega)$. We consider the Partial Differential Equation

$$\begin{cases} -\Delta u = f \text{ in } \Omega, \\ u = 0 \text{ on } \Gamma_D, \\ \frac{\partial u}{\partial n} = g \text{ on } \Gamma_N. \end{cases}$$
(1)

- 1. Derive the variational formulation associated to (1).
- 2. Prove that there exists a unique solution u to the variational problem obtained. To this end, we could admit the following Lemma. Lemma 1. Let Ω be a connected open set of \mathbb{R}^N . Let $u \in H^1(\Omega)$ such that $\nabla u = 0$ then u is constant over Ω .
- 3. Assume that the solution u of the variational formulation is smooth. Then prove that it is also a solution of the initial PDE (1).
- 4. Suppose that $\Gamma_D = 0$ such that a pure Neumann problem is obtained. Show that a solution of the variational formulation exists only if the data satisfy a compatibility condition. Study the well-posedness of the variational formulation (in particular the coercivity) in the space $V = \{v \in H^1(\Omega) \text{ such that } \int_{\Omega} v(x) dx = 0\}.$

Exercise 2

In this exercise we deal with **non local boundary conditions**. Let Ω_0 , Ω_1 , be open bounded sets of \mathbb{R}^2 such that $\overline{\Omega}_1$ is included in Ω_0 assumed to be connected. We denote by Ω the open set $\Omega_0 - \overline{\Omega}_1$.

Let f be a map in $L^2(\Omega)$ and $q \in L^{\infty}(\Omega)$. We would like to establish the existence of a solution u of the following problem

$$\begin{cases} -\Delta u + q(x)u = f & \text{in } \Omega\\ \frac{\partial u}{\partial n} = -\alpha \int_{\Gamma_1} u ds & \text{on } \Gamma_1\\ u(x) = 0 & \text{on } \Gamma_0 \end{cases}$$

where α is a non negative real, $\Gamma_0 = \partial \Omega_0$ and $\Gamma_1 = \partial \Omega_1$.

Remark 1. The above situation is a simplification of a heat transfer problem. Therefore, the boundary conditions are also known as *nonlocal radiation bound-ary conditions*.

1. Variational Formulation. Prove that all regular solutions of the PDE are solutions of a variational problem to determine. Conversely, prove that all regular solutions of the variational problem are solutions of the PDE.

2. Existence. We assume that there exists a positive real q_0 such that for almost all $x \in \Omega$,

$$q(x) \ge q_0.$$

Prove that there exists a unique solution u to the variational problem and that this solution depends continuously on the data.

3. Poincaré like inequality. Prove by contradiction (reduction ad absurdum), that there exists a constant C such that for all u such that u(x) = 0 on Γ_0 ,

$$\|u\|_{H^1(\Omega)} \le C \|\nabla u\|_{L^2(\Omega)}.$$

Can the conditions imposed to α and q be relaxed and still preserve the existence result ?

Exercise 3

Plan for practical exercises with FreeFem++:

- Studying the Poisson problem
- Studying an elastic beam
- Further properties of finite elements

The programs will be available on

http://www.cmap.polytechnique.fr/~MAP562/