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In this short version, most theoretical questions have been removed and
the focus is on the developments that are required to implement the given
problems into a software. Therefore, the goals are always the same: deriving
the variational formulation, formulating the optimization problem, computing
derivatives, designing solution algorithms.

Exercise 1

Quadratic optimization (already discussed in class).
In this exercise we recapitulate basic properties of quadratic optimization. Con-
sider

min
x∈Rn, Bx=c

J(x) =
1

2
Ax · x− b · x

where A is a n × n symmetric, positive definite matrix, b ∈ Rn, B is a m × n
matrix with rank equal to m ≤ n and c ∈ Rm.

1. State the optimality condition

2. Deduce the optimal solution

Exercise 2

Minimization of the p-Laplace problem
If linear PDEs do correctly describe the behavior of physical systems close to
their equilibrium state, non linear phenomena can appear in more general situ-
ations. The aim of this exercise is to extend the analysis performed on a linear
system to some non-linear cases.

Let Ω be a bounded open set of RN , p ∈ N such that p > 2 and f ∈ L2(Ω)
the source term (or control). We consider the PDE (whose unknown is u)

−div((1 + |∇u|p−2)∇u) = f in Ω

u = 0 on ∂Ω.
(1)

For |∇u| � 1 (small perturbations), we recover the standard Poisson equation.

1. We introduce the Banach space W 1,p
0 (Ω) defined by

W 1,p
0 (Ω) = {u ∈ Lp(Ω) : ∇u ∈ Lp(Ω), et u = 0 on ∂Ω},

Then, we can associate the corresponding energy functional:

J(u) =

∫
|∇u|

2
+
|∇u|p

p
− fu
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• Justify that J(u) is related to the PDE; and that the PDE repre-
sents the first-order derivative, i.e., J ′(u)(φ) = a(u, φ). Thus it is
equivalent to say that we minimize J(u) or that we solve for a root
of the PDE.

• Prove that the energy is strictly convex. Therefore, we admit that
the minimization problem has a unique minimizer.

2. State the variational formulation of (1).

3. Formulate a gradient algorithm to find the solution u that minimizes
J(u).

4. Formulate a Newton algorithm to find the solution u that minimizes J(u).
Establish a justification that there exists indeed a unique descent direc-
tion. Hint: Consider the well-posedness of the second-order derivative
and assume that the previous solution un is smooth enough.

Exercise 3

A second nonlinear problem
Let Ω be a smooth bounded open set of Rn. Let f ∈ L2(Ω). Let a(v) be a
smooth function from R into R which is bounded uniformly, as well as all its
derivatives on R, and satisfies

0 < C− ≤ a(v) ≤ C+ < +∞ ∀ v ∈ R.

We consider the minimization problem

E(u) = min
v∈H1

0 (Ω)
E(v) =

1

2

∫
Ω

a(v(x))|∇v(x)|2 dx−
∫

Ω

f(x) v(x) dx . (2)

In the sequel u ∈ H1
0 (Ω) is assumed to be a smooth function.

1. Compute the first order directional derivative of E at u in the direction
of v, that we shall denote by 〈E′(u), v〉.

2. Show that the first-order optimality condition for (2) is a variational
formulation for a non-linear partial differential equation, which should
be explicitly exhibited.

3. Compute the second order derivative of E at u, in the directions δu and
φ, that we shall denote by E′′(u)

(
δu, φ

)
.

4. (Optional) Prove that the bilinear form (v, w) → E′′(u)
(
v, w

)
is sym-

metric and continuous on H1
0 (Ω). From now on we assume that the first

and second order derivatives of v → a(v) are uniformly small on R. De-
duce that the bilinear form is coercive on H1

0 (Ω). Hint: use integration
by parts and the Poincaré inequality in Ω.

5. Define a gradient algorithm for minimizing (2).

6. Define a Newton algorithm for minimizing (2).
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7. Prove that, at each iteration of the Newton algorithm, there exists indeed
a unique descent direction. Hint: use question 4 and assume that the
previous iterate is a smooth function.

Exercise 4

A first optimization problem: optimal control
In this exercise we consider a simplified heat optimal control problem. In some
region ω in the domain Ω we have a heat source u (the control variable). The goal
is to match a certain, given, temperature T0. This leads to the cost functional:

J(u) =

∫
Ω

|T (u)− T0|2 dx

Consequently we are interested in minimizing J(u). The heat distribution itself
(the so-called state equation) is modeled by a diffusion equation

−∆T = 1ωu in Ω

T = 0 on ∂Ω,

and Ω = (0, 1)2 and ω a ball with radius 0.1. The resulting problem statement
is a so-called PDE-constrained optimization problem.

1. Show that
T (u) = T (1)u

2. Derive the variational form of the forward problem.

3. Compute the derivatives of T (u) and J(u) w.r.t. u. Hint: For the deriva-
tive of J(u) we need to employ two times the relation T (u) = T (1)u. In
fact in most cases such an explicit relation does not exist (and here thanks
to the fact that u is constant) and then a crucial aspect in derivative-
based optimization is the evaluation of the ‘inner’ derivatives.

4. Formulate a gradient algorithm to solve the minimization problem (in-
cluding all necessary steps!).
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