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Exercise 1

A second heat optimization problem.
In this exercise we consider another simplied heat optimization problem. For a
given smooth bounded domain Ω ⊂∈ Rd and for any z ∈ Rd, we investigate the
minimization of the cost functional:

J(z) =

∫
Ω

|T − T0|2 dx

where T0(x) is a given smooth temperature field and T ≡ T (x, z) is the solution
of the following boundary value problem for the x variable

−∆T = fz in Ω

T = 0 on ∂Ω,

where fz(x) = f(x− z) and f(x) a smooth non-negative function with compact
support. In the numerical applications, take d = 2, T0(x) ≡ 0.1, Ω = (0, 10)2

and

f(x) =

{
1− |x|2 if |x| ≤ 1,
0 otherwise.

1. For a given direction e ∈ Rd, find the problem solved by the directional
derivative v ≡ ∇zT · e.

2. Compute the derivative of J(z) in the direction e in terms of v.

3. Introduce the Lagrangian corresponding to the minimization of J(z).

4. Deduce the adjoint problem for this minimization problem.

5. Find an explicit formula for the gradient ∇zJ(z).

6. Implement a gradient algorithm for this problem in FreeFem++.
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Exercise 2

Optimization of a heater (part II from TD2).
We continue our investigation of an optimal heat source. As reminder, we recall
that we want to optimize the temperature T of a room Ω by the mean of a heater
located in ω ⊂ Ω whose heat flux v(x) ∈ L2(ω) is controlled. In extension to
the previous problem (TD 2), an air stream of velocity u fills the room. We
assume that the air is incompressible, that is u is assumed to be divergence free.
Moreover, u is also assumed to be regular. The temperature on the boundary
of the room is equal to the external temperature, assumed to be zero. The
temperature in the room satisfies the following convection-diffusion equation

−∆T + u · ∇T = 1ωv in Ω.

a. Determine the variational problem satisfied by the solution T ≡ T (v)
of the convection-diffusion equation. Prove that it admits an unique solution
depending continuously on the data.
b. We want to optimize the value of the function v(x) in order to maintain
the temperature T to a desired value T0. To this end, we introduce the cost
function

J(v) =

∫
Ω

|T (v)− T0|2dx

which we want to minimize. Compute the derivatives of T (v) and J(v) with
respect to v. Can the expressions obtained be used to implement a gradient
type algorithm applied to the minimization of J ?
c. The gradient of J can be explicitly expressed by introducing an adjoint
state. To this end, we first introduce the Lagrangian

L(v, T, p) =

∫
Ω

|T − T0|2dx+

∫
Ω

∇p · ∇T + (u · ∇T )pdx−
∫
ω

pvdx,

where T, p ∈ H1
0 (Ω) and v ∈ L2(ω). Prove that finding the minimizer of J is

equivalent of solving the following min-max problem

min
v,T∈H1

0 (Ω)
sup

p∈H1
0 (Ω)

L(v, T, p).

Determine the derivatives of L with respect to T and v.
d. By noticing that J(v) = L(v, T (v), p) for all p ∈ H1

0 (Ω), find a new
expression of the differential of J depending on the derivatives of L. Prove
that a particular choice for p enables us to get rid of the term that depends on
∂T/∂v. Deduce a new (and workable) version of the gradient of J .
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Exercise 3

Optimal control of ODEs.
We consider the following linear system of ordinary differential equations, the
solution of which (called the state) is a function y(t) with values in RN

dy

dt
= Ay +Bv + f for 0 ≤ t ≤ T

y(0) = y0

(1)

where y0 ∈ RN is the initial state of the system, f(t) ∈ RN is a source term,
v(t) ∈ RM is the control which allows us to act on the system, A and B are two
constant matrices of respective dimensions N ×N and N ×M . We shall denote
by yv the solution of (1).

We look for the optimal control v which minimizes the quadratic functional

J(v) =

∫ T

0

Rv(t) · v(t)dt+

∫ T

0

Q(yv − z)(t) · (yv − z)(t)dt

+D (yv(T )− zT ) · (yv(T )− zT ) ,

where z(t) is a target trajectory, zT is a target final position, and R,Q,D are
three symmetric non-negative matrices, from which only R is assumed to be
positive definite. Let K be a closed non-empty convex set of RM : we restrict
the control to the admissible set L2(]0, T [;K). The minimization problem is
thus

inf
v(t)∈L2(]0,T [;K)

J(v). (2)

We assume that, if f(t) ∈ L2(]0, T [;RN ), there exists a unique solution of (1)
yv(t) ∈ H1(]0, T [;RN ), which is furthermore continuous in time.

1. Prove that there exists a unique optimal control which minimizes (2).

2. Compute the derivative of the map v → yv in the direction w ∈ L2(]0, T [;RN ),
that shall be denoted by y′w.

3. Compute the derivative of J(v) in the direction w in terms of y′w. Explain
why this formula is not useful in practice.

4. To get a simpler formula, we introduce the Lagrangian

L(v, y, p) =

∫ T

0

Rv(t) · v(t)dt+

∫ T

0

Q(y − z)(t) · (y − z)(t)dt

+D (y(T )− zT ) · (y(T )− zT ) +

∫ T

0

p ·
(
−dy
dt

+Ay +Bv + f

)
dt

−p(0) · (y(0)− y0) ,

defined for any v ∈ L2(]0, T [;RN ), any y(t) ∈ H1(]0, T [;RN ) and any
p(t) ∈ H1(]0, T [;RN ). Check that

sup
p(t)∈H1(]0,T [;RN )

L(v, y, p) =

{
J(v) if (1) is satisfied,
+∞ otherwise.
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5. Compute the partial derivative of L(v, y, p) with respect to y in the di-
rection φ. By definition the adjoint system is obtained by writing that
this partial derivative is zero for any φ ∈ H1(]0, T [;RN ) when y = yv. We
denoted by pv the adjoint state. Check that it is a solution of the following
ODE system (called the adjoint system)

dpv
dt

= −A∗pv −Q(yv − z) for 0 ≤ t ≤ T

pv(T ) = D(yv(T )− zT )
(3)

where A∗ is the adjoint matrix.

6. Compute the partial derivative with respect to v, in the direction w, of
L(v, yv, p) where p is a function independent of v. In this partial derivative,
replace p by the adjoint state pv and deduce a formula for the derivative
of J(v) in the direction w. Check that

J ′(v) = B∗pv +Rv .
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