
MAP562 Optimal design of structures
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Choose one of the four following exercises:

Exercise 1

In this first exercise we consider a conduction problem. The cell problem in
Y = (0, 1)2 is given by:

− divy(A(y)(ei +∇ywi(y))) = 0 in Y, y → wi(y) Y − period. (1)

Here A(y) = 1 for x in (0; 0.4) ∪ (0.6; 1) and A(y) = 10 for x in (0.4; 0.6); see
also Figure 1.

1. Compute the homogenized tensor A∗.

2. We introduce the rotation matrix R(α) defined as

R(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
Then the problem in the macroscopic cantilever domain Ω (take a can-
tilever configuration from one of our previous exercises) is given by

−divx(RA∗RT∇xu(x)) = 0 in Ω,

u = 0 on Γfixed,

∇u · n = 0 on ΓN .

The objective functional is to minimize the compliance with respect to
the angle α := α(x) for x ∈ Ω. Implement this problem into FreeFem.

Figure 1: Homework 9, Ex. 1: domain and proportions of the stiff material
(black zone) and the smoother material.
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Exercise 2

Consider the bridge problem (pont).

1. Using SIMP, find another (better?!) penalization strategy, e.g.,
√
θA.

and implement this strategy into FreeFem.

2. Implement a three phases problem with the proportions θ1 and θ2 and
the material coefficients (Young’s moduli) A = 1, B = 2 and C = 20
while keeping Poisson’s ratio ν = 0.3 fixed. Their relation is given by:

θ1A+ (1− θ1)θ2B + (1− θ1)(1− θ2)C,

with 0 ≤ θi ≤ 1. The different materials are distributed as 60% for A;
30% for B; and 10% for C.
Hint: For the algorithm we need to implement updates for θ1 and θ2.
Furthermore, two Lagrange multipliers are necessary. Here, compute
first the first Lagrange multiplier, and with the obtained value, fix then
the second one.

Exercise 3

Consider the Stokes problem from fluid mechanics. For a basic implemen-
tation we refer to the FreeFem documentation. The equations read: Find a
vector-valued velocity v and a scalar-valued pressure p such that

−µ∆v −∇p = 0 in Ω,

∇ · v = 0 in Ω,

v = g on Γin ∪ Γout,

v = 0 on Γremaining.

The domain is sketched in Figure 2 The objective functional is defined as:

min

∫
Ω

µ|∇v|2 dx.

Furthermore, we need a constraint that the volume of the fluid is ≤ 30%. In
order to realize this optimization problem again with SIMP, we extend the
Stokes equations by one term resulting in the so-called Brinkmann problem:

−µ∆v −∇p+ κu = 0 in Ω,

∇ · v = 0 in Ω,

v = g on Γin ∪ Γout,

v = 0 on Γremaining.

where κ is variable and e.g., κ = 0 in the optimal flow way and κ = 109 in the
remaining zone, yielding a solid domain.
Hint: In this example κ takes the role of θ.

1. Implement this situation in FreeFem.
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Figure 2: Homework 9, Ex. 3: domain and inflow/outflow conditions.

Exercise 4

In this final exercise we consider an eigenvalue problem. The geometry is
displayed in Figure 3. For the basics we refer to Session 2 (FreeFem script and
also the theoretical exercise). The problem is given by:

−div(A∗σ(u)) = λρu in Ω,

u = 0 on Γfix,

σ · n = 0 on Γfix,

where σ is the tensor of linearized elasticity and l ∈ R and ρ is the density. The
density in the non-optimizable region is ρ = 100 and in the remaining, large,
domain ρ = 1. We use the SIMP method and re-define

A→ θA, ρ→ θpρ,

where p = 2 for example. For θ it holds:

10−3 ≤ θ ≤ 1.

The first eigenvalue (see again Session 2) can be computed as:

λ1 = min

∫
Ω
Ae(u) : e(u)∫

Ω
ρ|u|2

where e(u) = 1
2 (∇u+∇uT ).

1. For the cost functional
min(−λ1)

implement this task in FreeFem.
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Figure 3: Homework 9, Ex. 4: domain and boundary conditions. The black
zone is non-optimizable.

Remark:
Please upload your solutions as seperate files on

http://www.cmap.polytechnique.fr/~MAP562/
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