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Homework 9, Mar 08, 2017

Choose one of the four following exercises:

Exercise 1
In this first exercise we consider a conduction problem. The cell problem in
Y = (0,1)? is given by:
— divy(A(y)(e; + Vywi(y))) =0 inY, y— wi(y)Y — period. (1)

Here A(y) = 1 for = in (0;0.4) U (0.6;1) and A(y) = 10 for « in (0.4;0.6); see
also Figure

1. Compute the homogenized tensor A*.
2. We introduce the rotation matrix R(«) defined as

R(0) = (cos(a) sin(a))

sin(a)  cos(«)

Then the problem in the macroscopic cantilever domain € (take a can-
tilever configuration from one of our previous exercises) is given by
—~div, (RA*RTV,u(z)) =0 in Q,
u=0 on Ffimeda
Vu-n=0 only.

The objective functional is to minimize the compliance with respect to
the angle o := a(z) for € . Implement this problem into FreeFem.

Figure 1: Homework 9, Ex. 1: domain and proportions of the stiff material
(black zone) and the smoother material.



Exercise 2

Consider the bridge problem (pont).

1. Using SIMP, find another (better?!) penalization strategy, e.g., v0A.
and implement this strategy into FreeFem.

2. Implement a three phases problem with the proportions 6, and 65 and
the material coefficients (Young’s moduli) A = 1,B = 2 and C = 20
while keeping Poisson’s ratio v = 0.3 fixed. Their relation is given by:

01 A+ (1—01)028 + (1 —61)(1 —02)C,

with 0 < 0; < 1. The different materials are distributed as 60% for A;
30% for B; and 10% for C.

Hint: For the algorithm we need to implement updates for 6; and 6s.
Furthermore, two Lagrange multipliers are necessary. Here, compute
first the first Lagrange multiplier, and with the obtained value, fix then
the second one.

Exercise 3

Consider the Stokes problem from fluid mechanics. For a basic implemen-
tation we refer to the FreeFem documentation. The equations read: Find a
vector-valued velocity v and a scalar-valued pressure p such that

—pAv—Vp=0 inQ,
V-v=0 1in Q,
v=yg on [y ULy,

v=0 on F'remaining~

The domain is sketched in Figure 2| The objective functional is defined as:

min/ w|Vol? da.
Q

Furthermore, we need a constraint that the volume of the fluid is < 30%. In
order to realize this optimization problem again with SIMP, we extend the
Stokes equations by one term resulting in the so-called Brinkmann problem:

—pAv —Vp+rku=0 in Q,
V-v=0 in{,
v=g on FinUFouta

v=0 on Fremaining'

where  is variable and e.g., & = 0 in the optimal flow way and x = 10° in the
remaining zone, yielding a solid domain.
Hint: In this example x takes the role of 6.

1. Implement this situation in FreeFem.



Figure 2: Homework 9, Ex. 3: domain and inflow/outflow conditions.

Exercise 4

In this final exercise we consider an eigenvalue problem. The geometry is
displayed in Figure [3| For the basics we refer to Session 2 (FreeFem script and
also the theoretical exercise). The problem is given by:

—div(A%o(u)) = Apu  in £,
u=0 on Dy,

oc-n=0 onlTlyg,

where o is the tensor of linearized elasticity and [ € R and p is the density. The
density in the non-optimizable region is p = 100 and in the remaining, large,
domain p = 1. We use the SIMP method and re-define

A—=0A, p—0Pp,
where p = 2 for example. For 6 it holds:
1073 <9<1.
The first eigenvalue (see again Session 2) can be computed as:

fﬂ Ae(u) : e(u)

A1 = min
Jo plul?
where e(u) = $(Vu+ VuT).
1. For the cost functional
min(—Aq)

implement this task in FreeFem.



Figure 3: Homework 9, Ex. 4: domain and boundary conditions. The black
zone is non-optimizable.

Remark:
Please upload your solutions as seperate files on

http://www.cmap.polytechnique.fr/~MAP562/


http://www.cmap.polytechnique.fr/~MAP562/

