MAP562 Optimal design of structures

by Grégoire Allaire, Thomas Wick

Ecole Polytechnique Academic year 2016-2017

Homework 9, Mar 08, 2017

Choose one of the four following exercises:

Exercise 1

In this first exercise we consider a conduction problem. The cell problem in $Y = (0, 1)^2$ is given by:

$$-div_y(A(y)(e_i + \nabla_y w_i(y))) = 0 \quad \text{in } Y, \quad y \to w_i(y) \ Y - period.$$
(1)

Here A(y) = 1 for x in $(0; 0.4) \cup (0.6; 1)$ and A(y) = 10 for x in (0.4; 0.6); see also Figure 1.

- 1. Compute the homogenized tensor A^* .
- 2. We introduce the rotation matrix $R(\alpha)$ defined as

$$R(\alpha) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

Then the problem in the macroscopic cantilever domain Ω (take a cantilever configuration from one of our previous exercises) is given by

$$-div_x(RA^*R^T\nabla_x u(x)) = 0 \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \Gamma_{fixed},$$
$$\nabla u \cdot n = 0 \quad \text{on } \Gamma_N.$$

The objective functional is to minimize the compliance with respect to the angle $\alpha := \alpha(x)$ for $x \in \Omega$. Implement this problem into FreeFem.

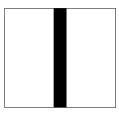


Figure 1: Homework 9, Ex. 1: domain and proportions of the stiff material (black zone) and the smoother material.

Exercise 2

Consider the bridge problem (pont).

- 1. Using SIMP, find another (better?!) penalization strategy, e.g., $\sqrt{\theta}A$. and implement this strategy into FreeFem.
- 2. Implement a three phases problem with the proportions θ_1 and θ_2 and the material coefficients (Young's moduli) A = 1, B = 2 and C = 20 while keeping Poisson's ratio $\nu = 0.3$ fixed. Their relation is given by:

$$\theta_1 A + (1 - \theta_1)\theta_2 B + (1 - \theta_1)(1 - \theta_2)C,$$

with $0 \le \theta_i \le 1$. The different materials are distributed as 60% for A; 30% for B; and 10% for C.

Hint: For the algorithm we need to implement updates for θ_1 and θ_2 . Furthermore, two Lagrange multipliers are necessary. Here, compute first the first Lagrange multiplier, and with the obtained value, fix then the second one.

Exercise 3

Consider the Stokes problem from fluid mechanics. For a basic implementation we refer to the FreeFem documentation. The equations read: Find a vector-valued velocity v and a scalar-valued pressure p such that

$$-\mu\Delta v - \nabla p = 0 \quad \text{in } \Omega,$$

$$\nabla \cdot v = 0 \quad \text{in } \Omega,$$

$$v = g \quad \text{on } \Gamma_{in} \cup \Gamma_{out},$$

$$v = 0 \quad \text{on } \Gamma_{remaining}.$$

The domain is sketched in Figure 2 The objective functional is defined as:

$$\min \int_{\Omega} \mu |\nabla v|^2 \, dx.$$

Furthermore, we need a constraint that the volume of the fluid is $\leq 30\%$. In order to realize this optimization problem again with SIMP, we extend the Stokes equations by one term resulting in the so-called Brinkmann problem:

$$\begin{split} -\mu \Delta v - \nabla p + \kappa u &= 0 \quad \text{in } \Omega, \\ \nabla \cdot v &= 0 \quad \text{in } \Omega, \\ v &= g \quad \text{on } \Gamma_{in} \cup \Gamma_{out}, \\ v &= 0 \quad \text{on } \Gamma_{remaining}. \end{split}$$

where κ is variable and e.g., $\kappa = 0$ in the optimal flow way and $\kappa = 10^9$ in the remaining zone, yielding a solid domain.

Hint: In this example κ takes the role of $\theta.$

1. Implement this situation in FreeFem.

Figure 2: Homework 9, Ex. 3: domain and inflow/outflow conditions.

Exercise 4

In this final exercise we consider an eigenvalue problem. The geometry is displayed in Figure 3. For the basics we refer to Session 2 (FreeFem script and also the theoretical exercise). The problem is given by:

$$\begin{aligned} -div(A^*\sigma(u)) &= \lambda \rho u \quad \text{in } \Omega, \\ u &= 0 \quad \text{on } \Gamma_{fix}, \\ \sigma \cdot n &= 0 \quad \text{on } \Gamma_{fix}, \end{aligned}$$

where σ is the tensor of linearized elasticity and $l \in \mathbb{R}$ and ρ is the density. The density in the non-optimizable region is $\rho = 100$ and in the remaining, large, domain $\rho = 1$. We use the SIMP method and re-define

$$A \to \theta A, \quad \rho \to \theta^p \rho,$$

where p = 2 for example. For θ it holds:

$$10^{-3} \le \theta \le 1.$$

The first eigenvalue (see again Session 2) can be computed as:

$$\lambda_1 = \min \frac{\int_{\Omega} Ae(u) : e(u)}{\int_{\Omega} \rho |u|^2}$$

where $e(u) = \frac{1}{2}(\nabla u + \nabla u^T)$.

1. For the cost functional

 $\min(-\lambda_1)$

implement this task in FreeFem.

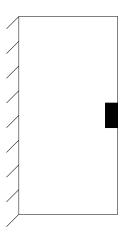


Figure 3: Homework 9, Ex. 4: domain and boundary conditions. The black zone is non-optimizable.

Remark:

Please upload your solutions as seperate files on

http://www.cmap.polytechnique.fr/~MAP562/