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OPTIMAL CONTROL

Optimization of distributed systems:

Computing a gradient by the adjoint method
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Control of an elastic membrane

For f ∈ L2(Ω), the vertical displacement u of the membrane is solution of






−∆u = f + v in Ω

u = 0 on ∂Ω,

where v is a control force which is our optimization variable (for example, a

piezzo-electric actuator). We define the set of admissible controls

K =
{

v ∈ L2(ω) | vmin(x) ≤ v(x) ≤ vmax(x) in ω and v = 0 in Ω \ ω
}

.

We want to control the membrane in order to reach a prescribed displacement

u0 ∈ L2(Ω) by minimizing (c > 0)

inf
v∈K

{

J(v) =
1

2

∫

Ω

(

|u− u0|
2 + c|v|2

)

dx

}

.
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✞

✝

☎

✆
Existence of an optimal control

Proposition.

There exists a unique optimal control v ∈ K.

Proof. v → u is an affine function from K into H1
0 (Ω).

The integrand of J is a positive ”polynomial” of degree two in v.

v → J(v) is strongly convex on K which is convex.

Remark. The existence is often more delicate to prove, but the important

thing here is to compute a gradient J ′(v) for numerical purposes.

Important notice: the solution u of the p.d.e. depends on the control v.
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✞

✝

☎

✆
Gradient and optimality condition

The safest and simplest way of computing a gradient is to evaluate the

directional derivative

j(t) = J(v + tw) ⇒ j′(0) = 〈J ′(v), w〉 =

∫

Ω

J ′(v)w dx .

By linearity, we have u(v + tw) = u(v) + tũ(w) with






−∆ũ(w) = w in Ω

ũ(w) = 0 on ∂Ω.

In other words, ũ(w) = 〈u′(v), w〉.

Since J(v) is quadratic the computation is very simple and we obtain
∫

Ω

J ′(v)w dx =

∫

Ω

(

(u(v)− u0)ũ(w) + cvw
)

dx,

Unfortunately J ′(v) is not explicit because we cannot factorize out

w in ũ(w) !

G. Allaire, Ecole Polytechnique Optimal design of structures



5

✞

✝

☎

✆
Adjoint state

To simplify the gradient formula we use the so-called adjoint state p, defined

as the unique solution in H1
0 (Ω) of







−∆p = u− u0 in Ω

p = 0 on ∂Ω.

We multiply the equation for ũ(w) by p and conversely

equation for p× ũ(w) ⇒

∫

Ω

∇p · ∇ũ(w) dx =

∫

Ω

(u− u0)ũ(w) dx

equation for ũ(w)× p ⇒

∫

Ω

∇ũ(w) · ∇p dx =

∫

Ω

wp dx

Comparing these two equalities we deduce that
∫

Ω

(u− u0)ũ(w) dx =

∫

Ω

wp dx ⇒

∫

Ω

J ′(v)w dx =

∫

Ω

(p+ cv)w dx.
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✞

✝

☎

✆
Conclusion on the adjoint state

We found an explicit formula of the gradient

J ′(v) = p+ cv.

☞ Adjoint method: computation of the gradient by solving 2 boundary value

problems (u and p).

☞ If one does not use the adjoint: for each direction w one must solve 2

boundary value problems (u and ũ(w)) to evaluate 〈J ′(v), w〉.

For example, if J ′(v) is a vector of dimension n, its n components are

obtained by solving (n+ 1) problems !

☞ Very efficient in practice: it is the best possible method.

☞ Inconvenient: if one uses a black-box software to compute u, it can be

very difficult to modify it in order to get the adjoint state p.
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✞

✝

☎

✆
Further remarks on the notion of adjoint state

☞ If the state equation is not self-adjoint (the bilinear form is not

symmetric), the operator of the adjoint equation is the transposed or

adjoint of the direct operator.

☞ If the state equation is time dependent with an initial condition, then the

adjoint equation is time dependent too, but backward with a final

condition.

☞ If the state equation is non-linear, the adjoint equation is linear.

The adjoint is not just a trick ! It can be deduced from the Lagrangian of the

problem.
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✞

✝

☎

✆
General method to find the adjoint equation

We consider the state equation as a constraint and, for any

(v̂, û, p̂) ∈ L2(Ω)×H1
0 (Ω)×H1

0 (Ω), we introduce the Lagrangian of the

minimization problem

L(v̂, û, p̂) =
1

2

∫

Ω

(

|û− u0|
2 + c|v̂|2

)

dx+

∫

Ω

p̂(∆û+ f + v̂) dx,

where p̂ is the Lagrange multiplier for the constraint which links the two

independent variables v̂ and û.

Integrating by parts yields

L(v̂, û, p̂) =
1

2

∫

Ω

(

|û− u0|
2 + c|v̂|2

)

dx+

∫

Ω

(−∇p̂ · ∇û+ fp̂+ v̂p̂) dx.

Proposition. The optimality conditions are equivalent to the stationnarity of

the Lagrangian, i.e.,
∂L

∂v
=

∂L

∂u
=

∂L

∂p
= 0.
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✄

✂

�

✁Proof

• ∂L
∂p

= 0 ⇒ by definition, we recover the equation satisfied by the state u.

• ∂L
∂u

= 0 ⇒ equation satisfied by the adjoint state p. Indeed,

ℓu(t) = L(v̂, û+ tφ, p̂) ⇒ ℓ′u(0) = 〈
∂L

∂u
, φ〉 =

∫

Ω

((û− u0)φ−∇p̂ · ∇φ) dx

which is the variational formulation of the adjoint equation.

• ∂L
∂v

= 0 ⇒ formula for J ′(v). Indeed,

ℓv(t) = L(v̂ + tw, û, p̂) ⇒ ℓ′v(0) = 〈
∂L

∂v
, w〉 =

∫

Ω

(cv̂ + p̂)w dx
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✞

✝

☎

✆
Simple formula for the derivative

In the preceding proof we obtained

J ′(v) =
∂L

∂v
(v, u, p)

with the state u and the adjoint p (both depending on v).

It is not a surprise ! Indeed,

J(v) = L(v, u, p̂) ∀p̂

because u is the state. Thus, if u(v) is differentiable, we get

〈J ′(v), w〉 = 〈
∂L

∂v
(v, u, p̂), w〉+ 〈

∂L

∂u
(v, u, p̂),

∂u

∂v
(w)〉

We then take p̂ = p, the adjoint, to obtain

〈J ′(v), w〉 = 〈
∂L

∂v
(v, u, p), w〉
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✞

✝

☎

✆
Another interpretation of the adjoint state

The adjoint state p is the Lagrange multiplier for the constraint of the state

equation. But it is also a sensitivity function.

Define the Lagrangian

L(v̂, û, p̂, f) =
1

2

∫

Ω

(

|û− u0|
2 + c|v̂|2

)

dx+

∫

Ω

(−∇p̂ · ∇û+ fp̂+ v̂p̂) dx.

We study the sensitivity of the minimum with respect to variations of f .

We denote by v(f), u(f) and p(f) the optimal values, depending on f . We

assume that they are differentiable with respect to f . Then

∇f

(

J(v(f))
)

= p(f).

p gives the derivative (without further computation) of the minimun with

respect to f !

Indeed J(v(f)) = L(v(f), u(f), p(f), f) and ∂L
∂v

= ∂L
∂u

= ∂L
∂p

= 0.
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