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CHAPTER IV

OPTIMAL CONTROL

Optimization of distributed systems:

Computing a gradient by the adjoint method
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Control of an elastic membrane '

For f € L*(Q), the vertical displacement u of the membrane is solution of

—Au=f4+v inQ
u=20 on 02,

where v is a control force which is our optimization variable (for example, a

piezzo-electric actuator). We define the set of admissible controls

K ={ve L*W) | vmin(z) <v(z) < Umaz(z) inwand v=01in Q\w}.

We want to control the membrane in order to reach a prescribed displacement
up € L*(Q) by minimizing (¢ > 0)

1

ot - 2/9(|’“—“0\2+C|’U‘2) dw}'
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[Existence of an optimal controlj

Proposition.

There exists a unique optimal control v € K.

Proof. v — u is an affine function from K into H} ().

The integrand of J is a positive "polynomial” of degree two in wv.

v — J(v) is strongly convex on K which is convex.

Remark. The existence is often more delicate to prove, but the important

thing here is to compute a gradient J'(v) for numerical purposes.

Important notice: the solution u of the p.d.e. depends on the control v.

G. Allaire, Ecole Polytechnique Optimal design of structures



[Gradient and optimality condition]

The safest and simplest way of computing a gradient is to evaluate the
directional derivative

i) =Jw+tw) = j’(O):<J’(v),w>:/QJ’(v)wda:.

By linearity, we have u(v + tw) = u(v) + tu(w) with
—Au(w) =w in ()
u(w) = on 0.

In other words, @(w) = (u'(v), w).

Since J(v) is quadratic the computation is very simple and we obtain

/Q T (0)w dz = /Q ((u(v) — uo)ii(w) + cvw) d,

Unfortunately J'(v) is not explicit because we cannot factorize out

w in a(w) !
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(Adj oint State]

To simplify the gradient formula we use the so-called adjoint state p, defined
as the unique solution in H} () of

—Ap=u—ug in
p=20 on 0€).

We multiply the equation for @(w) by p and conversely

equation for p x u(w) = / Vp - Vau(w)dr = / (u — ug)u(w) dx
Q Q

equation for u(w) X p = / Vi(w) - Vpdr = / wp dx
Q Q

Comparing these two equalities we deduce that

/Q(u—uo)’&(w) dx:/gwpd:r; = /QJ'(U)wdazzfg(ercv)wd:U.
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[Conclusion on the adjoint state]

We found an explicit formula of the gradient
J'(v) = p+ cv.

Adjoint method: computation of the gradient by solving 2 boundary value
problems (u and p).

If one does not use the adjoint: for each direction w one must solve 2

boundary value problems (u and @(w)) to evaluate (J'(v), w).

For example, if J'(v) is a vector of dimension n, its n components are

obtained by solving (n + 1) problems !
Very efficient in practice: it is the best possible method.

Inconvenient: if one uses a black-box software to compute u, it can be

very difficult to modify it in order to get the adjoint state p.
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[Further remarks on the notion of adjoint state)

[0 If the state equation is not self-adjoint (the bilinear form is not
symmetric), the operator of the adjoint equation is the transposed or
adjoint of the direct operator.

If the state equation is time dependent with an initial condition, then the
adjoint equation is time dependent too, but backward with a final

condition.
[ If the state equation is non-linear, the adjoint equation is linear.

The adjoint is not just a trick ! It can be deduced from the Lagrangian of the

problem.
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[General method to find the adjoint equation]

We consider the state equation as a constraint and, for any
(0,4,p) € L*(Q) x H}(Q) x Hi(Q), we introduce the Lagrangian of the
minimization problem

1
£6,0,5) =5 [ (a -l +cioP)do+ [ pAa+ f+9)da,
Q Q

where p is the Lagrange multiplier for the constraint which links the two
independent variables v and .

Integrating by parts yields

/ (\’&—uo|2—|—c\?}|2) dx+/(—V]§.V@+fﬁ+@]§) dr.
§2 Q

Proposition. The optimality conditions are equivalent to the stationnarity of
the Lagrangian, i.e.,

oL oL OL
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° = 0 = by definition, we recover the equation satisfied by the state wu.

o = 0 = equation satisfied by the adjoint state p. Indeed,

lu(t) = L(0, 0+ 19,p) = %(0)=<g—§,¢>Z/Q((@—%W—Vﬁ-vwdw

which is the variational formulation of the adjoint equation.

o %&£ — ( = formula for J'(v). Indeed,

0o (t) = L(0+ tw, 4, p) = E;(O):<g—§,w>:/(c@—l—ﬁ)wd:€
Q
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[Simple formula for the derivativej

In the preceding proof we obtained

oc

J/(U) — %(Ua uvp)

with the state v and the adjoint p (both depending on v).

It is not a surprise ! Indeed,
J(v) = L(v,u,p) Vp

because u is the state. Thus, if u(v) is differentiable, we get

oL oL ou

A A

(7' (0), w) = (5= (0, 0,9),0) + (= (0,0,5), 5 (w))

We then take p = p, the adjoint, to obtain

(' (0), w) = (9 (v, p), )
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[Another interpretation of the adjoint Statej

The adjoint state p is the Lagrange multiplier for the constraint of the state

equation. But it is also a sensitivity function.

Define the Lagrangian

1
L(v,0,p, f)= 5/9 (Ja — U |? +C|@\2) dx + /Q(—Vﬁ-V?lJrfﬁJr@ﬁ) dx.

We study the sensitivity of the minimum with respect to variations of f.

We denote by v(f), u(f) and p(f) the optimal values, depending on f. We
assume that they are differentiable with respect to f. Then

Vi (@) = ()

p gives the derivative (without further computation) of the minimun with
respect to f !

Indeed J(v(f)) = L©(f), u(f), p(f), f) and %& = 9£ — 9L _ ¢,
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