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✞

✝

☎

✆
Boundary value problems

Ω

Ω

Ω

D

N

Membrane model. f = bulk force, g = surface load.














−∆u = f in Ω,

u = 0 on ∂ΩD,

∂u
∂n

= g on ∂ΩN

n = unit normal vector,

notation: ∂u
∂n

= ∇u · n.
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✞

✝

☎

✆
Key idea which must be mastered:

The variational approach

☞ Boundary value problem = p.d.e. + boundary condition

☞ It is proved that a boundary value problem is equivalent to its variational

formulation.

☞ From a mechanical point of view, the variational formulation is just the

principle of virtual work.

☞ Any variational formulation can be written as

find u ∈ V such that a(u, v) = L(v) ∀ v ∈ V.

☞ This approach gives an existence theory for solutions and yields numerical

methods such as finite elements for computing them.

☞ It is also a key tool for shape optimization.
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✞

✝

☎

✆
Technical ingredients

Green’s formula:
∫

Ω

∆u(x)v(x) dx = −

∫

Ω

∇u(x) · ∇v(x) dx+

∫

∂Ω

∂u

∂n
(x)v(x) ds

Sobolev spaces (functions with finite energy):

u ∈ H1(Ω) ⇔

∫

Ω

(

|∇u(x)|2 + |u(x)|2
)

dx < +∞

u ∈ H1
0 (Ω) ⇔ u ∈ H1(Ω) and u = 0 on ∂Ω

☞ The Hilbert space V is usually a Sobolev space.

☞ To find a and L, the p.d.e. is multiplied by a test function.

☞ Integrate by parts using Green’s formula.

☞ Use the boundary conditions for simplifying the boundary integrals.
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✞

✝

☎

✆
Recipe

How to remember Green’s formula ? It is enough to know the simple formula
∫

Ω

∂w

∂xi
(x) dx =

∫

∂Ω

w(x)ni ds

with ni(x), the i-th component of the exterior unit normal vector to ∂Ω (to

remember that it is the exterior normal, think about the 1-d formula !). All

type of Green’s formulas are deduced from this one.

As an example, take w = v ∂u
∂xi

and sum w.r.t. i to get

∫

Ω

∆u(x)v(x) dx = −

∫

Ω

∇u(x) · ∇v(x) dx+

∫

∂Ω

∂u

∂n
(x)v(x) ds
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✞

✝

☎

✆Variational formulation

Integration by parts yields
∫

Ω

f v dx = −

∫

Ω

∆u v dx =

∫

Ω

∇u · ∇v dx−

∫

∂Ω

∂u

∂n
v ds

☞ The Dirichlet B.C. is imposed to the test functions.

☞ The Neumann B.C. is just put into the variational formulation.

Adequate choice of the Sobolev space:

V =
{

v ∈ H1(Ω) such that v = 0 on ∂ΩD

}

After simplification we get: Find u ∈ V such that
∫

Ω

∇u · ∇v dx =

∫

Ω

f v dx+

∫

∂ΩN

g v ds ∀ v ∈ V.

variational formulation (V.F.) ⇔ boundary value problem (B.V.P.)

Lax-Milgram Theorem ⇒ existence and uniqueness of u ∈ V

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Checking the equivalence V.F ⇔ B.V.P.

We already saw that u solution of B.V.P. ⇒ u solution of V.F.

Let us check that u solution of V.F. ⇒ u solution of B.V.P.

Let u ∈ V =
{

v ∈ H1(Ω) such that v = 0 on ∂ΩD

}

satisfy

∫

Ω

∇u · ∇v dx =

∫

Ω

f v dx+

∫

∂ΩN

g v ds ∀ v ∈ V.

Integrating by parts (backwards) yields

−

∫

Ω

∆u v dx+

∫

∂Ω

∂u

∂n
v ds =

∫

Ω

f v dx+

∫

∂ΩN

g v ds ∀ v ∈ V.

Taking first v with compact support in Ω leads to

−∆u = f in Ω.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Taking into account this first equality, the V.F. becomes
∫

∂Ω

∂u

∂n
v ds =

∫

∂ΩN

g v ds ∀ v ∈ V.

In a second step, v is any function with a trace on ∂ΩN . Thus

∂u

∂n
= g on ∂ΩN .

The Dirichlet B.C. u = 0 on ∂ΩD is recovered because u ∈ V .

Eventually, u is a (weak) solution of the B.V.P.















−∆u = f in Ω,

u = 0 on ∂ΩD,

∂u
∂n

= g on ∂ΩN .
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Remark: if ∂ΩD = ∅ (no clamping), then a necessary and sufficient condition

of existence is the force equilibrium:
∫

Ω

f dx+

∫

∂Ω

g ds = 0.

Furthermore, uniqueness is obtained up to an additive constant, i.e., up to a

rigid displacement.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Linearized elasticity system



























− divσ = f in Ω

with σ = 2µe(u) + λ tr(e(u)) Id

u = 0 on ∂ΩD

σn = g on ∂ΩN ,

e(u) =
1

2

(

∇u+ (∇u)t
)

=
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

1≤i,j≤N

V =
{

v ∈ H1(Ω)N such that v = 0 on ∂ΩD

}

Variational formulation: find u ∈ V such that
∫

Ω

2µe(u) · e(v) dx+

∫

Ω

λdivu divv dx =

∫

Ω

f · v dx+

∫

∂ΩN

g · v ds ∀ v ∈ V.

G. Allaire, Ecole Polytechnique Optimal design of structures
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FINITE ELEMENT METHOD (F.E.M.)

✞

✝

☎

✆
Variational approximation

Exact variational formulation:

Find u ∈ V such that a(u, v) = L(v) ∀ v ∈ V.

Approximate variational formulation (Galerkin):

Find uh ∈ Vh such that a(uh, vh) = L(vh) ∀ vh ∈ Vh

where Vh ⊂ V is a finite-dimensional subspace.

The finite element method amounts to properly define simple subspaces Vh,

linked to the notion of mesh of the domain Ω.
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Introducing a basis (φj)1≤j≤Nh
of Vh, we define

uh =

Nh
∑

j=1

ujφj with Uh = (u1, ..., uNh
) ∈ RNh

The approximate V.F. is equivalent to

Find Uh ∈ RNh such that a





Nh
∑

j=1

ujφj , φi



 = L(φi) ∀ 1 ≤ i ≤ Nh,

which is nothing but a linear system

KhUh = bh with (Kh)ij = a(φj , φi), (bh)i = L(φi).

Remark: the coerciveness of a(u, v) implies that the rigidity matrix Kh is

positive definite. On the same token, the symmetry of a(u, v) implies that of

Kh.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Lagrange P1 finite elements in N = 1 dimension

Uniform mesh with nodes (or vertices) (xj = jh)0≤j≤n+1 where h = 1
n+1 .

x0 xj xn+1=1=0 x xn−1 nx x1 2

vh

φj

Vh = space of piecewise affine and globally continuous functions

φj(x) = φ

(

x− xj

h

)

with φ(x) =







1− |x| if |x| ≤ 1,

0 if |x| > 1.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Resulting linear system

We have to solve the linear system KhUh = bh where Kh is the rigidity matrix

Kh =

(∫ 1

0

φ′j(x)φ
′
i(x) dx

)

1≤i,j≤n

, bh =

(∫ 1

0

f(x)φi(x) dx

)

1≤i≤n

,

uh(x) =

Nh
∑

j=1

ujφj(x) with Uh = (u1, ..., uNh
) ∈ RNh .

A straightforward calculation shows that Kh is tridiagonal

Kh = h−1





















2 −1 0

−1 2 −1

. . .
. . .

. . .

−1 2 −1

0 −1 2





















.
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✞

✝

☎

✆
Resulting linear system (ctd.)

To obtain explicitly the right hand side bh we have to compute the integrals

(bh)i =

∫ xi+1

xi−1

f(x)φi(x) dx for 1 ≤ i ≤ n.

For that purpose one uses quadrature formulas (or numerical integration). For

example, the “trapezoidal rule”

1

xi+1 − xi

∫ xi+1

xi

ψ(x) dx ≈
1

2
(ψ(xi+1) + ψ(xi)) ,

Remark. In most cases, Gauss quadrature is employed yielding optimal

order.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Convergence of the F.E.M.

Theorem. Let u ∈ H1
0 (0, 1) and uh ∈ V0h be the exact and approximate

solutions, respectively. The P1 finite element method converges in the sense

that

lim
h→0

‖u− uh‖H1(0,1) = 0.

Furthermore, if u ∈ H2(0, 1) (which is true as soon as f ∈ L2(0, 1)), then

there exists a constant C, which does not depend on h, such that

‖u− uh‖H1(0,1) ≤ Ch‖u′′‖L2(0,1) = Ch‖f‖L2(0,1).

Remark. One advantage of the V.F. (in comparison to the strong form) is

that the F.E. basis functions need not to be twice differentiable but merely

once.

G. Allaire, Ecole Polytechnique Optimal design of structures
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F.E.M. IN HIGHER DIMENSIONS N ≥ 2

✞

✝

☎

✆
Lagrange P1 finite elements

The domain is meshed by triangles in dimension N = 2 or tetrahedra in

dimension N = 3 with vertices denoted by (aj)1≤j≤N+1 in RN .

We shall use FreeFem++ http://www.freefem.org

G. Allaire, Ecole Polytechnique Optimal design of structures
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Lemma Let K be a triangle or a tetrahedron with vertices (aj)1≤j≤N+1. Any

affine function or polynomial p ∈ P1 can be written as

p(x) =

N+1
∑

j=1

p(aj)λj(x),

where (λj(x))1≤j≤N+1 are the barycentric coordinates of x ∈ RN defined by






∑N+1
j=1 ai,jλj = xi for 1 ≤ i ≤ N

∑N+1
j=1 λj = 1

In other words, any P1 function is uniquely characterized by its

(nodal) values at the vertices or nodes of the mesh.

G. Allaire, Ecole Polytechnique Optimal design of structures
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The Lagrange P1 finite element method (triangular F.E. of order 1)

associated to a mesh Th is defined by

Vh =
{

v ∈ C(Ω) such that v |Ki
∈ P1 for any Ki ∈ Th

}

.

Basis function of Vh associated to one node or vertex of the mesh.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Resulting linear system

We have to solve the linear system KhUh = bh where Kh is the rigidity matrix

Kh =

(∫

Ω

∇φj · ∇φi dx

)

1≤i,j≤ndl

, bh =

(∫

Ω

fφi dx

)

1≤i≤ndl

,

uh(x) =

Nh
∑

j=1

ujφj(x) with Uh = (uh(âj))1≤j≤ndl

∈ Rndl

Quadrature formula for an approximate computation of integrals

∫

K

ψ(x) dx ≈
Volume(K)

N + 1

N+1
∑

i=1

ψ(ai)

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Rectangular finite elements Q1

A N -rectangle K in RN is defined as
∏N

i=1[li, Li] with −∞ < li < Li < +∞.

Its vertices are (aj)1≤j≤2N .

G. Allaire, Ecole Polytechnique Optimal design of structures
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The set Q1 is made of polynomials of degree less or equal to 1 with respect

to each variable ( 6= P1)

Q1 =
{

p(x) =
∑

0≤i1≤1,...,0≤iN≤1

αi1,...,iNx
i1
1 · · ·xiNN avec x = (x1, ..., xN )

}

In other words, Q1 is defined as the tensor product of 1− d affine polynomials

in each variable.

Any Q1 polynomial is uniquely characterized by its values at the vertices

(aj)1≤j≤2N of a N -rectangle.

G. Allaire, Ecole Polytechnique Optimal design of structures
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The Lagrange Q1 finite element method (quadrangular F.E. of order 1)

associated to a mesh Th is defined by

Vh =
{

v ∈ C(Ω) such that v |Ki
∈ Q1 for any Ki ∈ Th

}

.

Basis function of Vh associated to one node or vertex of the mesh.
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