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DEFINITIONS

Let V be a Banach space, i.e., a normed vector space which is complete (any

Cauchy sequence is converging in V ).

Let K ⊂ V be a non-empty subset. Let J : V → IR. We consider

inf
v∈K⊂V

J(v).

Definition. An element u is called a local minimizer of J on K if

u ∈ K and ∃δ > 0 , ∀v ∈ K , ‖v − u‖ < δ =⇒ J(v) ≥ J(u) .

An element u is called a global minimizer of J on K if

u ∈ K and J(v) ≥ J(u) ∀v ∈ K .

(difference: theory ↔ global / numerics ↔ local)

G. Allaire, Ecole Polytechnique Optimal design of structures
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Definition. A minimizing sequence of a function J on the set K is a

sequence (un)n∈IN such that

un ∈ K ∀n and lim
n→+∞

J(un) = inf
v∈K

J(v).

By definition of the infimum value of J on K there always exist

minimizing sequences !

G. Allaire, Ecole Polytechnique Optimal design of structures
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Optimization in finite dimension V = IRN

Theorem. Let K be a non-empty closed subset of IRN and J a continuous

function from K to IR satisfying the so-called “infinite at infinity” property,

i.e.,

∀(un)n≥0 sequence in K , lim
n→+∞

‖un‖ = +∞ =⇒ lim
n→+∞

J(un) = +∞ .

Then there exists at least one minimizer of J on K. Furthermore, from each

minimizing sequence of J on K one can extract a subsequence which

converges to a minimum of J on K.

(Main idea: the closed bounded sets are compact in finite dimension.)

G. Allaire, Ecole Polytechnique Optimal design of structures
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Optimization in infinite dimension

Difficulty: a continuous function on a closed bounded set does not

necessarily attained its minimum !

Counter-example of non-existence: let H1(0, 1) be the usual Sobolev

space with its norm ‖v‖ =
(

∫ 1

0

(

v′(x)2 + v(x)2
)

dx
)1/2

. Let

J(v) =

∫ 1

0

(

(|v′(x)| − 1)2 + v(x)2
)

dx .

One can check that J is continuous and “infinite at infinity”. Nevertheless the

minimization problem

inf
v∈H1(0,1)

J(v)

does not admit a minimizer. (Difficulty independent on the choice of the

functional space.)

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆Proof

There exists no v ∈ H1(0, 1) such that J(v) = 0 but, still,
(

inf
v∈H1(0,1)

J(v)

)

= 0,

since, upon defining the sequence un such that (un)′ = ±1,

0 1k/n

1/n

we check that J(un) =
∫ 1

0
un(x)2dx = 1

4n → 0.

We clearly see in this example that the minimizing sequence un is

“oscillating” more and more and is not compact in H1(0, 1) (although it is

bounded in the same space).

G. Allaire, Ecole Polytechnique Optimal design of structures
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A parenthesis in material sciences

The non-existence of minimizers for minimization problems is useful in

material sciences !

The Ball-James theory (1987).

Shape memory materials = alloys with phase transition.

Co-existence of several crystalline phases: austenite and martensite.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Cu-Al-Ni alloy (courtesy of YONG S. CHU)

G. Allaire, Ecole Polytechnique Optimal design of structures
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J. Ball and R. James proposed the following mechanism: to sustain the

applied forces, the alloy has a tendency to coexist under different phases,

suitably aligned, which minimize the energy ⇒ minimizing sequence !

Energie elastique

Austenite Martensite

G. Allaire, Ecole Polytechnique Optimal design of structures
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Convex analysis

To obtain the existence of minimizers we add a convexity assumption.

Definition. A set K ⊂ V is said to be convex if, for any x, y ∈ K and for

any θ ∈ [0, 1], (θx+ (1− θ)y) belongs to K.

Definition. A function J , defined from a non-empty convex set K ∈ V into

IR is convex on K if

J(θu+ (1− θ)v) ≤ θJ(u) + (1− θ)J(v) ∀u, v ∈ K , ∀ θ ∈ [0, 1] .

Furthermore, J is strictly convex if the inequality is strict whenever u 6= v

and θ ∈]0, 1[.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆Existence result

Theorem. Let K be a non-empty closed convex set in a reflexive Banach

space V , and J a convex continuous function on K, which is “infinite at

infinity” in K, i.e.,

∀(un)n≥0 sequence in K , lim
n→+∞

‖un‖ = +∞ =⇒ lim
n→+∞

J(un) = +∞ .

Then, there exists a minimizer of J in K.

Remarks:

1. V reflexive Banach space ⇔ (V ′)′ = V (V ′ is the dual of V )

2. The theorem is still true if V is just the dual of a separable Banach space.

3. In practice, this assumption is satisfied for all the functional

spaces which we shall use: for example, Lp(Ω) with 1 < p ≤ +∞.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Uniqueness

Proposition. If J is strictly convex, then there exists at most one minimizer

of J .

Proposition. If J is convex on the convex set K, then any local minimizer of

J on K is a global minimizer.

Remark. For convex functions there is no difference between local and global

minimizers.

Remark. Convexity is not the only tool to prove existence of minimizers.

Another method is, for example, compactness.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Differentiability

Definition. Let V be a Banach space. A function J , defined from a

neighborhood of u ∈ V into IR, is said to be differentiable in the sense of

Fréchet at u if there exists a continuous linear form on V , L ∈ V ′, such that

J(u+ w) = J(u) + L(w) + o(w) , with lim
w→0

|o(w)|

‖w‖
= 0 .

We call L the differential (or derivative, or gradient) of J at u and we denote

it by L = J ′(u), or L(w) = 〈J ′(u), w〉V ′,V .

☞ If V is a Hilbert space, its dual V ′ can be identified with V itself thanks

to the Riesz representation theorem. Thus, there exists a unique p ∈ V

such that 〈p, w〉 = L(w). We also write p = J ′(u).

☞ We use this identification V = V ′ if V = IRn or V = L2(Ω).

☞ In practice, it is often easier to compute the directional derivative

j′(0) = 〈J ′(u), w〉V ′,V with j(t) = J(u+ tw).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
A basic example to remember

Consider the variational formulation

find u ∈ V such that a(u,w) = L(w) ∀w ∈ V

where a is a symmetric coercive continuous bilinear form and L is a

continuous linear form.

Define the energy

J(v) =
1

2
a(v, v)− L(v)

Lemma. u is the unique minimizer of J

J(u) = min
v∈V

J(v)

Proof. We check that the optimality condition J ′(u) = 0 is equivalent to the

variational formulation.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Computing the directional derivative is simpler than computing J ′(v) !

We define j(t) = J(u+ tw)

j(t) =
t2

2
a(w,w) + t

(

a(u,w)− L(w)
)

+ J(u)

and we differentiate t → j(t) (a polynomial of degree 2 !)

j′(t) = ta(w,w) +
(

a(u,w)− L(w)
)

.

By definition, j′(0) = 〈J ′(u), w〉V ′,V , thus

〈J ′(u), w〉V ′,V = a(u,w)− L(w).

It is not obvious to deduce a formula for J ′(u)...

but it is enough, most of the time, to know 〈J ′(u), w〉.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Examples: (we use the ”usual” scalar product in L2)

1. J(v) =

∫

Ω

(

1

2
v2 − fv

)

dx with v ∈ L2(Ω)

〈J ′(u), w〉 =

∫

Ω

(uw − fw) dx.

Thus

J ′(u) = u− f ∈ L2(Ω) (identified with its dual)

2. J(v) =

∫

Ω

(

1

2
|∇v|2 − fv

)

dx with v ∈ H1
0 (Ω)

〈J ′(u), w〉 =

∫

Ω

(∇u · ∇w − fw) dx.

Therefore, after integrating by parts,

J ′(u) = −∆u− f ∈ H−1(Ω) =
(

H1
0 (Ω)

)′
(not identified with its dual)

G. Allaire, Ecole Polytechnique Optimal design of structures
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Remark (delicate). If instead of the ”usual” scalar product in L2 we rather

use the H1 scalar product, then we identify J ′(u) with a different function.

J(v) =

∫

Ω

(

1

2
|∇v|2 − fv

)

dx

From the directional derivative

〈J ′(u), w〉 =

∫

Ω

(∇u · ∇w − fw) dx,

using the H1 scalar product 〈φ,w〉 =

∫

Ω

(∇φ · ∇w + φw) dx, we deduce

−∆J ′(u) + J ′(u) = −∆u− f, J ′(u) ∈ H1
0 (Ω).

Here we identify H1
0 (Ω) with its dual.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Optimality conditions

Theorem (Euler inequality). Let u ∈ K with K convex. We assume that

J is differentiable at u. If u is a local minimizer of J in K, then

〈J ′(u), v − u〉 ≥ 0 ∀ v ∈ K .

If u ∈ K satisfies this inequality and if J is convex, then u is a global

minimizer of J in K.

Remarks.

☞ If u belongs to the interior of K, we deduce the Euler equation J ′(u) = 0.

☞ The Euler inequality is usually just a necessary condition. It becomes

necessary and sufficient for convex functions.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Minimization with equality constraints

inf
v∈V, F (v)=0

J(v)

with F (v) = (F1(v), ..., FM (v)) differentiable from V into IRM .

Definition. We call Lagrangian of this problem the function

L(v, µ) = J(v) +

M
∑

i=1

µiFi(v) = J(v) + µ · F (v) ∀(v, µ) ∈ V × IRM .

The new variable µ ∈ IRM is called Lagrange multiplier for the constraint

F (v) = 0.

Lemma. The constrained minimization problem is equivalent to

inf
v∈V, F (v)=0

J(v) = inf
v∈V

sup
µ∈IRM

L(v, µ).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Stationarity of the Lagrangian

Theorem. Assume that J and F are continuously differentiable in a

neighborhood of u ∈ V such that F (u) = 0. If u is a local minimizer and if the

vectors
(

F ′
i (u)

)

1≤i≤M
are linearly independent, then there exist Lagrange

multipliers λ1, . . . , λM ∈ IR such that

∂L

∂v
(u, λ) = J ′(u) + λ · F ′(u) = 0 and

∂L

∂µ
(u, λ) = F (u) = 0 .

G. Allaire, Ecole Polytechnique Optimal design of structures
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Minimization with inequality constraints

inf
v∈V, F (v)≤0

J(v)

where F (v) ≤ 0 means that Fi(v) ≤ 0 for 1 ≤ i ≤ M , with F1, . . . , FM

differentiable from V into IR.

Definition. Let u be such that F (u) ≤ 0. The set

I(u) = {i ∈ {1, . . . ,M} , Fi(u) = 0}

is called the set of active constraints at u. The inequality constraints are said

to be qualified at u ∈ K if the vectors (F ′
i (u))i∈I(u) are linearly independent.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Definition. We call Lagrangian of the previous problem the function

L(v, µ) = J(v) +
M
∑

i=1

µiFi(v) = J(v) + µ · F (v) ∀(v, µ) ∈ V × (IR+)M .

The new non-negative variable µ ∈ (IR+)M is called Lagrange multiplier for

the constraint F (v) ≤ 0.

Lemma. The constrained minimization problem is equivalent to

inf
v∈V, F (v)≤0

J(v) = inf
v∈V

sup
µ∈(IR+)M

L(v, µ).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Stationarity of the Lagrangian

Theorem. We assume that the constraints are qualified at u satisfying

F (u) ≤ 0. If u is a local minimizer, there exist Lagrange multipliers

λ1, . . . , λM ≥ 0 such that

J ′(u) +
M
∑

i=1

λiF
′
i (u) = 0 , λi ≥ 0 , λi = 0 if Fi(u) < 0 ∀ i ∈ {1, . . . ,M} .

This condition is indeed the stationarity of the Lagrangian since

∂L

∂v
(u, λ) = J ′(u) + λ · F ′(u) = 0,

and the condition λ ≥ 0, F (u) ≤ 0, λ · F (u) = 0 is equivalent to the Euler

inequality for the maximization with respect to µ in the closed convex set

(IR+)M

∂L

∂µ
(u, λ) · (µ− λ) = F (u) · (µ− λ) ≤ 0 ∀µ ∈ (IR+)M .

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Interpreting the Lagrange multipliers

Define the Lagrangian for the minimization of J(v) under the constraint

F (v) = c

L(v, µ, c) = J(v) + µ · (F (v)− c)

We study the sensitivity of the minimal value with respect to variations of c.

Let u(c) and λ(c) be the minimizer and the optimal Lagrange multiplier. We

assume that they are differentiable with respect to c. Then

∇c

(

J(u(c))
)

= −λ(c).

λ gives the derivative of the minimal value with respect to c without any

further calculation ! Indeed

∇c

(

J(u(c))
)

= ∇c

(

L(u(c), λ(c), c)
)

=
∂L

∂c
(u(c), λ(c), c) = −λ(c)

because
∂L

∂v
(u(c), λ(c), c) = 0 ,

∂L

∂µ
(u(c), λ(c), c) = 0 .

G. Allaire, Ecole Polytechnique Optimal design of structures
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Duality and saddle point

Definition. Let L(v, q) be a Lagrangian. We call (u, p) ∈ U × P a saddle

point (or mountain pass, or min-max) of L in U × P if

∀ q ∈ P L(u, q) ≤ L(u, p) ≤ L(v, p) ∀ v ∈ U .

For v ∈ U and q ∈ P , define J (v) = supq∈P L(v, q) and G(q) = infv∈U L(v, q).

We call primal problem

inf
v∈U

J (v) ,

and dual problem

sup
q∈P

G(q) .

Example. U = V , P = IRM or IRM
+ , and L(v, q) = J(v) + q · F (v). In this

case J (v) = J(v) if F (v) = 0 and J (v) = +∞ otherwise, while there is no

constraints for the dual problem (except the simple one, q ∈ P ).

G. Allaire, Ecole Polytechnique Optimal design of structures
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Lemma (weak duality). It always holds true that

inf
v∈U

J (v) ≥ sup
q∈P

G(q).

Proof: inf supL ≥ sup inf L.

Theorem (strong duality). The couple (u, p) is a saddle point of L in

U × P if and only if

J (u) = min
v∈U

J (v) = max
q∈P

G(q) = G(p) .

Remark. The dual problem is often simpler than the primal one because it

has no constraints. After solving the dual, the primal solution is obtained

through an unconstrained minimization.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Application: dual or complementary energy

Very important for the sequel !

Let f ∈ L2(Ω). We already know that solving






−∆u = f in Ω

u = 0 on ∂Ω

is equivalent to minimizing the (primal) energy

min
v∈H1

0 (Ω)

{

J(v) =
1

2

∫

Ω

|∇v|2dx−

∫

Ω

fv dx

}

We introduce a dual or complementary energy

max
τ∈L2(Ω)N

− divτ=f in Ω

{

G(τ) = −
1

2

∫

Ω

|τ |2dx

}

.

J is convex and G is concave.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Proposition. Let u ∈ H1
0 (Ω) be the unique solution of the p.d.e. Defining

σ = ∇u we have

J(u) = min
v∈H1

0 (Ω)
J(v) = max

τ∈L2(Ω)N

− divτ=f in Ω

G(τ) = G(σ),

and σ is the unique maximizer of G.

Proof. We define a Lagrangian in H1
0 (Ω)× L2(Ω)N

L(v, τ) = −
1

2

∫

Ω

|τ |2dx−

∫

Ω

(f + divτ)v dx.

By integrating by parts

L(v, τ) = −
1

2

∫

Ω

|τ |2dx−

∫

Ω

fv dx+

∫

Ω

τ · ∇v dx.

v is the Lagrange multiplier for the constraint − divτ = f .

We check that the dual of the dual is the primal !

max
τ

L(v, τ) = J(v).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
End of the proof

By definition, if τ satisfies the constraint − divτ = f , we have

G(τ) = L(v, τ) ∀v

On the other hand,

L(v, τ) ≤ max
τ

L(v, τ) = J(v).

Besides, integrating by parts yields

∫

Ω

|∇u|2dx =

∫

Ω

fu dx, thus

J(u) =
1

2

∫

Ω

|∇u|2dx−

∫

Ω

fu dx = −
1

2

∫

Ω

|∇u|2dx = G(∇u).

In other words, for any τ satisfying − divτ = f ,

G(τ) = L(u, τ) ≤ J(u) = G(σ)

which means that σ = ∇u is a maximizer of G among all τ ’s such that

− divτ = f .

G. Allaire, Ecole Polytechnique Optimal design of structures
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Numerical algorithms for minimization problems

A simplified classification:

☞ Stochastic algorithms: global minimization. Examples: Monte-Carlo,

simulated annealing, genetic. See the last chapter and the last course.

Inconvenient: high CPU cost.

☞ Deterministic algorithms: local minimization. Examples: gradient

methods, Newton.

Inconvenient: they require the gradient of the objective function.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Gradient descent with an optimal step

The goal is to solve

inf
v∈V

J(v) .

Initialization: choose u0 ∈ V . Iterations: for n ≥ 0

un+1 = un − µn J ′(un) ,

where µn ∈ IR is chosen at each iteration such that

J(un+1) = inf
µ∈IR+

J
(

un − µJ ′(un)
)

.

Main idea: if un+1 = un − µwn with a small µ > 0, then

J(un+1) = J(un)− µ〈J ′(un), wn〉+O(µ2),

thus, to decrease J , the best ”first order” choice is wn proportional to J ′(un).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Convergence

Theorem Assume that J is differentiable, strongly convex with α > 0,

〈J ′(u)− J ′(v), u− v〉 ≥ α‖u− v‖2 ∀u, v ∈ V,

and J ′ is Lipschitzian on any bounded set of V , i.e.,

∀M > 0 , ∃CM > 0 , ‖v‖+ ‖w‖ ≤ M ⇒ ‖J ′(v)− J ′(w)‖ ≤ CM‖v − w‖ .

Then the gradient algorithm with an optimal step converges: for any u0, the

sequence (un) converges to the unique minimizer u.

Remark. If J is not strongly convex:

☞ the algorithm may not converge because it oscillates between several

minimizers,

☞ the algorithm may converge to a local minimizer,

☞ the minimizer obtained by the algorithm may vary with the initialization.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Gradient descent with a fixed step

The goal is to solve

inf
v∈V

J(v) .

Initialization: choose u0 ∈ V . Iterations: for n ≥ 0

un+1 = un − µJ ′(un) ,

Theorem. Assume that J is differentiable, strongly convex, and J ′ is

Lipschitzian on any bounded set of V . Then, if µ > 0 is small enough, the

gradient algorithm with fixed step converges: for any u0, the sequence (un)

converges to the unique minimizer u.

Remark. An intermediate variant is: increase the step, µn+1 = 1.1× µn, if J

decreases, and reduce the step, µn+1 = 0.5× µn, if J increases.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Projected gradient

Let K be a non-empty closed convex subset of V . The goal is to solve

inf
v∈K

J(v) .

Initialization: choose u0 ∈ K. Iterations: for n ≥ 0

un+1 = PK

(

un − µJ ′(un)
)

,

where PK is the projection on K.

Theorem. Assume that J is differentiable, strongly convex, and J ′ is

Lipschitzian on any bounded set of V . Then, if µ > 0 is small enough, the

projected gradient algorithm with fixed step converges.

Remark. Another possibility is to penalize the constraints, i.e., for small

ǫ > 0 we replace

inf
v∈V, F (v)≤0

J(v) by inf
v∈V

(

J(v) +
1

ǫ

M
∑

i=1

[max (Fi(v), 0)]
2

)

.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Examples of projection operators PK

☞ If V = IRM and K =
∏M

i=1 [ai, bi], then for x = (x1, x2, . . . , xM ) ∈ IRM

PK(x) = y with yi = min (max (ai, xi), bi) pour 1 ≤ i ≤ M .

☞ If V = IRM and K = {x ∈ IRM ∑M
i=1 xi = c0}, then

PK(x) = y with yi = xi − λ and λ =
1

M

(

−c0 +
M
∑

i=1

xi

)

.

☞ Same if V = L2(Ω) and K = {φ ∈ V | a(x) ≤ φ(x) ≤ b(x)} or

K = {φ ∈ V |
∫

Ω
φ dx = c0}.

For more general closed convex sets K, PK can be very hard to determine. In

such cases one rather uses the Uzawa algorithm which looks for a saddle point

of the Lagrangian.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Newton algorithm (of order 2)

Main idea: if V = IRN and if J ′′ ≥ 0

J(w) ≈ J(v) + J ′(v) · (w − v) +
1

2
J ′′(v)(w − v) · (w − v),

the minimizer of which is w = v − (J ′′(v))
−1

J ′(v).

Algorithm: un+1 = un − (J ′′(un))
−1

J ′(un).

☞ It converges faster if u0 is close to the minimizer u

‖un+1 − u‖ ≤ C‖un − u‖2 .

☞ It requires solving a linear system with the matrix J ′′(un).

☞ It can be generalized in a quasi-Newton method (without computing J ′′)

or to the constrained case.

G. Allaire, Ecole Polytechnique Optimal design of structures


