# OPTIMAL DESIGN OF STRUCTURES (MAP 562)

G. ALLAIRE, Th. WICK

February 1st, 2017

Department of Applied Mathematics, Ecole Polytechnique

CHAPTER VI

GEOMETRIC OPTIMIZATION

## Geometric optimization of a membrane

A membrane is occupying a variable domain  $\Omega$  in  $\mathbb{R}^N$  with boundary

$$\partial\Omega=\Gamma\cup\Gamma_N\cup\Gamma_D,$$

where  $\Gamma \neq \emptyset$  is the variable part of the boundary,  $\Gamma_D \neq \emptyset$  is a fixed part of the boundary where the membrane is clamped, and  $\Gamma_N \neq \emptyset$  is another fixed part of the boundary where the loads  $g \in L^2(\Gamma_N)$  are applied.

$$\begin{cases}
-\Delta u = 0 & \text{in } \Omega \\
u = 0 & \text{on } \Gamma_D \\
\frac{\partial u}{\partial n} = g & \text{on } \Gamma_N \\
\frac{\partial u}{\partial n} = 0 & \text{on } \Gamma
\end{cases}$$

(No bulk forces to simplify)



Shape optimization of a membrane

Geometric shape optimization problem

$$\inf_{\Omega \in \mathcal{U}_{ad}} J(\Omega)$$

We must defined the set of admissible shapes  $\mathcal{U}_{ad}$ . That is the main difficulty.

#### **Examples:**

© Compliance or work done by the load (rigidity measure)

$$J(\Omega) = \int_{\Gamma_N} g u \, ds$$

rightharpoonup Least square criterion for a target displacement  $u_0 \in L^2(\Omega)$ 

$$J(\Omega) = \int_{\Omega} |u - u_0|^2 dx$$

where u depends on  $\Omega$  through the state equation.

## 6.2 Existence results

## In full generality, there does not exist any optimal shape!

- Existence under a geometric constraint.
- Existence under a topological constraint.
- Existence under a regularity constraint.
- © Counter-example in the absence of these conditions.

## related questions:

- How to pose the problem? How to parametrize shapes?
- Calculus of variations for shapes.
- Mathematical framework for establishing numerical algorithms.

### 6.2.1 Counter-example of non-existence



Let  $D = ]0; 1[\times]0; L[$  be a rectangle in  $\mathbb{R}^2$ . We fill D with a mixture of two materials, homogeneous isotropic, characterized by an elasticity coefficient  $\beta$  for the strong material, and  $\alpha$  for the weak material (almost like void) with  $\beta >> \alpha > 0$ . We denote by  $\chi(x) = 0, 1$  the **characteristic function** of the weak phase  $\alpha$ , and we define

$$a_{\chi}(x) = \alpha \chi(x) + \beta (1 - \chi(x)).$$

(Other possible interpretation: variable thickness which can take only two values.)

State equation:

$$\begin{cases}
-\operatorname{div}(a_{\chi}\nabla u_{\chi}) = 0 & \text{in } D \\
a_{\chi}\nabla u_{\chi} \cdot n = e_{1} \cdot n & \text{on } \partial D
\end{cases}$$

Uniform horizontal loading.

Objective function: compliance

$$J(\chi) = \int_{\partial D} (e_1 \cdot n) u_{\chi} ds$$

Admissible set: no geometric or smoothness constraint, i.e.  $\chi \in L^{\infty}(D; \{0, 1\})$ . There is however a volume constraint

$$\mathcal{U}_{ad} = \left\{ \chi \in L^{\infty} \left( D; \{0, 1\} \right) \text{ such that } \frac{1}{|D|} \int_{D} \chi(x) \, dx = \theta \right\},\,$$

otherwise the strong phase would always be prefered!

The shape optimization problem is:

$$\inf_{\chi \in \mathcal{U}_{ad}} J(\chi).$$

#### Non-existence

**Proposition 6.2.** If  $0 < \theta < 1$ , there does not exist an optimal shape in the set  $\mathcal{U}_{ad}$ .

**Remark.** Cause of non-existence = lack of geometric or smoothness constraint on the shape boundary.



Many small holes are better than just a few bigger holes!

## Mechanical intuition



Minimizing sequence  $k \to +\infty$ : k rigid fibers, aligned in the principal stress  $e_1$ , and uniformly distributed. To achieve a uniform boundary condition, the fibers must be finer and finer and alternate more and more weak and strong ones.

This is the main idea of a minimizing sequence which never achieves the minimum.

Existence theories under a geometric condition

One can prove existence theorems underr various regularity or topological constraints.

- 1. Uniform cone condition (D. Chenais).
- 2. Uniform bound on the number of holes in 2-d (V. Sverak, A. Chambolle).
- 3. Uniform regularity.

In each case the goal is to prevent the oscillating behavior of minimizing sequences.

## Existence under a regularity condition

Mathematical framework for shape deformation based on diffeomorphisms applied to a reference domain  $\Omega_0$  (useful to compute a gradient too).

A space of diffeomorphisms (or smooth one-to-one map) in  $\mathbb{R}^N$ 

$$\mathcal{T} = \{ T \text{ such that } (T - \operatorname{Id}) \text{ and } (T^{-1} - \operatorname{Id}) \in W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N) \}.$$

(They are perturbations of the identity Id:  $x \to x$ .)

**Definition of**  $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$ . Space of Lipschitzian vectors fields:

$$\phi: \left\{ \begin{array}{ccc} \mathbb{R}^N & \to & \mathbb{R}^N \\ x & \to & \phi(x) \end{array} \right.$$

$$\|\phi\|_{W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)} = \sup_{x \in \mathbb{R}^N} (|\phi(x)|_{\mathbb{R}^N} + |\nabla \phi(x)|_{\mathbb{R}^{N \times N}}) < \infty$$

**Remark:**  $\phi$  is continuous but its gradient is jut bounded. Actually, one can replace  $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$  by  $C_b^1(\mathbb{R}^N;\mathbb{R}^N)$ .

## Space of admissible shapes

Let  $\Omega_0$  be a reference smooth open set.

$$\mathcal{C}(\Omega_0) = \{\Omega \text{ such that there exists } T \in \mathcal{T}, \Omega = T(\Omega_0)\}.$$

- $\cong$  Each shape  $\Omega$  is parametrized by a diffeomorphism T (not unique!).
- All admissible shapes have the same topology.
- riangleq We define a pseudo-distance on  $\mathcal{D}(\Omega_0)$

$$d(\Omega_1, \Omega_2) = \inf_{T \in \mathcal{T} \mid T(\Omega_1) = \Omega_2} \left( ||T - \operatorname{Id}|| + ||T^{-1} - \operatorname{Id}|| \right)_{W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)}.$$

If  $\Omega_0$  is bounded, it is possible to use  $C^1(\mathbb{R}^N; \mathbb{R}^N)$  instead of  $W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$ .

# Existence theory

Space of admissible shapes

$$\mathcal{U}_{ad} = \left\{ \Omega \in \mathcal{C}(\Omega_0) \text{ such that } \Gamma_D \bigcup \Gamma_N \subset \partial \Omega \text{ and } |\Omega| = V_0 \right\}.$$

For a fixed constant R > 0, we introduce the smooth subspace

$$\mathcal{U}_{ad}^{reg} = \{ \Omega \in \mathcal{U}_{ad} \text{ such that } d(\Omega, \Omega_0) \leq R, \}.$$

Interpretation: in practice, it is a "feasability" constraint.

**Theorem 6.11.** The shape optimization problem

$$\inf_{\Omega \in \mathcal{U}_{ad}^{reg}} J(\Omega)$$

admits at least one optimal solution.

**Remark.** All shapes share the same topology in  $\mathcal{U}_{ad}$ . Furthermore, the shape boundaries in  $\mathcal{U}_{ad}^{reg}$  cannot oscillate too much.

#### 6.3 Shape differentiation

**Goal:** to compute a derivative of  $J(\Omega)$  by using the parametrization based on diffeomorphisms T.

We restrict ourselves to diffeomorphisms of the type

$$T = \mathrm{Id} + \theta$$
 with  $\theta \in W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$ 

**Idea:** we differentiate  $\theta \to J((\mathrm{Id} + \theta)\Omega_0)$  at 0.

**Remark.** This approach generalizes the Hadamard method of boundary shape variations along the normal:  $\Omega_0 \to \Omega_t$  for  $t \ge 0$ 

$$\partial \Omega_t = \left\{ x_t \in \mathbb{R}^N \mid \exists x_0 \in \partial \Omega_0 \mid x_t = x_0 + t \, g(x_0) \, n(x_0) \right\}$$

with a given incremental function g.



The shape  $\Omega = (\mathrm{Id} + \theta)(\Omega_0)$  is defined by

$$\Omega = \{x + \theta(x) \mid x \in \Omega_0\}.$$

Thus  $\theta(x)$  is a vector field which plays the role of the **displacement** of the reference domain  $\Omega_0$ .

**Lemma 6.13.** For any  $\theta \in W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$  satisfying  $\|\theta\|_{W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)} < 1$ , the map  $T = \mathrm{Id} + \theta$  is one-to-one into  $\mathbb{R}^N$  and belongs to the set  $\mathcal{T}$ .

**Proof.** Based on the formula

$$\theta(x) - \theta(y) = \int_0^1 (x - y) \cdot \nabla \theta(y + t(x - y)) dt,$$

we deduce that  $|\theta(x) - \theta(y)| \le \|\theta\|_{W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)} |x-y|$  and  $\theta$  is a strict contraction. Thus,  $T = \mathrm{Id} + \theta$  is one-to-one into  $\mathbb{R}^N$ .

Indeed,  $\forall b \in \mathbb{R}^N$  the map  $K(x) = b - \theta(x)$  is a contraction and thus admits a unique fixed point y, i.e., b = T(y) and T is therefore one-to-one into  $\mathbb{R}^N$ .

Since  $\nabla T = I + \nabla \theta$  (with  $I = \nabla \operatorname{Id}$ ) and the norm of the matrix  $\nabla \theta$  is strictly smaller than 1 (||I|| = 1), the map  $\nabla T$  is invertible. We then check that  $(T^{-1} - \operatorname{Id}) \in W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$ .

#### Definition of the shape derivative

**Definition 6.15.** Let  $J(\Omega)$  be a map from the set of admissible shapes  $\mathcal{C}(\Omega_0)$  into  $\mathbb{R}$ . We say that J is shape differentiable at  $\Omega_0$  if the function

$$\theta \to J((\mathrm{Id} + \theta)(\Omega_0))$$

is Fréchet differentiable at 0 in the Banach space  $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$ , i.e., there exists a linear continuous form  $L = J'(\Omega_0)$  on  $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$  such that

$$J((\mathrm{Id} + \theta)(\Omega_0)) = J(\Omega_0) + L(\theta) + o(\theta)$$
, with  $\lim_{\theta \to 0} \frac{|o(\theta)|}{\|\theta\|} = 0$ .

 $J'(\Omega_0)$  is called the shape derivative and  $J'(\Omega_0)(\theta)$  is a directional derivative.

The directional derivative  $J'(\Omega_0)(\theta)$  depends only on the **normal** component of  $\theta$  on the boundary of  $\Omega_0$ .

This surprising property is linked to the fact that the internal variations of the field  $\theta$  does not change the shape  $\Omega$ , i.e.,

$$\theta \in C_c^1(\Omega)^N$$
 and  $\|\theta\| \ll 1 \Rightarrow (\mathrm{Id} + \theta)\Omega = \Omega$ .



**Proposition 6.15.** Let  $\Omega_0$  be a smooth bounded open set of  $\mathbb{R}^N$ . Let J be a differentiable map at  $\Omega_0$  from  $\mathcal{C}(\Omega_0)$  into  $\mathbb{R}$ . Its directional derivative  $J'(\Omega_0)(\theta)$  depends only on the normal trace on the boundary of  $\theta$ , i.e.

$$J'(\Omega_0)(\theta_1) = J'(\Omega_0)(\theta_2)$$

if  $\theta_1, \theta_2 \in C^1(\mathbb{R}^N; \mathbb{R}^N)$  satisfy

$$\theta_1 \cdot n = \theta_2 \cdot n$$
 on  $\partial \Omega_0$ .

**Proof.** Take  $\theta = \theta_2 - \theta_1$  and introduce the solution of

$$\begin{cases} \frac{dy}{dt}(t) = \theta(y(t)) \\ y(0) = x \end{cases}$$

which satisfies

$$y(t+t',x,\theta) = y(t,y(t',x,\theta),\theta)$$
 for any  $t,t' \in \mathbb{R}$   
 $y(\lambda t,x,\theta) = y(t,x,\lambda \theta)$  for any  $\lambda \in \mathbb{R}$ 

The we define the one-to-one map from  $\mathbb{R}^N$  into  $\mathbb{R}^N$ ,  $x \to e^{\theta}(x) = y(1, x, \theta)$ , the inverse of which is  $e^{-\theta}$ ,  $e^0 = \operatorname{Id}$ , and  $t \to e^{t\theta}(x)$  is the solution of the o.d.e.

**Lemma 6.20.** Let  $\theta \in W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$  be such that  $\theta \cdot n = 0$  on  $\partial \Omega_0$ . Then  $e^{t\theta}(\Omega_0) = \Omega_0$  for all  $t \in \mathbb{R}$ .

**Proof (by contradiction).** Assume  $\exists x \in \Omega_0$  such that the trajectory y(t, x) escapes from  $\Omega_0$  (or conversely). Thus  $\exists t_0 > 0$  such that  $x_0 = y(t_0, x) \in \partial \Omega_0$ .

Locally the boundary  $\partial\Omega_0$  is parametrized by an equation  $\phi(x)=0$  and the normal is  $n=n_0/|n_0|$  with  $n_0=\nabla\phi$  (defined around  $\partial\Omega_0$ ).

We modify the vector field as  $\tilde{\theta} = \theta - (\theta \cdot n)n$  to obtain a modified trajectory  $\tilde{y}(t, x_0)$  such that, for any  $t \geq t_0$ ,

$$\frac{d}{dt}\Big(\phi(\tilde{y}(t,x))\Big) = \frac{d\tilde{y}}{dt} \cdot \nabla\phi(\tilde{y}) = \tilde{\theta}(\tilde{y}) \cdot n|n_0| = 0$$

Since  $\phi(\tilde{y}(t_0, x_0)) = 0$ , we deduce  $\phi(\tilde{y}(t, x_0)) = 0$ , i.e., the trajectory  $\tilde{y}$  stays on  $\partial\Omega_0$ . Since  $\theta \cdot n = 0$  on  $\partial\Omega_0$ ,  $\tilde{y}$  is **also** a trajectory for the vector field  $\theta$ . Uniqueness of the o.d.e.'s solution yields  $\tilde{y}(t) = y(t) \in \partial\Omega_0$  for any t which is a contradiction with  $x \in \Omega_0$ .

**Remark.** The crucial point is that  $\theta$  is tangent to the boundary  $\partial\Omega_0$ .

## Proof of Proposition 6.15 (Ctd.)

Since  $e^{t\theta}(\Omega_0) = \Omega_0$  for any  $t \in \mathbb{R}$ , the function J is constant along this path and

$$\frac{dJ(e^{t\theta}(\Omega_0))}{dt}(0) = 0.$$

By the chain rule lemma we deduce

$$\frac{dJ(e^{t\theta}(\Omega_0))}{dt}(0) = J'(\Omega_0)\left(\frac{de^{t\theta}}{dt}\right)(0) = J'(\Omega_0)(\theta) = 0,$$

because the path  $e^{t\theta}(x)$  satisfies

$$\frac{de^{t\theta}(x)}{dt}(0) = \theta(x),$$

which yields the result by linearity in  $\theta$ .

#### Review of known formulas

To compute shape derivatives we need to recall how to change variables in integrals.

**Lemma 6.21.** Let  $\Omega_0$  be an open set of  $\mathbb{R}^N$ . Let  $T \in \mathcal{T}$  be a diffeomorphism and  $1 \leq p \leq +\infty$ . Then  $f \in L^p(T(\Omega_0))$  if and only if  $f \circ T \in L^p(\Omega_0)$ , and

$$\int_{T(\Omega_0)} f \, dx = \int_{\Omega_0} f \circ T \mid \det \nabla T \mid dx$$

$$\int_{T(\Omega_0)} f \mid \det(\nabla T)^{-1} \mid dx = \int_{\Omega_0} f \circ T \, dx.$$

On the other hand,  $f \in W^{1,p}(T(\Omega_0))$  if and only if  $f \circ T \in W^{1,p}(\Omega_0)$ , and

$$(\nabla f) \circ T = ((\nabla T)^{-1})^t \nabla (f \circ T).$$

(t = adjoint or transposed matrix)

Change of variables in a boundary integral.

**Lemma 6.23.** Let  $\Omega_0$  be a smooth bounded open set of  $\mathbb{R}^N$ . Let  $T \in \mathcal{T} \cap C^1(\mathbb{R}^N; \mathbb{R}^N)$  be a diffeomorphism and  $f \in L^1(\partial T(\Omega_0))$ . Then  $f \circ T \in L^1(\partial \Omega_0)$ , and we have

$$\int_{\partial T(\Omega_0)} f \, ds = \int_{\partial \Omega_0} f \circ T \mid \det \nabla T \mid \left| \left( (\nabla T)^{-1} \right)^t n \right|_{\mathbb{R}^N} ds,$$

where n is the exterior unit normal to  $\partial\Omega_0$ .

## Examples of shape derivatives

**Proposition 6.22.** Let  $\Omega_0$  be a smooth bounded open set of  $\mathbb{R}^N$ ,  $f(x) \in W^{1,1}(\mathbb{R}^N)$  and J the map from  $\mathcal{C}(\Omega_0)$  into  $\mathbb{R}$  defined by

$$J(\Omega) = \int_{\Omega} f(x) \, dx.$$

Then J is shape differentiable at  $\Omega_0$  and

$$J'(\Omega_0)(\theta) = \int_{\Omega_0} \operatorname{div}(\theta(x) f(x)) dx = \int_{\partial \Omega_0} \theta(x) \cdot n(x) f(x) ds$$

for any  $\theta \in W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$ .

**Remark.** To make sure the result is right, the safest way (but not the easiest) is to make a change of variables to get back to the reference domain  $\Omega_0$ .

## Intuitive proof



Surface swept by the transformation: difference between  $(\operatorname{Id} + \theta)\Omega_0$  and  $\Omega_0 \approx \partial\Omega_0 \times (\theta \cdot n)$ . Thus

$$\int_{(\mathrm{Id}+\theta)\Omega_0} f(x) \, dx = \int_{\Omega_0} f(x) \, dx + \int_{\partial\Omega_0} f(x)\theta \cdot n \, ds + o(\theta).$$

**Proof.** We rewrite  $J(\Omega)$  as an integral on the reference domain  $\Omega_0$ 

$$J((\operatorname{Id} + \theta)\Omega_0) = \int_{\Omega_0} f \circ (\operatorname{Id} + \theta) \mid \det(\operatorname{Id} + \nabla \theta) \mid dx.$$

The functional  $\theta \to \det(\operatorname{Id} + \nabla \theta)$  is differentiable from  $W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$  into  $L^{\infty}(\mathbb{R}^N)$  because

$$\det(\operatorname{Id} + \nabla \theta) = \det \operatorname{Id} + \operatorname{div}\theta + o(\theta) \quad \text{with} \quad \lim_{\theta \to 0} \frac{\|o(\theta)\|_{L^{\infty}(\mathbb{R}^{N};\mathbb{R}^{N})}}{\|\theta\|_{W^{1,\infty}(\mathbb{R}^{N};\mathbb{R}^{N})}} = 0.$$

On the other hand, if  $f(x) \in W^{1,1}(\mathbb{R}^N)$ , the functional  $\theta \to f \circ (\mathrm{Id} + \theta)$  is differentiable from  $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$  into  $L^1(\mathbb{R}^N)$  because

$$f \circ (\operatorname{Id} + \theta)(x) = f(x) + \nabla f(x) \cdot \theta(x) + o(\theta) \quad \text{with} \quad \lim_{\theta \to 0} \frac{\|o(\theta)\|_{L^{1}(\mathbb{R}^{N})}}{\|\theta\|_{W^{1,\infty}(\mathbb{R}^{N};\mathbb{R}^{N})}} = 0.$$

By composition of these two derivatives we obtain the result.

**Proposition 6.24.** Let  $\Omega_0$  be a smooth bounded open set of  $\mathbb{R}^N$ ,  $f(x) \in W^{2,1}(\mathbb{R}^N)$  and J the map from  $\mathcal{C}(\Omega_0)$  into  $\mathbb{R}$  defined by

$$J(\Omega) = \int_{\partial \Omega} f(x) \, ds.$$

Then J is shape differentiable at  $\Omega_0$  and

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \left( \nabla f \cdot \theta + f \left( \operatorname{div} \theta - \nabla \theta n \cdot n \right) \right) ds$$

for any  $\theta \in W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$ . By a (boundary) integration by parts this formula is equivalent to

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \theta \cdot n \left( \frac{\partial f}{\partial n} + Hf \right) ds,$$

where H is the mean curvature of  $\partial \Omega_0$  defined by H = div n.

Interpretation

## Two simple examples:

- If  $\partial \Omega_0$  is an hyperplane, then H = 0 and the variation of the boundary integral is proportional to the normal derivative of f.
- If  $f \equiv 1$ , then  $J(\Omega)$  is the perimeter (in 2-D) or the surface (in 3-D) of the domain  $\Omega$  and its variation is proportional to the mean curvature.

**Proof.** A change of variable yields

$$J((\operatorname{Id} + \theta)\Omega_0) = \int_{\partial\Omega_0} f \circ (\operatorname{Id} + \theta) |\det(\operatorname{Id} + \nabla\theta)| | ((\operatorname{Id} + \nabla\theta)^{-1})^t n|_{\mathbb{R}^N} ds.$$

We already proved that  $\theta \to \det(\operatorname{Id} + \nabla \theta)$  and  $\theta \to f \circ (\operatorname{Id} + \theta)$  are differentiables.

On the other hand,  $\theta \to ((\mathrm{Id} + \nabla \theta)^{-1})^t n$  is differentiable from  $W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$  into  $L^{\infty}(\partial \Omega_0; \mathbb{R}^N)$  because

$$\left( (\operatorname{Id} + \nabla \theta)^{-1} \right)^t n = n - (\nabla \theta)^t n + o(\theta) \quad \text{with} \quad \lim_{\theta \to 0} \frac{\|o(\theta)\|_{L^{\infty}(\partial \Omega_0; \mathbb{R}^N)}}{\|\theta\|_{W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)}} = 0.$$

By composition with the derivative of  $g \to |g|_{\mathbb{R}^N}$ , we deduce

$$\left| \left( (\operatorname{Id} + \nabla \theta)^{-1} \right)^t n \right|_{\mathbb{R}^N} = 1 - (\nabla \theta)^t n \cdot n + o(\theta) \quad \text{with} \quad \lim_{\theta \to 0} \frac{\|o(\theta)\|_{L^{\infty}(\partial \Omega_0)}}{\|\theta\|_{W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)}} = 0.$$

Composing these three derivatives leads to the result. The formula, including the mean curvature, is obtained by an integration by parts on the surface  $\partial \Omega_0$ .

# "Strategy" of the course

Computing the shape derivative of the solution of a p.d.e. is not easy!

- → We explain **once** the rigorous method for computing a shape derivative.
- ▶ It is a bit involved and quite calculus-intensive...
- At the end we shall introduce a formal simpler method which is the one to be used **in practice**.
- This formal method is called the Lagrangian method and you should learn how to use it!

## 6.3.3. Derivation of a function depending on the shape

Let  $u(\Omega, x)$  be a function defined on the domain  $\Omega$ .

There exist two notions of derivative:

1) Eulerian (or shape) derivative U

$$u((\operatorname{Id} + \theta)\Omega_0, x) = u(\Omega_0, x) + U(\theta, x) + o(\theta)$$
, with  $\lim_{\theta \to 0} \frac{\|o(\theta)\|}{\|\theta\|} = 0$ 

OK if  $x \in \Omega_0 \cap (\mathrm{Id} + \theta)\Omega_0$  (local definition, makes no sense on the boundary).

2) Lagrangian (or material) derivative Y

We define the **transported** function  $\overline{u}(\theta)$  on  $\Omega_0$  by

$$\overline{u}(\theta, x) = u \circ (\operatorname{Id} + \theta) = u \Big( (\operatorname{Id} + \theta)\Omega_0, x + \theta(x) \Big) \quad \forall x \in \Omega_0.$$

The Lagrangian derivative Y is obtained by differentiating  $\overline{u}(\theta, x)$ 

$$\overline{u}(\theta, x) = \overline{u}(0, x) + Y(\theta, x) + o(\theta)$$
, with  $\lim_{\theta \to 0} \frac{\|o(\theta)\|}{\|\theta\|} = 0$ ,

Differentiating  $\overline{u} = u \circ (\mathrm{Id} + \theta)$ , one can check that

$$Y(\theta, x) = U(\theta, x) + \theta(x) \cdot \nabla u(\Omega_0, x).$$

The Eulerian derivative, although being simpler, is very delicate to use and often not rigorous. For example, if  $u \in H_0^1(\Omega)$ , the space of definition varies with  $\Omega$ ... Equivalently what boundary condition should the derivative satisfy?

We recommend to use the Lagrangian derivative to avoid mistakes.

**Remark.** Computations will be made with Y but the final result is stated with U (which is simpler).

## Composed shape derivative

**Proposition 6.28.** Let  $\Omega_0$  be a smooth bounded open set of  $\mathbb{R}^N$ , and  $u(\Omega) \in L^1(\mathbb{R}^N)$ . We assume that the transported function  $\overline{u}$  is differentiable at 0 from  $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$  into  $L^1(\mathbb{R}^N)$ , with derivative Y. Then

$$J(\Omega) = \int_{\Omega} u(\Omega) \, dx$$

is differentiable at  $\Omega_0$  and  $\forall \theta \in W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$ 

$$J'(\Omega_0)(\theta) = \int_{\Omega_0} (u(\Omega_0) \operatorname{div}\theta + Y(\theta)) dx.$$

In other words, using the Eulerian derivative U,

$$J'(\Omega_0)(\theta) = \int_{\Omega_0} (U(\theta) + \operatorname{div}(u(\Omega_0)\theta)) dx.$$

Similarly, if  $\overline{u}(\theta)$  is differentiable at 0 as a function from  $W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)$  into  $L^1(\partial\Omega_0)$ , then

$$J(\Omega) = \int_{\partial \Omega} u(\Omega) \, dx$$

is differentiable at  $\Omega_0$  and

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \left( u(\Omega_0) \left( \operatorname{div}\theta - \nabla \theta n \cdot n \right) + Y(\theta) \right) ds.$$

In other words, using the Eulerian derivative U,

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \left( U(\theta) + \theta \cdot n \left( \frac{\partial u(\Omega_0)}{\partial n} + Hu(\Omega_0) \right) \right) dx.$$

#### 6.3.4 Shape derivation of an equation

From now on,  $u(\Omega)$  is the solution of a p.d.e. in the domain  $\Omega$ .

Recall that

$$Y(\theta, x) = U(\theta, x) + \theta(x) \cdot \nabla u(\Omega_0, x).$$

The Eulerian derivative, although being simpler, is very delicate to use and often not rigorous. For example, if  $u \in H_0^1(\Omega)$ , the space of definition varies with  $\Omega$ ... Equivalently what boundary condition should the derivative satisfy?

We recommend to use the Lagrangian derivative: after getting back to the fixed reference domain  $\Omega_0$  we differentiate with respect to  $\theta$ . This is the safest and most rigorous way for computing the shape derivative of u, but the details can be tricky.

We shall later introduce a heuristic method which is simpler.

The results depend on the type of boundary conditions.

## Dirichlet boundary conditions

For  $f \in L^2(\mathbb{R}^N)$  we consider the boundary value problem

$$\begin{cases}
-\Delta u = f & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$

which admits a unique solution  $u(\Omega) \in H_0^1(\Omega)$ .

Its variational formulation is: find  $u \in H_0^1(\Omega)$  such that

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\Omega} f \phi \, dx \quad \forall \, \phi \in H_0^1(\Omega).$$

(Simplification with respect to the textbook since here g = 0.)

For  $\Omega = (\mathrm{Id} + \theta)(\Omega_0)$  we define the change of variables

$$x = y + \theta(y)$$
  $y \in \Omega_0$   $x \in \Omega$ .

**Proposition 6.30.** Let  $u(\Omega) \in H_0^1(\Omega)$  be the solution and  $\overline{u}(\theta) \in H_0^1(\Omega_0)$  be its transported function

$$\overline{u}(\theta)(y) = u(\Omega)(x) = u\Big((\operatorname{Id} + \theta)(\Omega_0)\Big) \circ (\operatorname{Id} + \theta)(y).$$

The functional  $\theta \to \overline{u}(\theta)$ , from  $W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$  into  $H^1(\Omega_0)$ , is differentiable at 0, and its derivative in the direction  $\theta$ , called Lagrangian derivative is

$$Y = \langle \overline{u}'(0), \theta \rangle$$

where  $Y \in H_0^1(\Omega_0)$  is the unique solution of

$$\begin{cases}
-\Delta Y = -\Delta (\theta \cdot \nabla u(\Omega_0)) & \text{in } \Omega_0 \\
Y = 0 & \text{on } \partial \Omega_0.
\end{cases}$$

**Proof.** We perform the change of variables  $x = y + \theta(y)$  with  $y \in \Omega_0$  in the variational formulation

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\Omega} f \phi \, dx \quad \forall \, \phi \in H_0^1(\Omega).$$

Take a test function  $\phi = \psi \circ (\mathrm{Id} + \theta)^{-1}$ , i.e.,  $\psi(y) = \phi(x)$ . Recall that

$$(\nabla \phi) \circ (\operatorname{Id} + \theta) = ((I + \nabla \theta)^{-1})^t \nabla (\phi \circ (\operatorname{Id} + \theta)).$$

We obtain: find  $\overline{u} \in H_0^1(\Omega_0)$  such that, for any  $\psi \in H_0^1(\Omega_0)$ ,

$$\int_{\Omega_0} A(\theta) \nabla \overline{u} \cdot \nabla \psi \, dy = \int_{\Omega_0} f \circ (\operatorname{Id} + \theta) \, \psi \, |\det(\operatorname{Id} + \nabla \theta)| dy$$

with 
$$A(\theta) = |\det(I + \nabla \theta)|(I + \nabla \theta)^{-1} ((I + \nabla \theta)^{-1})^t$$
.

We differentiate with respect to  $\theta$  at 0 the variational formulation

$$\int_{\Omega_0} A(\theta) \nabla \overline{u} \cdot \nabla \psi \, dy = \int_{\Omega_0} f \circ (\operatorname{Id} + \theta) \, \psi \, |\det(\operatorname{Id} + \nabla \theta)| dy$$

where  $\psi$  is a function which does not depend on  $\theta$ .

We already checked in the proof of Proposition 6.22 that the righ hand side is differentiable. Furthermore, the map  $\theta \to A(\theta)$  is differentiable too because

$$A(\theta) = (1 + \operatorname{div}\theta)I - \nabla\theta - (\nabla\theta)^t + o(\theta) \quad \text{with} \quad \lim_{\theta \to 0} \frac{\|o(\theta)\|_{L^{\infty}(\mathbb{R}^N;\mathbb{R}^{N^2})}}{\|\theta\|_{W^{1,\infty}(\mathbb{R}^N;\mathbb{R}^N)}} = 0.$$

Since  $\overline{u}(\theta = 0) = u(\Omega_0)$ , we get

$$\int_{\Omega_0} \nabla Y \cdot \nabla \psi \, dy + \int_{\Omega_0} \Big( \operatorname{div} \theta \, I - \nabla \theta - (\nabla \theta)^t \Big) \nabla u(\Omega_0) \cdot \nabla \psi \, dy = \int_{\Omega_0} \operatorname{div} \Big( f \theta \Big) \psi \, dy$$

Since  $\overline{u}(\theta) \in H_0^1(\Omega_0)$ , its derivative Y belongs to  $H_0^1(\Omega_0)$  too. Thus Y is a solution of

aution of 
$$\begin{cases} -\Delta Y = \operatorname{div} \left[ \left( \operatorname{div} \theta I - \nabla \theta - (\nabla \theta)^t \right) \nabla u(\Omega_0) \right] + \operatorname{div} \left( f \theta \right) & \text{in } \Omega_0 \\ Y = 0 & \text{on } \partial \Omega_0. \end{cases}$$

Recalling that  $\Delta u(\Omega_0) = -f$  in  $\Omega_0$ , and using the identity (true for any  $v \in H^1(\Omega_0)$  such that  $\Delta v \in L^2(\Omega_0)$ )

$$\Delta \left( \nabla v \cdot \theta \right) = \operatorname{div} \left( (\Delta v) \theta - (\operatorname{div} \theta) \nabla v + \left( \nabla \theta + (\nabla \theta)^t \right) \nabla v \right),$$

leads to the final result. (gotcha!)

## Shape derivative U

Corollary 6.32. The Eulerian derivative U of the solution  $u(\Omega)$ , defined by formula

$$U = Y - \nabla u(\Omega_0) \cdot \theta,$$

is the solution in  $H^1(\Omega_0)$  of

$$\begin{cases}
-\Delta U = 0 & \text{in } \Omega_0 \\
U = -(\theta \cdot n) \frac{\partial u(\Omega_0)}{\partial n} & \text{on } \partial \Omega_0.
\end{cases}$$

(Obvious proof starting from Y.)

We are going to recover **formally** this p.d.e. for U without using the knowledge of Y.

Let  $\phi$  be a compactly supported test function in  $\omega \subset \Omega$  for the variational formulation

$$\int_{\omega} \nabla u \cdot \nabla \phi \, dx = \int_{\omega} f \phi \, dx.$$

Differentiating with respect to  $\Omega$ , neither the test function, nor the domain of integration depend on  $\Omega$ . Thus it yields

$$\int_{\omega} \nabla U \cdot \nabla \phi \, dx = 0 \quad \Leftrightarrow \quad -\Delta U = 0.$$

To find the boundary condition we formally differentiate

$$\int_{\partial\Omega} u(\Omega)\psi \, ds = 0 \quad \forall \, \psi \in C^{\infty}(\mathbb{R}^N)$$

$$\Rightarrow \int_{\partial\Omega_0} U\psi \, ds + \int_{\partial\Omega_0} \left( \frac{\partial(u\psi)}{\partial n} + Hu\psi \right) \theta \cdot n \, ds = 0$$

which leads to the correct result since u = 0 on  $\partial \Omega_0$ .

**Remark.** The direct computation of U is not always that easy!

### Neumann boundary conditions

For  $f \in H^1(\mathbb{R}^N)$  and  $g \in H^2(\mathbb{R}^N)$  we consider the boundary value problem

$$\begin{cases}
-\Delta u + u = f & \text{in } \Omega \\
\frac{\partial u}{\partial n} = g & \text{on } \partial \Omega
\end{cases}$$

which admits a unique solution  $u(\Omega) \in H^1(\Omega)$ .

Its variational formulation is: find  $u \in H^1(\Omega)$  such that

$$\int_{\Omega} (\nabla u \cdot \nabla \phi + u\phi) \, dx = \int_{\Omega} f\phi \, dx + \int_{\partial \Omega} g\phi \, ds \quad \forall \, \phi \in H^1(\Omega).$$

**Proposition 6.34.** For  $\Omega = (\mathrm{Id} + \theta)(\Omega_0)$  we define the change of variables

$$x = y + \theta(y) \quad y \in \Omega_0 \quad x \in \Omega.$$

Let  $u(\Omega) \in H^1(\Omega)$  be the solution and  $\overline{u}(\theta) \in H^1(\Omega_0)$  be its transported function

$$\overline{u}(\theta)(y) = u(\Omega)(x) = u\Big((\operatorname{Id} + \theta)(\Omega_0)\Big) \circ (\operatorname{Id} + \theta)(y).$$

The functional  $\theta \to \overline{u}(\theta)$ , from  $W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$  into  $H^1(\Omega_0)$ , is differentiable at 0, and its derivative in the direction  $\theta$ , called Lagrangian derivative is

$$Y = \langle \overline{u}'(0), \theta \rangle$$

where  $Y \in H^1(\Omega_0)$  is the unique solution of

$$\begin{cases}
-\Delta Y + Y = -\Delta(\nabla u(\Omega_0) \cdot \theta) + \nabla u(\Omega_0) \cdot \theta & \text{in } \Omega_0 \\
\frac{\partial Y}{\partial n} = (\nabla \theta + (\nabla \theta)^t) \nabla u(\Omega_0) \cdot n + \nabla g \cdot \theta - g(\nabla \theta n \cdot n) & \text{on } \partial \Omega_0.
\end{cases}$$

**Proof.** We perform the change of variables  $x = y + \theta(y)$  with  $y \in \Omega_0$  in the variational formulation. Take a test function  $\phi = \psi \circ (\operatorname{Id} + \theta)^{-1}$ , i.e.,  $\psi(y) = \phi(x)$ . We get

$$\int_{\Omega_0} A(\theta) \nabla \overline{u} \cdot \nabla \psi \, dy + \int_{\Omega_0} \overline{u} \psi |\det(I + \nabla \theta)| dy$$

$$= \int_{\Omega_0} f \circ (\operatorname{Id} + \theta) \psi |\det(I + \nabla \theta)| dy$$

$$+ \int_{\partial\Omega_0} g \circ (\operatorname{Id} + \theta) \psi |\det(I + \nabla \theta)| |(I + \nabla \theta)^{-t} n | ds$$

with 
$$A(\theta) = |\det(I + \nabla \theta)|(I + \nabla \theta)^{-1} ((I + \nabla \theta)^{-1})^t$$
.

We differentiate with respect to  $\theta$  at 0.

The only new term is the boundary integral which can be differentiated like in Proposition 6.24.

Defining  $Y = \langle \overline{u}'(0), \theta \rangle$  we deduce

$$\int_{\Omega_0} (\nabla Y \cdot \nabla \psi + Y \psi) \, dy + \int_{\Omega_0} (\operatorname{div}\theta \, I - \nabla \theta - (\nabla \theta)^t) \, \nabla \overline{u} \cdot \nabla \psi \, dy 
+ \int_{\Omega_0} \overline{u} \psi \, \operatorname{div}\theta \, dy = \int_{\Omega_0} \operatorname{div}(f\theta) \psi \, dy 
+ \int_{\partial\Omega_0} (\nabla g \cdot \theta + g(\operatorname{div}\theta - \nabla \theta n \cdot n)) \, \psi ds$$

Then we recall that  $\overline{u}(0) = u(\Omega_0) = u$ ,  $\Delta u = u - f$  in  $\Omega_0$  and  $\frac{\partial u}{\partial n} = g$  on  $\partial \Omega_0$ , and the identity

$$\Delta (\nabla v \cdot \theta) = \operatorname{div} ((\Delta v)\theta - (\operatorname{div}\theta)\nabla v + (\nabla \theta + (\nabla \theta)^t)\nabla v),$$

to get the result. Simple in principle but computationally intensive...

Corollary 6.36. The Eulerian derivative U of the solution  $u(\Omega)$ , defined by

$$U = Y - \nabla u(\Omega_0) \cdot \theta,$$

is a solution in  $H^1(\Omega_0)$  of

$$-\Delta U + U = 0 \quad \text{in } \Omega_0.$$

and satisfies the boundary condition

$$\frac{\partial U}{\partial n} = \theta \cdot n \left( \frac{\partial g}{\partial n} - \frac{\partial^2 u(\Omega_0)}{\partial n^2} \right) + \nabla_t (\theta \cdot n) \cdot \nabla_t u(\Omega_0) \quad \text{on} \quad \partial \Omega_0,$$

where  $\nabla_t \phi = \nabla \phi - (\nabla \phi \cdot n)n$  denotes the tangential gradient on the boundary.

**Proof.** Easy but tedious computation.

## 6.4 Gradient and optimality condition

We consider the shape optimization problem

$$\inf_{\Omega \in \mathcal{U}_{ad}} J(\Omega),$$

with  $\mathcal{U}_{ad} = \{\Omega = (\operatorname{Id} + \theta)(\Omega_0) \text{ and } \int_{\Omega} dx = V_0\}$ . The cost function  $J(\Omega)$  is either the compliance, or a least square criterion for a target displacement  $u_0(x) \in L^2(\mathbb{R}^N)$ 

$$J(\Omega) = \int_{\Omega} fu \, dx + \int_{\partial \Omega} gu \, ds$$
 or  $J(\Omega) = \int_{\Omega} |u - u_0|^2 dx$ .

The function  $u(\Omega)$  is the solution in  $H^1(\Omega)$  of

$$\begin{cases} -\Delta u + u = f & \text{in } \Omega \\ \frac{\partial u}{\partial n} = g & \text{on } \partial \Omega, \end{cases}$$

with  $f \in H^1(\mathbb{R}^N)$  and  $g \in H^2(\mathbb{R}^N)$ .

## Gradient and optimality condition

**Theorem 6.38.** The functional  $J(\Omega) = \int_{\Omega} |u - u_0|^2 dx$  is shape differentiable

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \theta \cdot n \left( |u - u_0|^2 + \nabla u \cdot \nabla p + p(u - f) - \frac{\partial (gp)}{\partial n} - Hgp \right) ds,$$

where p is the adjoint state, unique solution in  $H^1(\Omega_0)$  of

$$\begin{cases}
-\Delta p + p = -2(u - u_0) & \text{in } \Omega_0 \\
\frac{\partial p}{\partial n} = 0 & \text{on } \partial \Omega_0,
\end{cases}$$

We recover the fact that the shape derivative depends only on the normal trace of  $\theta$  on the boundary.

**Proof.** Applying Proposition 6.28 to the cost function yields

$$J'(\Omega_0)(\theta) = \int_{\Omega_0} \left( |u(\Omega_0) - u_0|^2 \operatorname{div}\theta + 2(u(\Omega_0) - u_0)(Y - \nabla u_0 \cdot \theta) \right) dx,$$

or equivalently, with  $U = Y - \nabla u(\Omega_0) \cdot \theta$ ,

$$J'(\Omega_0)(\theta) = \int_{\Omega_0} \left[ \operatorname{div} \left( \theta |u(\Omega_0) - u_0|^2 \right) + 2(u(\Omega_0) - u_0)U \right] dx.$$

Multiplying the adjoint equation by U

$$\int_{\Omega_0} (\nabla p \cdot \nabla U + pU) \, dy = -2 \int_{\Omega_0} (u(\Omega_0) - u_0) \, U \, dy,$$

then the equation for U by p

$$\int_{\Omega_0} (\nabla p \cdot \nabla U + pU) \, dy =$$

$$\int_{\partial \Omega_0} \theta \cdot n \left( -\nabla u(\Omega_0) \cdot \nabla p - p\Delta u(\Omega_0) + \frac{\partial (gp)}{\partial n} + Hgp \right) ds,$$

we deduce the result by comparison of the two equalities.

The compliance case (self-adjoint)

**Theorem 6.40.** The functional  $J(\Omega) = \int_{\Omega} fu \, dx + \int_{\partial \Omega} gu \, ds$  is shape-differentiable

$$J'(\Omega_0)(\theta) = \int_{\partial\Omega_0} \theta \cdot n \left( -|\nabla u(\Omega_0)|^2 - |u(\Omega_0)|^2 + 2u(\Omega_0)f \right) ds$$

$$+ \int_{\partial\Omega_0} \theta \cdot n \left( 2 \frac{\partial (gu(\Omega_0))}{\partial n} + 2Hgu(\Omega_0) \right) ds,$$

**Interpretation:** assume f = 0 and g = 0 where  $\theta \cdot n \neq 0$ . The formula simplifies in

$$J'(\Omega_0)(\theta) = -\int_{\partial\Omega_0} \theta \cdot n\left(|\nabla u|^2 + u^2\right) ds \le 0$$

It is always advantageous to increase the domain (i.e.,  $\theta \cdot n > 0$ ) for decreasing the compliance.

**Proof.** Applying Proposition 6.28 to the cost function yields

$$J'(\Omega_0)(\theta) = \int_{\Omega_0} (fu \operatorname{div}\theta + u\theta \cdot \nabla f + fY) dx$$
$$+ \int_{\partial\Omega_0} (gu (\operatorname{div}\theta - \nabla \theta n \cdot n) + u\theta \cdot \nabla g + gY) ds,$$

or equivalently, with  $U = Y - \nabla u \cdot \theta$ ,

$$J'(\Omega_0)(\theta) = \int_{\Omega_0} \left( \operatorname{div}(fu\theta) + fU \right) dx + \int_{\partial\Omega_0} \left( \theta \cdot n \left( \frac{\partial(gu)}{\partial n} + Hgu \right) + gU \right) ds.$$

Multiplying the equation for u by U and that for U by u, then comparing, leads to the result.

**Remark.** Same type of result for a Dirichlet boundary condition (but different formulas).

## 6.4.3 Fast derivation: the Lagrangian method

- The previous computations are quite tedious... but there is a simpler and faster (albeit formal) method, called the Lagrangian method (proposed in this context by J. Céa).
- The Lagrangian allows us to find the correct definition of the adjoint state too.
- It is easy for Neumann boundary conditions, a little more involved for Dirichlet ones.
- → That is the method to be known!

## Fast derivation for Neumann boundary conditions

If the objective function is

$$J(\Omega) = \int_{\Omega} j(u(\Omega)) \, dx,$$

the Lagrangian is defined as the sum of J and of the variational formulation of the state equation

$$\mathcal{L}(\Omega, v, q) = \int_{\Omega} j(v) \, dx + \int_{\Omega} \left( \nabla v \cdot \nabla q + vq - fq \right) dx - \int_{\partial \Omega} gq \, ds,$$

with v and  $q \in H^1(\mathbb{R}^N)$ . It is important to notice that the space  $H^1(\mathbb{R}^N)$  does not depend on  $\Omega$  and thus the three variables in  $\mathcal{L}$  are clearly independent.

The partial derivative of  $\mathcal{L}$  with respect to q in the direction  $\phi \in H^1(\mathbb{R}^N)$  is

$$\langle \frac{\partial \mathcal{L}}{\partial q}(\Omega, v, q), \phi \rangle = \int_{\Omega} \left( \nabla v \cdot \nabla \phi + v \phi - f \phi \right) dx - \int_{\partial \Omega} g \phi \, ds,$$

which, upon equating to 0, gives the variational formulation of the state.

The partial derivative of  $\mathcal{L}$  with respect to v in the direction  $\phi \in H^1(\mathbb{R}^N)$  is

$$\langle \frac{\partial \mathcal{L}}{\partial v}(\Omega, v, q), \phi \rangle = \int_{\Omega} j'(v)\phi \, dx + \int_{\Omega} \left( \nabla \phi \cdot \nabla q + \phi q \right) dx,$$

which, upon equating to 0, gives the variational formulation of the adjoint.

The partial derivative of  $\mathcal{L}$  with respect to  $\Omega$  in the direction  $\theta$  is

$$\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega_0, v, q)(\theta) = \int_{\partial \Omega} \theta \cdot n \left( j(v) + \nabla v \cdot \nabla q + vq - fq - \frac{\partial (gq)}{\partial n} - Hgq \right) ds.$$

When evaluating this derivative with the state  $u(\Omega_0)$  and the adjoint  $p(\Omega_0)$ , we precisely find the derivative of the objective function

$$\frac{\partial \mathcal{L}}{\partial \Omega} \Big( \Omega_0, u(\Omega_0), p(\Omega_0) \Big) (\theta) = J'(\Omega_0)(\theta)$$

Indeed, if we differentiate the equality

$$\mathcal{L}(\Omega, u(\Omega), q) = J(\Omega) \quad \forall q \in H^1(\mathbb{R}^N),$$

the chain rule lemma yields

$$J'(\Omega_0)(\theta) = \frac{\partial \mathcal{L}}{\partial \Omega}(\Omega_0, u(\Omega_0), q)(\theta) + \langle \frac{\partial \mathcal{L}}{\partial v}(\Omega_0, u(\Omega_0), q), u'(\Omega_0)(\theta) \rangle$$

Taking  $q = p(\Omega_0)$ , the last term cancels since  $p(\Omega_0)$  is the solution of the adjoint equation.

Thanks to this computation, the "correct" result can be guessed for  $J'(\Omega_0)$  without using the notions of shape or material derivatives.

Nevertheless, in full rigor, this "fast" computation of the shape derivative  $J'(\Omega_0)$  is valid only if we know that u is shape differentiable.

#### Fast derivation for Dirichlet boundary conditions

It is more involved! Let  $u \in H_0^1(\Omega)$  be the solution of

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\Omega} f \phi \, dx \quad \forall \, \phi \in H_0^1(\Omega).$$

The "usual" Lagrangian is

$$\mathcal{L}(\Omega, v, q) = \int_{\Omega} j(v) dx + \int_{\Omega} \left( \nabla v \cdot \nabla q - fq \right) dx,$$

for  $v, q \in H_0^1(\Omega)$ . The variables  $(\Omega, v, q)$  are not independent!

Indeed, the functions v and q satisfy

$$v = q = 0$$
 on  $\partial \Omega$ .

Another Lagrangian has to be introduced.

### Lagrangian for Dirichlet boundary conditions

The Dirichlet boundary condition is penalized

$$\mathcal{L}(\Omega, v, q, \lambda) = \int_{\Omega} j(v) \, dx - \int_{\Omega} (\Delta v + f) q \, dx + \int_{\partial \Omega} \lambda v \, ds$$

where  $\lambda$  is the Lagrange multiplier for the boundary condition. It is now possible to differentiate since the 4 variables  $v, q, \lambda \in H^1(\mathbb{R}^N)$  are independent.

Of course, we recover

$$\sup_{q,\lambda} \mathcal{L}(\Omega, v, q, \lambda) = \begin{cases} \int_{\Omega} j(u) \, dx = J(\Omega) & \text{if } v \equiv u, \\ +\infty & \text{otherwise.} \end{cases}$$

By definition of the Lagrangian:

the partial derivative of  $\mathcal{L}$  with respect to q in the direction  $\phi \in H^1(\mathbb{R}^N)$  is

$$\langle \frac{\partial \mathcal{L}}{\partial q}(\Omega, v, q, \lambda), \phi \rangle = -\int_{\Omega} \phi (\Delta v + f) dx,$$

which, upon equating to 0, gives the state equation,

the partial derivative of  $\mathcal{L}$  with respect to  $\lambda$  in the direction  $\phi \in H^1(\mathbb{R}^N)$  is

$$\langle \frac{\partial \mathcal{L}}{\partial \lambda}(\Omega, v, q, \lambda), \phi \rangle = \int_{\partial \Omega} \phi v \, dx,$$

which, upon equating to 0, gives the Dirichlet boundary condition for the state equation.

To compute the partial derivative of  $\mathcal{L}$  with respect to v, we perform a first integration by parts

$$\mathcal{L}(\Omega, v, q, \lambda) = \int_{\Omega} j(v) \, dx + \int_{\Omega} (\nabla v \cdot \nabla q - fq) \, dx + \int_{\partial \Omega} \left( \lambda v - \frac{\partial v}{\partial n} q \right) ds,$$

then a second integration by parts

$$\mathcal{L}(\Omega, v, q, \lambda) = \int_{\Omega} j(v) dx - \int_{\Omega} (v \Delta q - fq) dx + \int_{\partial \Omega} \left( \lambda v - \frac{\partial v}{\partial n} q + \frac{\partial q}{\partial n} v \right) ds.$$

We now can differentiate in the direction  $\phi \in H^1(\mathbb{R}^N)$ 

$$\langle \frac{\partial \mathcal{L}}{\partial v}(\Omega, v, q), \phi \rangle = \int_{\Omega} j'(v)\phi \, dx - \int_{\Omega} \phi \Delta q \, dx + \int_{\partial \Omega} \left( -q \frac{\partial \phi}{\partial n} + \phi \left( \lambda + \frac{\partial q}{\partial n} \right) \right) ds$$

which, upon equating to 0, gives three relationships, the two first ones being the adjoint problem.

1. If  $\phi$  has compact support in  $\Omega_0$ , we get

$$-\Delta p = -j'(u)$$
 dans  $\Omega_0$ .

2. If  $\phi = 0$  on  $\partial \Omega_0$  with any value of  $\frac{\partial \phi}{\partial n}$  in  $L^2(\partial \Omega_0)$ , we deduce

$$p = 0$$
 sur  $\partial \Omega_0$ .

3. If  $\phi$  is now varying in the full  $H^1(\Omega_0)$ , we find

$$\frac{\partial p}{\partial n} + \lambda = 0 \quad \text{sur} \quad \partial \Omega_0.$$

The adjoint problem has actually been recovered but furthermore the optimal Lagrange multiplier  $\lambda$  has been characterized.

Eventually, the shape partial derivative is

$$\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega_0, u, p, \lambda)(\theta) = \int_{\partial \Omega_0} \theta \cdot n \Big( j(u) - (\Delta u + f) p + \frac{\partial (u\lambda)}{\partial n} + Hu\lambda \Big) ds$$

Knowing that u = p = 0 on  $\partial \Omega_0$  and  $\lambda = -\frac{\partial p}{\partial n}$  we deduce

$$\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega_0, u, p, \lambda)(\theta) = \int_{\partial \Omega_0} \theta \cdot n \left( j(0) - \frac{\partial u}{\partial n} \frac{\partial p}{\partial n} \right) ds = J'(\Omega_0)(\theta)$$

$$J'(\Omega_0)(\theta) = \frac{\partial \mathcal{L}}{\partial \Omega} \Big( \Omega_0, u(\Omega_0), p(\Omega_0) \Big) (\theta)$$

This formula is not a surprise because differentiating

$$\mathcal{L}(\Omega, u(\Omega), q, \lambda) = J(\Omega) \quad \forall q, \lambda$$

yields

$$J'(\Omega_0)(\theta) = \frac{\partial \mathcal{L}}{\partial \Omega}(\Omega_0, u(\Omega_0), q, \lambda)(\theta) + \langle \frac{\partial \mathcal{L}}{\partial v}(\Omega_0, u(\Omega_0), q, \lambda), u'(\Omega_0)(\theta) \rangle.$$

Then, taking  $q = p(\Omega_0)$  (the adjoint state) and  $\lambda = -\frac{\partial p}{\partial n}(\Omega_0)$ , the last term cancels and we obtain the desired formula.

### Application to compliance minimization

We minimize  $J(\Omega) = \int_{\Omega} fu \, dx$  with  $u \in H_0^1(\Omega)$  solution of

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\Omega} f \phi \, dx \quad \forall \, \phi \in H_0^1(\Omega).$$

The adjoint state is just p = -u. The shape derivative is

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \theta \cdot n \left( fu - \frac{\partial u}{\partial n} \frac{\partial p}{\partial n} \right) ds = \int_{\partial \Omega_0} \theta \cdot n \left( \frac{\partial u}{\partial n} \right)^2 ds \le 0$$

It is always advantageous to shrink the domain (i.e.,  $\theta \cdot n < 0$ ) to decrease the compliance.

This is the opposite conclusion compared to Neumann b.c., but it is logical!

# Another example: the drum

We optimize the shape of a drum (an elastic membrane) in order it produces the lowest possible tune. Let  $\lambda(\Omega)$  be the eigenvalue (the square of the eigenfrequency) and u(x) be the eigenmode

$$\begin{cases}
-\Delta u = \lambda(\Omega)u & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases}$$

The fundamental mode is the smallest eigenvalue which is also characterized by

$$\lambda(\Omega) = \min_{u \in H_0^1(\Omega), u \neq 0} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} u^2 dx}.$$

Thus we study

$$\inf_{\Omega \subset \mathbb{R}^2} \left( \lambda(\Omega) + \ell \int_{\Omega} dx \right),\,$$

where  $\ell \geq 0$  is a given Lagrange multiplier for a constraint on the membrane area.

#### Eulerian derivation

For a test function  $\phi$  with compact support  $\omega \subset \Omega$  we derive

$$\int_{\omega} \nabla u \cdot \nabla \phi \, dx = \lambda(\Omega) \int_{\omega} u \phi \, dx$$

$$\Rightarrow \int_{\omega} \nabla U \cdot \nabla \phi \, dx = \lambda(\Omega) \int_{\omega} U \phi \, dx + \Lambda \int_{\omega} u \phi \, dx,$$

where  $\Lambda = \lambda'(\Omega)(\theta)$  is the derivative of the eigenvalue (assumed to be simple).

$$\Rightarrow -\Delta U - \lambda(\Omega)U = \Lambda u \quad \text{in } \Omega.$$

To deduce the boundary condition for U we derive

$$\int_{\partial\Omega} u\psi \, ds = 0 \quad \forall \psi \in C^{\infty}(\mathbb{R}^2).$$

$$\Rightarrow \int_{\partial\Omega} \left( U\psi + \theta \cdot n \left( \frac{\partial (u\psi)}{\partial n} + Hu\psi \right) \right) ds = 0,$$

which yields  $U = -\frac{\partial u}{\partial n}\theta \cdot n$  since u = 0 on  $\partial \Omega$ .

Multiplying the equation for U by u and integrating by parts leads to

$$\int_{\Omega} \nabla U \cdot \nabla u \, dx = \lambda \int_{\Omega} U u \, dx + \Lambda \int_{\Omega} u^2 \, dx.$$

Multiplying the equation for u by U and integrating by parts leads to

$$\int_{\Omega} \nabla U \cdot \nabla u \, dx = \lambda \int_{\Omega} U u \, dx + \int_{\partial \Omega} \frac{\partial u}{\partial n} U \, ds.$$

Thus, we deduce

$$\Lambda \int_{\Omega} u^2 dx = \int_{\partial \Omega} \frac{\partial u}{\partial n} U \, ds = -\int_{\partial \Omega} \left( \frac{\partial u}{\partial n} \right)^2 \theta \cdot n \, ds.$$

The derivative of the objective function is (self-adjoint problem)

$$J'(\Omega)(\theta) = \Lambda + \ell \int_{\partial \Omega} \theta \cdot n \, ds = \int_{\partial \Omega} \left( \ell - \frac{\left(\frac{\partial u}{\partial n}\right)^2}{\int_{\Omega} u^2 dx} \right) \theta \cdot n \, ds.$$

If  $\ell = 0$  we have  $J'(\Omega)(\theta) \leq 0$  as soon as  $\theta \cdot n \geq 0$ , i.e., we minimze  $J(\Omega)$  if the domain  $\Omega$  is enlarged.

## Lagrangian method

For  $\mu \in \mathbb{R}$ ,  $v, q, z \in H^1(\mathbb{R}^N)$ , we introduce the Lagrangian

$$\mathcal{L}(\Omega, \mu, v, q, z) = \mu - \int_{\Omega} (\Delta v + \mu v) q \, dx + \int_{\partial \Omega} z v \, ds$$

where z is the Lagrange multiplier for the boundary condition. Since the 5 variables are independent it is possible to differentiate.

The partial derivative  $\frac{\partial \mathcal{L}}{\partial q} = 0$  gives the state equation.

The partial derivative  $\frac{\partial \mathcal{L}}{\partial z} = 0$  gives the Dirichlet boundary condition for the state.

The partial derivative  $\frac{\partial \mathcal{L}}{\partial v} = 0$  gives three relationships including the adjoint:

$$-\Delta p = \lambda p$$
 in  $\Omega$ ,  $p = 0$  on  $\partial \Omega$ ,  $\frac{\partial p}{\partial n} + z = 0$  on  $\partial \Omega$ .

The partial derivative  $\frac{\partial \mathcal{L}}{\partial \mu} = 0$  yields

$$\int_{\Omega} up \, dx = 1$$

Since the eigenvalue  $\lambda$  is simple, p is a multiple of u. Thus

$$p = \frac{u}{\int_{\Omega} u^2 dx}.$$

Eventually, the shape partial derivative is

$$\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega, \lambda, u, p, z)(\theta) = \int_{\partial \Omega} \theta \cdot n \Big( p \Delta u + \lambda p u + \frac{\partial (uz)}{\partial n} + Huz \Big) ds$$

Knowing that u = p = 0 on  $\partial \Omega$  and  $z = -\frac{\partial p}{\partial n}$  we deduce

$$\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega, \lambda, u, p, z)(\theta) = \int_{\partial \Omega} \theta \cdot n \left( -\frac{\partial u}{\partial n} \frac{\partial p}{\partial n} \right) ds = J'(\Omega)(\theta)$$

## 6.5 Numerical algorithms in the elasticity setting

Free boundary  $\Gamma$ . Fixed boundary  $\Gamma_N$  and  $\Gamma_D$ .

$$\begin{cases}
-\operatorname{div}\sigma = 0 & \text{in } \Omega \\
\sigma = 2\mu e(u) + \lambda \operatorname{tr}(e(u)) \operatorname{Id} & \text{in } \Omega \\
u = 0 & \text{on } \Gamma_D \\
\sigma n = g & \text{on } \Gamma_N \\
\sigma n = 0 & \text{on } \Gamma,
\end{cases}$$

with  $e(u) = (\nabla u + (\nabla u)^t)/2$ . Compliance is minimized

$$J(\Omega) = \int_{\Gamma_N} g \cdot u \, dx.$$

In such a (self-adjoint) case we get

$$J'(\Omega_0)(\theta) = -\int_{\Gamma} \theta \cdot n \left( 2\mu |e(u)|^2 + \lambda (\operatorname{tr} e(u))^2 \right) ds.$$

Boundary conditions for an elastic cantilever:  $\Gamma_D$  is the left vertical side,  $\Gamma_N$  is the right vertical side, and  $\Gamma$  (dashed line) is the remaining boundary.



## Main idea of the algorithm

Given an inital design  $\Omega_0$  we compute a sequence of iterative shapes  $\Omega_k$ , satisfying the following constraints

$$\partial\Omega_k = \Gamma_k \cup \Gamma_N \cup \Gamma_D$$

where  $\Gamma_N$  and  $\Gamma_D$  are fixed, and the volume (or weight) is fixed

$$V(\Omega_k) = \int_{\Omega_k} dx = V(\Omega_0).$$

To take into account the constraint that only  $\Gamma$  is allowed to move, it is enough to take  $\theta \cdot n = 0$  on  $\Gamma_N \cup \Gamma_D$ .

Because of the volume constraint we rely on a projected gradient algorithm with a fixed step .

The derivative of the volume constraint is  $V'(\Omega_k)(\theta) = \int_{\Gamma_k} \theta \cdot n$ .

# Algorithm

Let t > 0 be a given descent step. We compute a sequence  $\Omega_k \in \mathcal{U}_{ad}$  by

- 1. Initialization of the shape  $\Omega_0$ .
- 2. Iterations until convergence, for  $k \geq 0$ :

$$\Omega_{k+1} = (\operatorname{Id} + \theta_k)\Omega_k \quad \text{with} \quad \theta_k = t(j_k - \ell_k)n,$$

where n is the normal to the boundary  $\partial \Omega_k$  and  $\ell_k \in \mathbb{R}$  is the Lagrange multiplier such that  $\Omega_{k+1}$  satisfies the volume constraint. The shape derivative is given on the boundary  $\Gamma_k$  by

$$J'(\Omega_k)(\theta) = -\int_{\Gamma} \theta \cdot n \, j_k \, ds \quad \text{with} \quad j_k = 2\mu |e(u_k)|^2 + \lambda (\operatorname{tr} e(u_k))^2$$

where  $u_k$  is the solution of the state equation posed in the domain  $\Omega_k$ .



## Mesh deformation

To change the shape we need to automatically remesh the new shape, or at least to deform the mesh at each iteration.

- f X Displacement field heta proportional to n (normal to the boundary), merely defined on the boundary.
- **X** We prefer to deform the mesh (it is less costly).
- **X** In such a case we have to extend  $\theta$  inside the shape.
- X We need to check that the displaced boundaries do not cross...
- X Nevertheless, in case of large shape deformations we must remesh (it is computationally costly).
- X Often the algorithm stops before convergence because of geometrical constraints.

Implementing geometric optimization on a computer is quite intricate, especially in 3-d.

# Extension of the displacement field

$$J'(\Omega)(\theta) + \ell V'(\Omega)(\theta) = \int_{\Gamma} (\ell - j) \, \theta \cdot n \, ds$$

A first possibility to extend  $(\ell - j)n$  inside the shape is

$$\begin{cases}
-\Delta \theta = 0 & \text{in } \Omega \\
\theta = t(j - \ell)n & \text{on } \Gamma \\
\theta = 0 & \text{on } \Gamma_D \cup \Gamma_N
\end{cases}$$

We rather take this opportunity to (furthermore) regularize by solving

$$\begin{cases}
-\Delta \theta = 0 & \text{in } \Omega \\
\frac{\partial \theta}{\partial n} = t(j - \ell)n & \text{on } \Gamma \\
\theta = 0 & \text{on } \Gamma_D \cup \Gamma_N
\end{cases}$$

Indeed,  $j = 2\mu |e(u)|^2 + \lambda \operatorname{tr}(e(u))^2$  (for compliance) may be not smooth (not better than in  $L^1(\Omega)$ ) although we always assumed that  $\theta \in W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$ ).

It can cause boundary oscillations.

Typically,  $\theta$  admits one order of derivation more than j and one can check that it is actually a descent direction because

$$-\int_{\Omega} |\nabla \theta|^2 dx = t \int_{\Gamma} (\ell - j) \, \theta \cdot n \, ds$$

## Technical details)

- To check the volume constraint we update "a posteriori" the Lagrange multiplier  $\ell_k \in \mathbb{R}$ . The volume is thus not exact but it converges to the desired value.
- We step back and diminish the descent step t > 0 when  $J(\Omega)$  increases.
- To avoid possible oscillations of the boundary, due to numerical instabilities, we use two meshes: a fine one to precisely evaluate u and p, a coarse one which is moved.

FreeFem++ computations; scripts available on the web page
http://www.cmap.polytechnique.fr/~allaire/cours\_X\_annee3.html

# Numerical results: initialization and iterations 5, 10, 20



# Influence of the initial topology

