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Geometric optimization of a membrane

A membrane is occupying a variable domain Ω in IRN with boundary

∂Ω = Γ ∪ ΓN ∪ ΓD,

where Γ 6= ∅ is the variable part of the boundary, ΓD 6= ∅ is a fixed part of the

boundary where the membrane is clamped, and ΓN 6= ∅ is another fixed part

of the boundary where the loads g ∈ L2(ΓN ) are applied.



























−∆u = 0 in Ω

u = 0 on ΓD

∂u
∂n

= g on ΓN

∂u
∂n

= 0 on Γ

(No bulk forces to simplify)

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Boundary variation in geometric optimization
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✞

✝

☎

✆
Shape optimization of a membrane

Geometric shape optimization problem

inf
Ω∈Uad

J(Ω)

We must defined the set of admissible shapes Uad. That is the main difficulty.

Examples:

☞ Compliance or work done by the load (rigidity measure)

J(Ω) =

∫

ΓN

gu ds

☞ Least square criterion for a target displacement u0 ∈ L2(Ω)

J(Ω) =

∫

Ω

|u− u0|
2dx

where u depends on Ω through the state equation.

G. Allaire, Ecole Polytechnique Optimal design of structures
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6.2 Existence results

In full generality, there does not exist any optimal shape !

☞ Existence under a geometric constraint.

☞ Existence under a topological constraint.

☞ Existence under a regularity constraint.

☞ Counter-example in the absence of these conditions.

related questions:

☞ How to pose the problem ? How to parametrize shapes ?

☞ Calculus of variations for shapes.

☞ Mathematical framework for establishing numerical algorithms.

G. Allaire, Ecole Polytechnique Optimal design of structures
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6.2.1 Counter-example of non-existence

β

α

Let D =]0; 1[×]0;L[ be a rectangle in IR2. We fill D with a mixture of two

materials, homogeneous isotropic, characterized by an elasticity coefficient β

for the strong material, and α for the weak material (almost like void) with

β >> α > 0. We denote by χ(x) = 0, 1 the characteristic function of the

weak phase α, and we define

aχ(x) = αχ(x) + β(1− χ(x)).

(Other possible interpretation: variable thickness which can take only two values.)

G. Allaire, Ecole Polytechnique Optimal design of structures
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State equation:






− div (aχ∇uχ) = 0 in D

aχ∇uχ · n = e1 · n on ∂D

Uniform horizontal loading.

Objective function: compliance

J(χ) =

∫

∂D

(e1 · n)uχds

Admissible set: no geometric or smoothness constraint, i.e.

χ ∈ L∞(D; {0, 1}). There is however a volume constraint

Uad =

{

χ ∈ L∞ (D; {0, 1}) such that
1

|D|

∫

D

χ(x) dx = θ

}

,

otherwise the strong phase would always be prefered !

The shape optimization problem is:

inf
χ∈Uad

J(χ).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✄

✂

�

✁Non-existence

Proposition 6.2. If 0 < θ < 1, there does not exist an optimal shape in the

set Uad.

Remark. Cause of non-existence = lack of geometric or smoothness

constraint on the shape boundary.

J (χ )
3 > J (χ )

6

Many small holes are better than just a few bigger holes !

G. Allaire, Ecole Polytechnique Optimal design of structures
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✄

✂

�

✁Mechanical intuition

1/k

1−θ

θ

= α

= β

Minimizing sequence k → +∞: k rigid fibers, aligned in the principal stress

e1, and uniformly distributed. To achieve a uniform boundary condition, the

fibers must be finer and finer and alternate more and more weak and strong

ones.

This is the main idea of a minimizing sequence which never achieves the

minimum.

G. Allaire, Ecole Polytechnique Optimal design of structures



10

✞

✝

☎

✆
Existence theories under a geometric condition

One can prove existence theorems underr various regularity or topological

constraints.

1. Uniform cone condition (D. Chenais).

2. Uniform bound on the number of holes in 2-d (V. Sverak, A. Chambolle).

3. Uniform regularity.

In each case the goal is to prevent the oscillating behavior of minimizing

sequences.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Existence under a regularity condition

Mathematical framework for shape deformation based on diffeomorphisms

applied to a reference domain Ω0 (useful to compute a gradient too).

A space of diffeomorphisms (or smooth one-to-one map) in IRN

T =
{

T such that (T − Id) and (T−1 − Id) ∈W 1,∞(IRN ; IRN )
}

.

(They are perturbations of the identity Id: x→ x.)

Definition of W 1,∞(IRN ; IRN ). Space of Lipschitzian vectors fields:

φ :







IRN → IRN

x → φ(x)

‖φ‖W 1,∞(IRN ;IRN ) = sup
x∈IRN

(|φ(x)|IRN + |∇φ(x)|IRN×N ) <∞

Remark: φ is continuous but its gradient is jut bounded. Actually, one can

replace W 1,∞(IRN ; IRN ) by C1
b (IR

N ; IRN ).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Space of admissible shapes

Let Ω0 be a reference smooth open set.

C(Ω0) = {Ω such that there exists T ∈ T ,Ω = T (Ω0)} .

☞ Each shape Ω is parametrized by a diffeomorphism T (not unique !).

☞ All admissible shapes have the same topology.

☞ We define a pseudo-distance on D(Ω0)

d(Ω1,Ω2) = inf
T∈T |T (Ω1)=Ω2

(

‖T − Id‖+ ‖T−1 − Id‖
)

W 1,∞(IRN ;IRN )
.

☞ If Ω0 is bounded, it is possible to use C1(IRN ; IRN ) instead of

W 1,∞(IRN ; IRN ).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Existence theory

Space of admissible shapes

Uad =
{

Ω ∈ C(Ω0) such that ΓD

⋃

ΓN ⊂ ∂Ω and |Ω| = V0

}

.

For a fixed constant R > 0, we introduce the smooth subspace

Ureg
ad = {Ω ∈ Uad such that d(Ω,Ω0) ≤ R, } .

Interpretation: in practice, it is a “feasability” constraint.

Theorem 6.11. The shape optimization problem

inf
Ω∈Ureg

ad

J(Ω)

admits at least one optimal solution.

Remark. All shapes share the same topology in Uad. Furthermore, the shape

boundaries in Ureg
ad cannot oscillate too much.

G. Allaire, Ecole Polytechnique Optimal design of structures
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6.3 Shape differentiation

Goal: to compute a derivative of J(Ω) by using the parametrization based on

diffeomorphisms T .

We restrict ourselves to diffeomorphisms of the type

T = Id + θ with θ ∈W 1,∞(IRN ; IRN )

Idea: we differentiate θ → J
(

( Id + θ)Ω0

)

at 0.

Remark. This approach generalizes the Hadamard method of boundary

shape variations along the normal: Ω0 → Ωt for t ≥ 0

∂Ωt =
{

xt ∈ IRN | ∃x0 ∈ ∂Ω0 | xt = x0 + t g(x0)n(x0)
}

with a given incremental function g.

G. Allaire, Ecole Polytechnique Optimal design of structures
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x

Ω

x+  (x)θ

0
  d 0(Ι  +θ)Ω

The shape Ω = ( Id + θ)(Ω0) is defined by

Ω = {x+ θ(x) | x ∈ Ω0} .

Thus θ(x) is a vector field which plays the role of the displacement of the

reference domain Ω0.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Lemma 6.13. For any θ ∈W 1,∞(IRN ; IRN ) satisfying ‖θ‖W 1,∞(IRN ;IRN ) < 1,

the map T = Id + θ is one-to-one into IRN and belongs to the set T .

Proof. Based on the formula

θ(x)− θ(y) =

∫ 1

0

(x− y) · ∇θ
(

y + t(x− y)
)

dt ,

we deduce that | θ(x)− θ(y) |≤ ‖θ‖W 1,∞(IRN ;IRN ) | x− y | and θ is a strict

contraction. Thus, T = Id + θ is one-to-one into IRN .

Indeed, ∀b ∈ IRN the map K(x) = b− θ(x) is a contraction and thus admits a

unique fixed point y, i.e., b = T (y) and T is therefore one-to-one into IRN .

Since ∇T = I +∇θ (with I = ∇ Id) and the norm of the matrix ∇θ is strictly

smaller than 1 (‖I‖ = 1), the map ∇T is invertible. We then check that

(T−1 − Id) ∈W 1,∞(IRN ; IRN ).

G. Allaire, Ecole Polytechnique Optimal design of structures
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Definition of the shape derivative

Definition 6.15. Let J(Ω) be a map from the set of admissible shapes C(Ω0)

into IR. We say that J is shape differentiable at Ω0 if the function

θ → J
(

( Id + θ)(Ω0)
)

is Fréchet differentiable at 0 in the Banach space W 1,∞(IRN ; IRN ), i.e., there

exists a linear continuous form L = J ′(Ω0) on W
1,∞(IRN ; IRN ) such that

J
(

( Id + θ)(Ω0)
)

= J(Ω0) + L(θ) + o(θ) , with lim
θ→0

|o(θ)|

‖θ‖
= 0 .

J ′(Ω0) is called the shape derivative and J ′(Ω0)(θ) is a directional derivative.

G. Allaire, Ecole Polytechnique Optimal design of structures
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The directional derivative J ′(Ω0)(θ) depends only on the normal

component of θ on the boundary of Ω0.

This surprising property is linked to the fact that the internal variations of

the field θ does not change the shape Ω, i.e.,

θ ∈ C1
c (Ω)

N and ‖θ‖ << 1 ⇒ ( Id + θ)Ω = Ω.

x

x+

Ω

n(x)

(x)θ

(x)θ

(I+θ)Ω

0

0

G. Allaire, Ecole Polytechnique Optimal design of structures
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Proposition 6.15. Let Ω0 be a smooth bounded open set of IRN . Let J be a

differentiable map at Ω0 from C(Ω0) into IR. Its directional derivative

J ′(Ω0)(θ) depends only on the normal trace on the boundary of θ, i.e.

J ′(Ω0)(θ1) = J ′(Ω0)(θ2)

if θ1, θ2 ∈ C1(IRN ; IRN ) satisfy

θ1 · n = θ2 · n on ∂Ω0.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Proof. Take θ = θ2 − θ1 and introduce the solution of






dy
dt
(t) = θ

(

y(t)
)

y(0) = x

which satisfies

y(t+ t′, x, θ) = y(t, y(t′, x, θ), θ) for any t, t′ ∈ IR

y(λt, x, θ) = y(t, x, λθ) for any λ ∈ IR

The we define the one-to-one map from IRN into IRN , x → eθ(x) = y(1, x, θ),

the inverse of which is e−θ, e0 = Id, and t→ etθ(x) is the solution of the o.d.e.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Lemma 6.20. Let θ ∈W 1,∞(IRN ; IRN ) be such that θ · n = 0 on ∂Ω0. Then

etθ(Ω0) = Ω0 for all t ∈ IR.

Proof (by contradiction). Assume ∃x ∈ Ω0 such that the trajectory y(t, x)

escapes from Ω0 (or conversely). Thus ∃t0 > 0 such that x0 = y(t0, x) ∈ ∂Ω0.

Locally the boundary ∂Ω0 is parametrized by an equation φ(x) = 0 and the

normal is n = n0/|n0| with n0 = ∇φ (defined around ∂Ω0).

We modify the vector field as θ̃ = θ − (θ · n)n to obtain a modified trajectory

ỹ(t, x0) such that, for any t ≥ t0,

d

dt

(

φ(ỹ(t, x))
)

=
dỹ

dt
· ∇φ(ỹ) = θ̃(ỹ) · n|n0| = 0

Since φ(ỹ(t0, x0)) = 0, we deduce φ(ỹ(t, x0)) = 0, i.e., the trajectory ỹ stays on

∂Ω0. Since θ · n = 0 on ∂Ω0, ỹ is also a trajectory for the vector field θ.

Uniqueness of the o.d.e.’s solution yields ỹ(t) = y(t) ∈ ∂Ω0 for any t which is a

contradiction with x ∈ Ω0.

Remark. The crucial point is that θ is tangent to the boundary ∂Ω0.

G. Allaire, Ecole Polytechnique Optimal design of structures



22

Proof of Proposition 6.15 (Ctd.)

Since etθ(Ω0) = Ω0 for any t ∈ IR, the function J is constant along this path

and
dJ
(

etθ(Ω0)
)

dt
(0) = 0.

By the chain rule lemma we deduce

dJ
(

etθ(Ω0)
)

dt
(0) = J ′(Ω0)

(

detθ

dt

)

(0) = J ′(Ω0) (θ) = 0,

because the path etθ(x) satisfies

detθ(x)

dt
(0) = θ(x),

which yields the result by linearity in θ.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Review of known formulas

To compute shape derivatives we need to recall how to change variables in

integrals.

Lemma 6.21. Let Ω0 be an open set of IRN . Let T ∈ T be a diffeomorphism

and 1 ≤ p ≤ +∞. Then f ∈ Lp
(

T (Ω0)
)

if and only if f ◦ T ∈ Lp(Ω0), and

∫

T (Ω0)

f dx =

∫

Ω0

f ◦ T | det∇T | dx

∫

T (Ω0)

f | det(∇T )−1 | dx =

∫

Ω0

f ◦ T dx.

On the other hand, f ∈W 1,p
(

T (Ω0)
)

if and only if f ◦ T ∈W 1,p(Ω0), and

(

∇f
)

◦ T =
(

(∇T )−1
)t
∇(f ◦ T ).

(t = adjoint or transposed matrix)

G. Allaire, Ecole Polytechnique Optimal design of structures
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Change of variables in a boundary integral.

Lemma 6.23. Let Ω0 be a smooth bounded open set of IRN . Let

T ∈ T ∩ C1(IRN ; IRN ) be a diffeomorphism and f ∈ L1
(

∂T (Ω0)
)

.

Then f ◦ T ∈ L1(∂Ω0), and we have
∫

∂T (Ω0)

f ds =

∫

∂Ω0

f ◦ T | det∇T |
∣

∣

∣

(

(∇T )−1
)t
n
∣

∣

∣

IRN
ds,

where n is the exterior unit normal to ∂Ω0.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Examples of shape derivatives

Proposition 6.22. Let Ω0 be a smooth bounded open set of IRN ,

f(x) ∈W 1,1(IRN ) and J the map from C(Ω0) into IR defined by

J(Ω) =

∫

Ω

f(x) dx.

Then J is shape differentiable at Ω0 and

J ′(Ω0)(θ) =

∫

Ω0

div
(

θ(x) f(x)
)

dx =

∫

∂Ω0

θ(x) · n(x) f(x) ds

for any θ ∈W 1,∞(IRN ; IRN ).

Remark. To make sure the result is right, the safest way (but not the easiest)

is to make a change of variables to get back to the reference domain Ω0.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Intuitive proof

Ω 0

(Ι+θ)Ω 0

θ.n

Surface swept by the transformation: difference between ( Id + θ)Ω0 and Ω0

≈ ∂Ω0 ×
(

θ · n
)

. Thus

∫

( Id+θ)Ω0

f(x) dx =

∫

Ω0

f(x) dx+

∫

∂Ω0

f(x)θ · nds+ o(θ).

G. Allaire, Ecole Polytechnique Optimal design of structures
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Proof. We rewrite J(Ω) as an integral on the reference domain Ω0

J
(

( Id + θ)Ω0

)

=

∫

Ω0

f ◦ ( Id + θ) | det( Id +∇θ) | dx.

The functional θ → det( Id +∇θ) is differentiable from W 1,∞(IRN ; IRN ) into

L∞(IRN ) because

det( Id +∇θ) = det Id + divθ + o(θ) with lim
θ→0

‖o(θ)‖L∞(IRN ;IRN )

‖θ‖W 1,∞(IRN ;IRN )

= 0.

On the other hand, if f(x) ∈W 1,1(IRN ), the functional θ → f ◦ ( Id + θ) is

differentiable from W 1,∞(IRN ; IRN ) into L1(IRN ) because

f ◦ ( Id+ θ)(x) = f(x) +∇f(x) · θ(x) + o(θ) with lim
θ→0

‖o(θ)‖L1(IRN )

‖θ‖W 1,∞(IRN ;IRN )

= 0.

By composition of these two derivatives we obtain the result.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Proposition 6.24. Let Ω0 be a smooth bounded open set of IRN ,

f(x) ∈W 2,1(IRN ) and J the map from C(Ω0) into IR defined by

J(Ω) =

∫

∂Ω

f(x) ds.

Then J is shape differentiable at Ω0 and

J ′(Ω0)(θ) =

∫

∂Ω0

(

∇f · θ + f
(

divθ −∇θn · n
))

ds

for any θ ∈W 1,∞(IRN ; IRN ). By a (boundary) integration by parts this

formula is equivalent to

J ′(Ω0)(θ) =

∫

∂Ω0

θ · n

(

∂f

∂n
+Hf

)

ds,

where H is the mean curvature of ∂Ω0 defined by H = divn.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Interpretation

Two simple examples:

☞ If ∂Ω0 is an hyperplane, then H = 0 and the variation of the boundary

integral is proportional to the normal derivative of f .

☞ If f ≡ 1, then J(Ω) is the perimeter (in 2-D) or the surface (in 3-D) of the

domain Ω and its variation is proportional to the mean curvature.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Proof. A change of variable yields

J
(

( Id + θ)Ω0

)

=

∫

∂Ω0

f ◦ ( Id + θ)| det( Id +∇θ)| |
(

( Id +∇θ)−1
)t
n |IRN ds.

We already proved that θ → det( Id +∇θ) and θ → f ◦ ( Id + θ) are

differentiables.

On the other hand, θ →
(

( Id +∇θ)−1
)t
n is differentiable from

W 1,∞(IRN ; IRN ) into L∞(∂Ω0; IR
N ) because

(

( Id +∇θ)−1
)t
n = n− (∇θ)tn+ o(θ) with lim

θ→0

‖o(θ)‖L∞(∂Ω0;IRN )

‖θ‖W 1,∞(IRN ;IRN )

= 0.

By composition with the derivative of g →| g |IRN , we deduce

|
(

( Id +∇θ)−1
)t
n |IRN= 1−(∇θ)tn·n+o(θ) with lim

θ→0

‖o(θ)‖L∞(∂Ω0)

‖θ‖W 1,∞(IRN ;IRN )

= 0.

Composing these three derivatives leads to the result. The formula, including

the mean curvature, is obtained by an integration by parts on the surface ∂Ω0.

G. Allaire, Ecole Polytechnique Optimal design of structures
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”Strategy” of the course

Computing the shape derivative of the solution of a p.d.e. is not

easy !

➳ We explain once the rigorous method for computing a shape derivative.

➳ It is a bit involved and quite calculus-intensive...

➳ At the end we shall introduce a formal simpler method which is the one to

be used in practice.

➳ This formal method is called the Lagrangian method and you should learn

how to use it !

G. Allaire, Ecole Polytechnique Optimal design of structures
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6.3.3. Derivation of a function depending on the shape

Let u(Ω, x) be a function defined on the domain Ω.

There exist two notions of derivative:

1) Eulerian (or shape) derivative U

u(( Id + θ)Ω0, x) = u(Ω0, x) + U(θ, x) + o(θ) , with lim
θ→0

‖o(θ)‖

‖θ‖
= 0

OK if x ∈ Ω0 ∩ ( Id + θ)Ω0 (local definition, makes no sense on the boundary).

2) Lagrangian (or material) derivative Y

We define the transported function u(θ) on Ω0 by

u(θ, x) = u ◦ ( Id + θ) = u
(

( Id + θ)Ω0, x+ θ(x)
)

∀x ∈ Ω0.

The Lagrangian derivative Y is obtained by differentiating u(θ, x)

u(θ, x) = u(0, x) + Y (θ, x) + o(θ) , with lim
θ→0

‖o(θ)‖

‖θ‖
= 0 ,

G. Allaire, Ecole Polytechnique Optimal design of structures
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Differentiating u = u ◦ ( Id + θ), one can check that

Y (θ, x) = U(θ, x) + θ(x) · ∇u(Ω0, x).

The Eulerian derivative, although being simpler, is very delicate to use and

often not rigorous. For example, if u ∈ H1
0 (Ω), the space of definition varies

with Ω... Equivalently what boundary condition should the derivative satisfy ?

We recommend to use the Lagrangian derivative to avoid mistakes.

Remark. Computations will be made with Y but the final result is stated

with U (which is simpler).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Composed shape derivative

Proposition 6.28. Let Ω0 be a smooth bounded open set of IRN , and

u(Ω) ∈ L1(IRN ). We assume that the transported function u is differentiable

at 0 from W 1,∞(IRN ; IRN ) into L1(IRN ), with derivative Y . Then

J(Ω) =

∫

Ω

u(Ω) dx

is differentiable at Ω0 and ∀θ ∈W 1,∞(IRN ; IRN )

J ′(Ω0)(θ) =

∫

Ω0

(

u(Ω0) divθ + Y (θ)
)

dx.

In other words, using the Eulerian derivative U ,

J ′(Ω0)(θ) =

∫

Ω0

(

U(θ) + div(u(Ω0)θ)
)

dx.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Similarly, if u(θ) is differentiable at 0 as a function from W 1,∞(IRN ; IRN ) into

L1(∂Ω0), then

J(Ω) =

∫

∂Ω

u(Ω) dx

is differentiable at Ω0 and

J ′(Ω0)(θ) =

∫

∂Ω0

(

u(Ω0) ( divθ −∇θn · n) + Y (θ)
)

ds.

In other words, using the Eulerian derivative U ,

J ′(Ω0)(θ) =

∫

∂Ω0

(

U(θ) + θ · n

(

∂u(Ω0)

∂n
+Hu(Ω0)

))

dx.
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6.3.4 Shape derivation of an equation

From now on, u(Ω) is the solution of a p.d.e. in the domain Ω.

Recall that

Y (θ, x) = U(θ, x) + θ(x) · ∇u(Ω0, x).

The Eulerian derivative, although being simpler, is very delicate to use and

often not rigorous. For example, if u ∈ H1
0 (Ω), the space of definition varies

with Ω... Equivalently what boundary condition should the derivative satisfy ?

We recommend to use the Lagrangian derivative: after getting back to the

fixed reference domain Ω0 we differentiate with respect to θ. This is the safest

and most rigorous way for computing the shape derivative of u, but the

details can be tricky.

We shall later introduce a heuristic method which is simpler.

The results depend on the type of boundary conditions.
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✞

✝

☎

✆
Dirichlet boundary conditions

For f ∈ L2(IRN ) we consider the boundary value problem






−∆u = f in Ω

u = 0 on ∂Ω,

which admits a unique solution u(Ω) ∈ H1
0 (Ω).

Its variational formulation is: find u ∈ H1
0 (Ω) such that

∫

Ω

∇u · ∇φ dx =

∫

Ω

fφ dx ∀φ ∈ H1
0 (Ω).

(Simplification with respect to the textbook since here g = 0.)
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For Ω = ( Id + θ)(Ω0) we define the change of variables

x = y + θ(y) y ∈ Ω0 x ∈ Ω.

Proposition 6.30. Let u(Ω) ∈ H1
0 (Ω) be the solution and u(θ) ∈ H1

0 (Ω0) be

its transported function

u(θ)(y) = u(Ω)(x) = u
(

( Id + θ)(Ω0)
)

◦ ( Id + θ)(y).

The functional θ → u(θ), from W 1,∞(IRN ; IRN ) into H1(Ω0), is differentiable

at 0, and its derivative in the direction θ, called Lagrangian derivative is

Y = 〈u′(0), θ〉

where Y ∈ H1
0 (Ω0) is the unique solution of







−∆Y = −∆
(

θ · ∇u(Ω0)
)

in Ω0

Y = 0 on ∂Ω0.

G. Allaire, Ecole Polytechnique Optimal design of structures



39

Proof. We perform the change of variables x = y + θ(y) with y ∈ Ω0 in the

variational formulation
∫

Ω

∇u · ∇φ dx =

∫

Ω

fφ dx ∀φ ∈ H1
0 (Ω).

Take a test function φ = ψ ◦ ( Id + θ)−1, i.e., ψ(y) = φ(x). Recall that

(

∇φ
)

◦ ( Id + θ) =
(

(I +∇θ)−1
)t
∇
(

φ ◦ ( Id + θ)
)

.

We obtain: find u ∈ H1
0 (Ω0) such that, for any ψ ∈ H1

0 (Ω0),
∫

Ω0

A(θ)∇u · ∇ψ dy =

∫

Ω0

f ◦ ( Id + θ)ψ | det( Id +∇θ)|dy

with A(θ) = | det(I +∇θ)|(I +∇θ)−1
(

(I +∇θ)−1
)t
.
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We differentiate with respect to θ at 0 the variational formulation
∫

Ω0

A(θ)∇u · ∇ψ dy =

∫

Ω0

f ◦ ( Id + θ)ψ | det( Id +∇θ)|dy

where ψ is a function which does not depend on θ.

We already checked in the proof of Proposition 6.22 that the righ hand side is

differentiable. Furthermore, the map θ → A(θ) is differentiable too because

A(θ) = (1 + divθ)I −∇θ − (∇θ)t + o(θ) with lim
θ→0

‖o(θ)‖
L∞(IRN ;IRN2

)

‖θ‖W 1,∞(IRN ;IRN )

= 0.
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Since u(θ = 0) = u(Ω0), we get
∫

Ω0

∇Y ·∇ψ dy+

∫

Ω0

(

divθ I−∇θ−(∇θ)t
)

∇u(Ω0) ·∇ψ dy =

∫

Ω0

div
(

fθ
)

ψ dy

Since u(θ) ∈ H1
0 (Ω0), its derivative Y belongs to H1

0 (Ω0) too. Thus Y is a

solution of






−∆Y = div
[(

divθ I −∇θ − (∇θ)t
)

∇u(Ω0)
]

+ div
(

fθ
)

in Ω0

Y = 0 on ∂Ω0.

Recalling that ∆u(Ω0) = −f in Ω0, and using the identity (true for any

v ∈ H1(Ω0) such that ∆v ∈ L2(Ω0))

∆ (∇v · θ) = div
(

(∆v)θ − ( divθ)∇v +
(

∇θ + (∇θ)t
)

∇v
)

,

leads to the final result. (gotcha !)
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✞

✝

☎

✆
Shape derivative U

Corollary 6.32. The Eulerian derivative U of the solution u(Ω), defined by

formula

U = Y −∇u(Ω0) · θ,

is the solution in H1(Ω0) of






−∆U = 0 in Ω0

U = −(θ · n)∂u(Ω0)
∂n

on ∂Ω0.

(Obvious proof starting from Y .)

We are going to recover formally this p.d.e. for U without using the

knowledge of Y .
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Let φ be a compactly supported test function in ω ⊂ Ω for the variational

formulation
∫

ω

∇u · ∇φ dx =

∫

ω

fφ dx.

Differentiating with respect to Ω, neither the test function, nor the domain of

integration depend on Ω. Thus it yields
∫

ω

∇U · ∇φ dx = 0 ⇔ −∆U = 0.

To find the boundary condition we formally differentiate
∫

∂Ω

u(Ω)ψ ds = 0 ∀ψ ∈ C∞(IRN )

⇒

∫

∂Ω0

Uψ ds+

∫

∂Ω0

(

∂(uψ)

∂n
+Huψ

)

θ · nds = 0

which leads to the correct result since u = 0 on ∂Ω0.

Remark. The direct computation of U is not always that easy !
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✞

✝

☎

✆
Neumann boundary conditions

For f ∈ H1(IRN ) and g ∈ H2(IRN ) we consider the boundary value problem






−∆u+ u = f in Ω

∂u
∂n

= g on ∂Ω

which admits a unique solution u(Ω) ∈ H1(Ω).

Its variational formulation is: find u ∈ H1(Ω) such that
∫

Ω

(∇u · ∇φ+ uφ) dx =

∫

Ω

fφ dx+

∫

∂Ω

gφ ds ∀φ ∈ H1(Ω).
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Proposition 6.34. For Ω = ( Id + θ)(Ω0) we define the change of variables

x = y + θ(y) y ∈ Ω0 x ∈ Ω.

Let u(Ω) ∈ H1(Ω) be the solution and u(θ) ∈ H1(Ω0) be its transported

function

u(θ)(y) = u(Ω)(x) = u
(

( Id + θ)(Ω0)
)

◦ ( Id + θ)(y).

The functional θ → u(θ), from W 1,∞(IRN ; IRN ) into H1(Ω0), is differentiable

at 0, and its derivative in the direction θ, called Lagrangian derivative is

Y = 〈u′(0), θ〉

where Y ∈ H1(Ω0) is the unique solution of














−∆Y + Y = −∆(∇u(Ω0) · θ) +∇u(Ω0) · θ in Ω0

∂Y

∂n
= (∇θ + (∇θ)t)∇u(Ω0) · n+∇g · θ − g(∇θn · n) on ∂Ω0.
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Proof. We perform the change of variables x = y + θ(y) with y ∈ Ω0 in the

variational formulation. Take a test function φ = ψ ◦ ( Id + θ)−1, i.e.,

ψ(y) = φ(x). We get
∫

Ω0

A(θ)∇u · ∇ψ dy +

∫

Ω0

uψ| det(I +∇θ)|dy

=

∫

Ω0

f ◦ ( Id + θ)ψ| det(I +∇θ)|dy

+

∫

∂Ω0

g ◦ ( Id + θ)ψ| det(I +∇θ)| | (I +∇θ)−tn | ds

with A(θ) = | det(I +∇θ)|(I +∇θ)−1
(

(I +∇θ)−1
)t
.

We differentiate with respect to θ at 0.

The only new term is the boundary integral which can be differentiated like in

Proposition 6.24.
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Defining Y = 〈u′(0), θ〉 we deduce
∫

Ω0

(∇Y · ∇ψ + Y ψ) dy+

∫

Ω0

(

divθ I −∇θ − (∇θ)t
)

∇u · ∇ψ dy

+

∫

Ω0

uψ divθ dy =

∫

Ω0

div(fθ)ψ dy

+

∫

∂Ω0

(

∇g · θ + g
(

divθ −∇θn · n
))

ψds

Then we recall that u(0) = u(Ω0) = u, ∆u = u− f in Ω0 and ∂u
∂n

= g on ∂Ω0,

and the identity

∆ (∇v · θ) = div
(

(∆v)θ − ( divθ)∇v + (∇θ + (∇θ)t)∇v
)

,

to get the result. Simple in principle but computationally intensive...
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Corollary 6.36. The Eulerian derivative U of the solution u(Ω), defined by

U = Y −∇u(Ω0) · θ,

is a solution in H1(Ω0) of

−∆U + U = 0 in Ω0.

and satisfies the boundary condition

∂U

∂n
= θ · n

(

∂g

∂n
−
∂2u(Ω0)

∂n2

)

+∇t(θ · n) · ∇tu(Ω0) on ∂Ω0,

where ∇tφ = ∇φ− (∇φ · n)n denotes the tangential gradient on the boundary.

Proof. Easy but tedious computation.
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6.4 Gradient and optimality condition

We consider the shape optimization problem

inf
Ω∈Uad

J(Ω),

with Uad =
{

Ω = ( Id + θ)(Ω0) and
∫

Ω
dx = V0

}

. The cost function J(Ω) is

either the compliance, or a least square criterion for a target displacement

u0(x) ∈ L2(IRN )

J(Ω) =

∫

Ω

fu dx+

∫

∂Ω

gu ds or J(Ω) =

∫

Ω

|u− u0|
2dx.

The function u(Ω) is the solution in H1(Ω) of






−∆u+ u = f in Ω

∂u
∂n

= g on ∂Ω,

with f ∈ H1(IRN ) and g ∈ H2(IRN ).
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✞

✝

☎

✆
Gradient and optimality condition

Theorem 6.38. The functional J(Ω) =
∫

Ω
|u− u0|

2dx is shape differentiable

J ′(Ω0)(θ) =

∫

∂Ω0

θ · n

(

|u− u0|
2 +∇u · ∇p+ p(u− f)−

∂(gp)

∂n
−Hgp

)

ds,

where p is the adjoint state, unique solution in H1(Ω0) of






−∆p+ p = −2 (u− u0) in Ω0

∂p
∂n

= 0 on ∂Ω0,

We recover the fact that the shape derivative depends only on the normal

trace of θ on the boundary.
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Proof. Applying Proposition 6.28 to the cost function yields

J ′(Ω0)(θ) =

∫

Ω0

(

|u(Ω0)− u0|
2 divθ + 2(u(Ω0)− u0)(Y −∇u0 · θ)

)

dx,

or equivalently, with U = Y −∇u(Ω0) · θ,

J ′(Ω0)(θ) =

∫

Ω0

[

div
(

θ|u(Ω0)− u0|
2
)

+ 2(u(Ω0)− u0)U
]

dx.

Multiplying the adjoint equation by U
∫

Ω0

(∇p · ∇U + pU) dy = −2

∫

Ω0

(u(Ω0)− u0)U dy,

then the equation for U by p
∫

Ω0

(∇p · ∇U + pU) dy =
∫

∂Ω0

θ · n

(

−∇u(Ω0) · ∇p− p∆u(Ω0) +
∂(gp)

∂n
+Hgp

)

ds,

we deduce the result by comparison of the two equalities.
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✞

✝

☎

✆
The compliance case (self-adjoint)

Theorem 6.40. The functional J(Ω) =

∫

Ω

fu dx+

∫

∂Ω

gu ds is

shape-differentiable

J ′(Ω0)(θ) =

∫

∂Ω0

θ · n
(

−|∇u(Ω0)|
2 − |u(Ω0)|

2 + 2u(Ω0)f
)

ds

+

∫

∂Ω0

θ · n

(

2
∂(gu(Ω0))

∂n
+ 2Hgu(Ω0)

)

ds,

Interpretation: assume f = 0 and g = 0 where θ · n 6= 0. The formula

simplifies in

J ′(Ω0)(θ) = −

∫

∂Ω0

θ · n
(

|∇u|2 + u2
)

ds ≤ 0

It is always advantageous to increase the domain (i.e., θ · n > 0) for

decreasing the compliance.
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Proof. Applying Proposition 6.28 to the cost function yields

J ′(Ω0)(θ) =

∫

Ω0

(fu divθ + uθ · ∇f + fY ) dx

+

∫

∂Ω0

(gu ( divθ −∇θn · n) + uθ · ∇g + gY ) ds,

or equivalently, with U = Y −∇u · θ,

J ′(Ω0)(θ) =

∫

Ω0

( div(fuθ) + fU) dx+

∫

∂Ω0

(

θ · n

(

∂(gu)

∂n
+Hgu

)

+ gU

)

ds.

Multiplying the equation for u by U and that for U by u, then comparing,

leads to the result.

Remark. Same type of result for a Dirichlet boundary condition (but

different formulas).
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✞

✝

☎

✆
6.4.3 Fast derivation: the Lagrangian method

➵ The previous computations are quite tedious... but there is a simpler and

faster (albeit formal) method, called the Lagrangian method (proposed in

this context by J. Céa).

➵ The Lagrangian allows us to find the correct definition of the adjoint state

too.

➵ It is easy for Neumann boundary conditions, a little more involved for

Dirichlet ones.

➵ That is the method to be known !
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✞

✝

☎

✆
Fast derivation for Neumann boundary conditions

If the objective function is

J(Ω) =

∫

Ω

j(u(Ω)) dx,

the Lagrangian is defined as the sum of J and of the variational formulation

of the state equation

L(Ω, v, q) =

∫

Ω

j(v) dx+

∫

Ω

(

∇v · ∇q + vq − fq
)

dx−

∫

∂Ω

gq ds,

with v and q ∈ H1(IRN ). It is important to notice that the space H1(IRN )

does not depend on Ω and thus the three variables in L are clearly

independent.
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The partial derivative of L with respect to q in the direction φ ∈ H1(IRN ) is

〈
∂L

∂q
(Ω, v, q), φ〉 =

∫

Ω

(

∇v · ∇φ+ vφ− fφ
)

dx−

∫

∂Ω

gφ ds,

which, upon equating to 0, gives the variational formulation of the state.

The partial derivative of L with respect to v in the direction φ ∈ H1(IRN ) is

〈
∂L

∂v
(Ω, v, q), φ〉 =

∫

Ω

j′(v)φ dx+

∫

Ω

(

∇φ · ∇q + φq
)

dx,

which, upon equating to 0, gives the variational formulation of the adjoint.

The partial derivative of L with respect to Ω in the direction θ is

∂L

∂Ω
(Ω0, v, q)(θ) =

∫

∂Ω

θ · n

(

j(v) +∇v · ∇q + vq − fq −
∂(gq)

∂n
−Hgq

)

ds.

When evaluating this derivative with the state u(Ω0) and the adjoint p(Ω0),

we precisely find the derivative of the objective function

∂L

∂Ω

(

Ω0, u(Ω0), p(Ω0)
)

(θ) = J ′(Ω0)(θ)
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Indeed, if we differentiate the equality

L(Ω, u(Ω), q) = J(Ω) ∀ q ∈ H1(IRN ),

the chain rule lemma yields

J ′(Ω0)(θ) =
∂L

∂Ω
(Ω0, u(Ω0), q)(θ) + 〈

∂L

∂v
(Ω0, u(Ω0), q), u

′(Ω0)(θ)〉

Taking q = p(Ω0), the last term cancels since p(Ω0) is the solution of the

adjoint equation.

Thanks to this computation, the “correct” result can be guessed for J ′(Ω0)

without using the notions of shape or material derivatives.

Nevertheless, in full rigor, this “fast” computation of the shape derivative

J ′(Ω0) is valid only if we know that u is shape differentiable.
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✞

✝

☎

✆
Fast derivation for Dirichlet boundary conditions

It is more involved ! Let u ∈ H1
0 (Ω) be the solution of

∫

Ω

∇u · ∇φ dx =

∫

Ω

fφ dx ∀φ ∈ H1
0 (Ω).

The “usual” Lagrangian is

L(Ω, v, q) =

∫

Ω

j(v) dx+

∫

Ω

(

∇v · ∇q − fq
)

dx,

for v, q ∈ H1
0 (Ω). The variables (Ω, v, q) are not independent !

Indeed, the functions v and q satisfy

v = q = 0 on ∂Ω.

Another Lagrangian has to be introduced.
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✞

✝

☎

✆
Lagrangian for Dirichlet boundary conditions

The Dirichlet boundary condition is penalized

L(Ω, v, q, λ) =

∫

Ω

j(v) dx−

∫

Ω

(∆v + f)q dx+

∫

∂Ω

λv ds

where λ is the Lagrange multiplier for the boundary condition. It is now

possible to differentiate since the 4 variables v, q, λ ∈ H1(IRN ) are

independent.

Of course, we recover

sup
q,λ

L(Ω, v, q, λ) =







∫

Ω

j(u) dx = J(Ω) if v ≡ u,

+∞ otherwise.
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By definition of the Lagrangian:

the partial derivative of L with respect to q in the direction φ ∈ H1(IRN ) is

〈
∂L

∂q
(Ω, v, q, λ), φ〉 = −

∫

Ω

φ
(

∆v + f
)

dx,

which, upon equating to 0, gives the state equation,

the partial derivative of L with respect to λ in the direction φ ∈ H1(IRN ) is

〈
∂L

∂λ
(Ω, v, q, λ), φ〉 =

∫

∂Ω

φv dx,

which, upon equating to 0, gives the Dirichlet boundary condition for the

state equation.
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To compute the partial derivative of L with respect to v, we perform a first

integration by parts

L(Ω, v, q, λ) =

∫

Ω

j(v) dx+

∫

Ω

(∇v · ∇q − fq) dx+

∫

∂Ω

(

λv −
∂v

∂n
q

)

ds,

then a second integration by parts

L(Ω, v, q, λ) =

∫

Ω

j(v) dx−

∫

Ω

(v∆q − fq) dx+

∫

∂Ω

(

λv −
∂v

∂n
q +

∂q

∂n
v

)

ds.

We now can differentiate in the direction φ ∈ H1(IRN )

〈
∂L

∂v
(Ω, v, q), φ〉 =

∫

Ω

j′(v)φ dx−

∫

Ω

φ∆q dx+

∫

∂Ω

(

−q
∂φ

∂n
+ φ

(

λ+
∂q

∂n

))

ds

which, upon equating to 0, gives three relationships, the two first ones being

the adjoint problem.
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1. If φ has compact support in Ω0, we get

−∆p = −j′(u) dans Ω0.

2. If φ = 0 on ∂Ω0 with any value of ∂φ
∂n

in L2(∂Ω0), we deduce

p = 0 sur ∂Ω0.

3. If φ is now varying in the full H1(Ω0), we find

∂p

∂n
+ λ = 0 sur ∂Ω0.

The adjoint problem has actually been recovered but furthermore the optimal

Lagrange multiplier λ has been characterized.
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Eventually, the shape partial derivative is

∂L

∂Ω
(Ω0, u, p, λ)(θ) =

∫

∂Ω0

θ · n
(

j(u)− (∆u+ f)p+
∂(uλ)

∂n
+Huλ

)

ds

Knowing that u = p = 0 on ∂Ω0 and λ = − ∂p
∂n

we deduce

∂L

∂Ω
(Ω0, u, p, λ)(θ) =

∫

∂Ω0

θ · n
(

j(0)−
∂u

∂n

∂p

∂n

)

ds = J ′(Ω0)(θ)
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J ′(Ω0)(θ) =
∂L

∂Ω

(

Ω0, u(Ω0), p(Ω0)
)

(θ)

This formula is not a surprise because differentiating

L(Ω, u(Ω), q, λ) = J(Ω) ∀q, λ

yields

J ′(Ω0)(θ) =
∂L

∂Ω
(Ω0, u(Ω0), q, λ)(θ) + 〈

∂L

∂v
(Ω0, u(Ω0), q, λ), u

′(Ω0)(θ)〉.

Then, taking q = p(Ω0) (the adjoint state) and λ = − ∂p
∂n

(Ω0), the last term

cancels and we obtain the desired formula.
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✞

✝

☎

✆
Application to compliance minimization

We minimize J(Ω) =

∫

Ω

fu dx with u ∈ H1
0 (Ω) solution of

∫

Ω

∇u · ∇φ dx =

∫

Ω

fφ dx ∀φ ∈ H1
0 (Ω).

The adjoint state is just p = −u. The shape derivative is

J ′(Ω0)(θ) =

∫

∂Ω0

θ · n
(

fu−
∂u

∂n

∂p

∂n

)

ds =

∫

∂Ω0

θ · n

(

∂u

∂n

)2

ds ≤ 0

It is always advantageous to shrink the domain (i.e., θ · n < 0) to decrease the

compliance.

This is the opposite conclusion compared to Neumann b.c., but it is logical !
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✞

✝

☎

✆
Another example: the drum

We optimize the shape of a drum (an elastic membrane) in order it produces

the lowest possible tune. Let λ(Ω) be the eigenvalue (the square of the

eigenfrequency) and u(x) be the eigenmode






−∆u = λ(Ω)u in Ω,

u = 0 on ∂Ω.

The fundamental mode is the smallest eigenvalue which is also characterized

by

λ(Ω) = min
u∈H1

0
(Ω),u6=0

∫

Ω
|∇u|2dx
∫

Ω
u2dx

.

Thus we study

inf
Ω⊂IR2

(

λ(Ω) + ℓ

∫

Ω

dx

)

,

where ℓ ≥ 0 is a given Lagrange multiplier for a constraint on the membrane

area.
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✄

✂

�

✁Eulerian derivation

For a test function φ with compact support ω ⊂ Ω we derive
∫

ω

∇u · ∇φ dx = λ(Ω)

∫

ω

uφ dx

⇒

∫

ω

∇U · ∇φ dx = λ(Ω)

∫

ω

Uφdx+ Λ

∫

ω

uφ dx,

where Λ = λ′(Ω)(θ) is the derivative of the eigenvalue (assumed to be simple).

⇒ −∆U − λ(Ω)U = Λu in Ω.

To deduce the boundary condition for U we derive
∫

∂Ω

uψ ds = 0 ∀ψ ∈ C∞(IR2).

⇒

∫

∂Ω

(

Uψ + θ · n

(

∂(uψ)

∂n
+Huψ

))

ds = 0,

which yields U = − ∂u
∂n
θ · n since u = 0 on ∂Ω.
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Multiplying the equation for U by u and integrating by parts leads to
∫

Ω

∇U · ∇u dx = λ

∫

Ω

Uudx+ Λ

∫

Ω

u2 dx.

Multiplying the equation for u by U and integrating by parts leads to
∫

Ω

∇U · ∇u dx = λ

∫

Ω

Uudx+

∫

∂Ω

∂u

∂n
U ds.

Thus, we deduce

Λ

∫

Ω

u2dx =

∫

∂Ω

∂u

∂n
U ds = −

∫

∂Ω

(

∂u

∂n

)2

θ · nds.

The derivative of the objective function is (self-adjoint problem)

J ′(Ω)(θ) = Λ + ℓ

∫

∂Ω

θ · nds =

∫

∂Ω

(

ℓ−

(

∂u
∂n

)2

∫

Ω
u2dx

)

θ · nds.

If ℓ = 0 we have J ′(Ω)(θ) ≤ 0 as soon as θ · n ≥ 0, i.e., we minimze J(Ω) if the

domain Ω is enlarged.
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✞

✝

☎

✆
Lagrangian method

For µ ∈ IR, v, q, z ∈ H1(IRN ), we introduce the Lagrangian

L(Ω, µ, v, q, z) = µ−

∫

Ω

(∆v + µv)q dx+

∫

∂Ω

zv ds

where z is the Lagrange multiplier for the boundary condition. Since the 5

variables are independent it is possible to differentiate.

The partial derivative ∂L
∂q

= 0 gives the state equation.

The partial derivative ∂L
∂z

= 0 gives the Dirichlet boundary condition for the

state.

The partial derivative ∂L
∂v

= 0 gives three relationships including the adjoint:

−∆p = λp in Ω, p = 0 on ∂Ω,
∂p

∂n
+ z = 0 on ∂Ω.
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The partial derivative ∂L
∂µ

= 0 yields

∫

Ω

up dx = 1

Since the eigenvalue λ is simple, p is a multiple of u. Thus

p =
u

∫

Ω
u2dx

.

Eventually, the shape partial derivative is

∂L

∂Ω
(Ω, λ, u, p, z)(θ) =

∫

∂Ω

θ · n
(

p∆u+ λpu+
∂(uz)

∂n
+Huz

)

ds

Knowing that u = p = 0 on ∂Ω and z = − ∂p
∂n

we deduce

∂L

∂Ω
(Ω, λ, u, p, z)(θ) =

∫

∂Ω

θ · n
(

−
∂u

∂n

∂p

∂n

)

ds = J ′(Ω)(θ)
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6.5 Numerical algorithms in the elasticity setting

Free boundary Γ. Fixed boundary ΓN and ΓD.






































− divσ = 0 in Ω

σ = 2µe(u) + λ tr(e(u)) Id in Ω

u = 0 on ΓD

σn = g on ΓN

σn = 0 on Γ,

with e(u) = (∇u+ (∇u)t)/2. Compliance is minimized

J(Ω) =

∫

ΓN

g · u dx.

In such a (self-adjoint) case we get

J ′(Ω0)(θ) = −

∫

Γ

θ · n
(

2µ|e(u)|2 + λ( tr e(u))2
)

ds.
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Boundary conditions for an elastic cantilever: ΓD is the left vertical side, ΓN

is the right vertical side, and Γ (dashed line) is the remaining boundary.

Γ

Γ

Γ

Γ

N

D

D
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✞

✝

☎

✆
Main idea of the algorithm

Given an inital design Ω0 we compute a sequence of iterative shapes Ωk,

satisfying the following constraints

∂Ωk = Γk ∪ ΓN ∪ ΓD

where ΓN and ΓD are fixed, and the volume (or weight) is fixed

V (Ωk) =

∫

Ωk

dx = V (Ω0).

To take into account the constraint that only Γ is allowed to move, it is

enough to take θ · n = 0 on ΓN ∪ ΓD.

Because of the volume constraint we rely on a projected gradient algorithm

with a fixed step .

The derivative of the volume constraint is V ′(Ωk)(θ) =

∫

Γk

θ · n.
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✞

✝

☎

✆
Algorithm

Let t > 0 be a given descent step. We compute a sequence Ωk ∈ Uad by

1. Initialization of the shape Ω0.

2. Iterations until convergence, for k ≥ 0:

Ωk+1 = ( Id + θk)Ωk with θk = t(jk − ℓk)n,

where n is the normal to the boundary ∂Ωk and ℓk ∈ IR is the Lagrange

multiplier such that Ωk+1 satisfies the volume constraint. The shape

derivative is given on the boundary Γk by

J ′(Ωk)(θ) = −

∫

Γ

θ · n jk ds with jk = 2µ|e(uk)|
2 + λ( tr e(uk))

2

where uk is the solution of the state equation posed in the domain Ωk.
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✞

✝

☎

✆Mesh deformation

To change the shape we need to automatically remesh the new shape, or at

least to deform the mesh at each iteration.

✖ Displacement field θ proportional to n (normal to the boundary), merely

defined on the boundary.

✖ We prefer to deform the mesh (it is less costly).

✖ In such a case we have to extend θ inside the shape.

✖ We need to check that the displaced boundaries do not cross...

✖ Nevertheless, in case of large shape deformations we must remesh (it is

computationally costly).

✖ Often the algorithm stops before convergence because of geometrical

constraints.

Implementing geometric optimization on a computer is quite intricate,

especially in 3-d.

G. Allaire, Ecole Polytechnique Optimal design of structures



77

✞

✝

☎

✆
Extension of the displacement field

J ′(Ω)(θ) + ℓV ′(Ω)(θ) =

∫

Γ

(ℓ− j) θ · nds

A first possibility to extend (ℓ− j)n inside the shape is















−∆θ = 0 in Ω

θ = t(j − ℓ)n on Γ

θ = 0 on ΓD ∪ ΓN
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We rather take this opportunity to (furthermore) regularize by solving















−∆θ = 0 in Ω

∂θ
∂n

= t(j − ℓ)n on Γ

θ = 0 on ΓD ∪ ΓN

Indeed, j = 2µ|e(u)|2 + λ tr(e(u))2 (for compliance) may be not smooth (not

better than in L1(Ω)) although we always assumed that θ ∈W 1,∞(IRN ; IRN )).

It can cause boundary oscillations.

Typically, θ admits one order of derivation more than j and one can check

that it is actually a descent direction because

−

∫

Ω

|∇θ|2dx = t

∫

Γ

(ℓ− j) θ · nds
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✞

✝

☎

✆Technical details

☞ To check the volume constraint we update “a posteriori” the Lagrange

multiplier ℓk ∈ IR. The volume is thus not exact but it converges to the

desired value.

☞ We step back and diminish the descent step t > 0 when J(Ω) increases.

☞ To avoid possible oscillations of the boundary, due to numerical

instabilities, we use two meshes: a fine one to precisely evaluate u and p,

a coarse one which is moved.

FreeFem++ computations ; scripts available on the web page

http://www.cmap.polytechnique.fr/~allaire/cours X annee3.html
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✞

✝

☎

✆
Numerical results: initialization and iterations 5, 10, 20
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✞

✝

☎

✆
Influence of the initial topology
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