# **OPTIMAL DESIGN OF STRUCTURES (MAP 562)**

1

G. ALLAIRE, Th. WICK

February 22nd, 2017

Department of Applied Mathematics, Ecole Polytechnique CHAPTER VII (first part)

TOPOLOGY OPTIMIZATION BY THE HOMOGENIZATION METHOD

G. Allaire, Ecole Polytechnique

Why topology optimization ?

Drawbacks of geometric optimization:

- rightarrow no variation of the topology (number of holes in 2-d),
- 🖙 many local minima,
- difficulty of remeshing, mostly in 3-d (although there exists a recent software, mmg3d, for this),
- ill-posed problem: non-existence of optimal solutions (in the absence of constraints). It shows up in numerics !

Topology optimization: we improve not only the boundary location but also its topology (i.e., its number of connected components in 2-d).

We focus on one possible method, based on homogenization.



G. Allaire, Ecole Polytechnique

The art of structure is where to put the holes.

Robert Le Ricolais, architect and engineer, 1894-1977



G. Allaire, Ecole Polytechnique

## Principles of the homogenization method

The homogenization method is based on the concept of "relaxation": it makes ill-posed problems well-posed by enlarging the space of admissible shapes.

We introduce "generalized" shapes but not too generalized... We require the generalized shapes to be "limits" of minimizing sequences of classical shapes.

### Remember the following counter-example:



Minimizing sequences of shapes try to build fine mixtures of material and void. Homogenization allows as admissible shapes **composite materials** obtained by microperforation of the original material.

### Notations

rightarrow A classical shape is parametrized by a characteristic function

$$\chi(x) = \begin{cases} 1 \text{ inside the shape,} \\ 0 \text{ inside the holes.} \end{cases}$$

- The Homogenization: from now on, the holes can be microscopic as well as macroscopic  $\Rightarrow$  porous composite materials !
- Solution We parametrize a generalized shape by a material density θ(x) ∈ [0, 1], and a microstructure (or holes shape).
- The holes shape is very important ! It induces a new optimization variable which is the effective behavior  $A^*(x)$  of the composite material (defined by homogenization theory).
- rightarrow Conclusion:  $(\theta, A^*)$  are the two new optimization variables.



(B. Geihe, M. Lenz, M. Rumpf, R. Schultz, Math. Program. A, 141, 2013.)

G. Allaire, Ecole Polytechnique

## 7.1.2 Model problem

Simplifying assumption: the "holes" with a free boundary condition (Neumann) are filled with a weak ("ersatz") material  $\alpha \ll \beta$ .

Equivalently: membrane with two possible thicknesses

with 
$$\mathcal{U}_{ad} = \left\{ \chi \in L^{\infty} \left( \Omega; \{0, 1\} \right), \int_{\Omega} \chi(x) \, dx = V_{\alpha} \right\}.$$

If  $f \in L^2(\Omega)$  is the applied load, the displacement satisfies

$$\begin{aligned} -\operatorname{div} \left( h_{\chi} \nabla u_{\chi} \right) &= f & \text{in } \Omega \\ u_{\chi} &= 0 & \text{on } \partial \Omega. \end{aligned}$$

Optimizing the membrane's shape amounts to minimize

$$\inf_{\chi \in \mathcal{U}_{ad}} J(\chi),$$

with 
$$J(\chi) = \int_{\Omega} f u_{\chi} dx$$
, or  $J(\chi) = \int_{\Omega} |u_{\chi} - u_0|^2 dx$ .

G. Allaire, Ecole Polytechnique

## Goals of the homogenization method

- To introduce the notion of generalized shapes made of composite material.
- To show that those generalized shapes are limits of sequences of classical shapes (in a sense to be made precise).
- To compute the generalized objective function and its gradient.
- To prove an existence theorem of optimal generalized shapes (it is **not** the goal of the present course).
- To deduce new numerical algorithms for topology optimization (it is **actually** the goal of the present course).

While geometric optimization was producing **shape tracking** algorithms, topology optimization yields **shape capturing** algorithms.



# Shape tracking

# Shape capturing

G. Allaire, Ecole Polytechnique



- $\Leftrightarrow$  Averaging method for partial differential equations.
- ✤ Determination of averaged parameters (or effective, or homogenized, or equvalent, or macroscopic) for an heterogeneous medium.

### Periodic homogenization



Ω

Different approaches are possible: we describe the simplest one, i.e., periodic homogenization.

Assumption: we consider periodic heterogeneous media.

# Periodic homogenization (Ctd.)

- $\approx$  Ratio of the period with the characteristic size of the structure =  $\epsilon$ .
- The Although, for the "true" problem under consideration, there is only one physical value  $\epsilon_0$  of the parameter  $\epsilon$ , we consider a sequence of problems with smaller and smaller  $\epsilon$ .
- $\Im$  We perform an asymptotic analysis as  $\epsilon$  goes to 0.
- Solution We shall approximate the "true" problem ( $\epsilon = \epsilon_0$ ) by the limit problem obtained as  $\epsilon \to 0$ .

Model problem: elastic membrane made of composite material

For example: periodically distributed fibers in an epoxy resin.

Variable Hooke's law: A(y), Y-periodic function, with  $Y = (0, 1)^N$ .

 $A(y + e_i) = A(y) \quad \forall e_i \text{ i-th vector of the canonical basis.}$ 

We replace y by  $\frac{x}{\epsilon}$ :

 $x \to A\left(\frac{x}{\epsilon}\right)$  periodic of period  $\epsilon$  in all axis directions.

Bounded domain  $\Omega$ , load f(x), displacement  $u_{\epsilon}(x)$  solution of

$$\begin{cases} -\operatorname{div}\left(A\left(\frac{x}{\epsilon}\right)\nabla u_{\epsilon}\right) = f & \text{in } \Omega\\ u_{\epsilon} = 0 & \text{on } \partial\Omega, \end{cases}$$

A direct computation of  $u_{\epsilon}$  can be very expensive (since the mesh size h should satisfy  $h < \epsilon$ ), thus we seek only the averaged values of  $u_{\epsilon}$ .

### Two-scale asymptotic expansions

We assume that

$$u_{\epsilon}(x) = \sum_{i=0}^{+\infty} \epsilon^{i} u_{i}\left(x, \frac{x}{\epsilon}\right),$$

with  $u_i(x, y)$  function of the two variables x and y, periodic in y of period  $Y = (0, 1)^N$ . Plugging this series in the equation, we use the derivation rule

$$\nabla\left(u_i\left(x,\frac{x}{\epsilon}\right)\right) = \left(\epsilon^{-1}\nabla_y u_i + \nabla_x u_i\right)\left(x,\frac{x}{\epsilon}\right)$$

Thus

$$\nabla u_{\epsilon}(x) = \epsilon^{-1} \nabla_y u_0\left(x, \frac{x}{\epsilon}\right) + \sum_{i=0}^{+\infty} \epsilon^i \left(\nabla_y u_{i+1} + \nabla_x u_i\right)\left(x, \frac{x}{\epsilon}\right).$$

Typical oscillating behavior of  $x \to u_i\left(x, \frac{x}{\epsilon}\right)$ 



G. Allaire, Ecole Polytechnique

The equation becomes a series in  $\epsilon$ 

$$-\epsilon^{-2} \left[ \operatorname{div}_{y} \left( A \nabla_{y} u_{0} \right) \right] \left( x, \frac{x}{\epsilon} \right)$$
  
$$-\epsilon^{-1} \left[ \operatorname{div}_{y} \left( A (\nabla_{x} u_{0} + \nabla_{y} u_{1}) \right) + \operatorname{div}_{x} \left( A \nabla_{y} u_{0} \right) \right] \left( x, \frac{x}{\epsilon} \right)$$
  
$$-\sum_{i=0}^{+\infty} \epsilon^{i} \left[ \operatorname{div}_{x} \left( A (\nabla_{x} u_{i} + \nabla_{y} u_{i+1}) \right) + \operatorname{div}_{y} \left( A (\nabla_{x} u_{i+1} + \nabla_{y} u_{i+2}) \right) \right] \left( x, \frac{x}{\epsilon} \right)$$
  
$$= f(x).$$

- $\Leftrightarrow$  We identify each power of  $\epsilon$ .

The only the three first terms of the series really matter.

We start by a technical lemma.

**Lemma 7.4.** Take  $g \in L^2(Y)$ . The equation

$$\begin{cases} -\operatorname{div}_y \left( A(y) \nabla_y v(y) \right) = g(y) \text{ in } Y \\ y \to v(y) \text{ } Y \text{-periodic} \end{cases}$$

admits a solution  $v \in H^1_{\#}(Y)$ , unique up to an additive constant, if and only if

$$\int_Y g(y) \, dy = 0$$

**Proof.** Let us check that it is a necessary condition for existence. Integrating the equation on Y

$$\int_{Y} \operatorname{div}_{y} \left( A(y) \nabla_{y} v(y) \right) dy = \int_{\partial Y} A(y) \nabla_{y} v(y) \cdot n \, ds = 0$$

because of the periodic boundary conditions:  $A(y)\nabla_y v(y)$  is periodic but the normal *n* changes its sign on opposite faces of *Y*.

The sufficient condition is obtained by applying Lax-Milgram Theorem in the space  $V = \{ v \in H^1_{\#}(Y) \text{ s.t. } \int_Y v \, dy = 0 \}.$ 

Periodic boundary conditions in  $H^1_{\#}(Y)$ 

**Definition:**  $\phi \in H^1_{\#}(Y) \Leftrightarrow \phi \in H^1_{loc}(\mathbb{R}^N)$  and  $\phi$  is Y-periodic.



Equation of order  $\epsilon^{-2}$ :

$$\begin{pmatrix} -\operatorname{div}_y \left( A(y) \nabla_y u_0(x, y) \right) = 0 \text{ in } Y \\ y \to u_0(x, y) \text{ } Y \text{-periodic} \end{cases}$$

It is a p.d.e. with respect to y (x is just a parameter).

By uniqueness of the solution (up to an additive constant), we deduce

$$u_0(x,y) \equiv u(x)$$

Equation of order  $\epsilon^{-1}$ :

$$-\operatorname{div}_y \left( A(y) \nabla_y u_1(x, y) \right) = \operatorname{div}_y \left( A(y) \nabla_x u(x) \right) \text{ in } Y$$
$$y \to u_1(x, y) \text{ } Y\text{-periodic}$$

The necessary and sufficient condition of existence is satisfied. Thus  $u_1$  depends linearly on  $\nabla_x u(x)$ .

We introduce the cell problems

$$\begin{cases} -\operatorname{div}_y \left( A(y) \left( e_i + \nabla_y w_i(y) \right) \right) = 0 & \text{in } Y \\ y \to w_i(y) & Y \text{-periodic,} \end{cases}$$

with  $(e_i)_{1 \leq i \leq N}$ , the canonical basis of  $\mathbb{R}^N$ . Then

$$u_1(x,y) = \sum_{i=1}^N \frac{\partial u}{\partial x_i}(x)w_i(y)$$

G. Allaire, Ecole Polytechnique

Equation of order  $\epsilon^0$ :

$$-\operatorname{div}_{y} \left( A(y) \nabla_{y} u_{2}(x, y) \right) = \operatorname{div}_{y} \left( A(y) \nabla_{x} u_{1} \right)$$
$$+\operatorname{div}_{x} \left( A(y) (\nabla_{y} u_{1} + \nabla_{x} u) \right) + f(x) \text{ in } Y$$
$$y \to u_{2}(x, y) \text{ } Y \text{-periodic}$$

The necessary and sufficient condition of existence of the solution  $u_2$  is:

$$\int_{Y} \left( \operatorname{div}_{y} \left( A(y) \nabla_{x} u_{1} \right) + \operatorname{div}_{x} \left( A(y) (\nabla_{y} u_{1} + \nabla_{x} u) \right) + f(x) \right) dy = 0$$

We replace  $u_1$  by its value in terms of  $\nabla_x u(x)$ 

$$\operatorname{div}_{x} \int_{Y} A(y) \left( \sum_{i=1}^{N} \frac{\partial u}{\partial x_{i}}(x) \nabla_{y} w_{i}(y) + \nabla_{x} u(x) \right) dy + f(x) = 0$$

and we find the homogenized problem

$$-\operatorname{div}_{x} \left( A^{*} \nabla_{x} u(x) \right) = f(x) \text{ in } \Omega$$
$$u = 0 \text{ on } \partial \Omega$$

#### G. Allaire, Ecole Polytechnique

Homogenized tensor:

$$A_{ji}^* = \int_Y A(y)(e_i + \nabla_y w_i) \cdot e_j \, dy,$$

or, integrating by parts

$$A_{ji}^* = \int_Y A(y) \left( e_i + \nabla_y w_i(y) \right) \cdot \left( e_j + \nabla_y w_j(y) \right) dy.$$

Indeed, the cell problem yields

$$\int_Y A(y) \left( e_i + \nabla_y w_i(y) \right) \cdot \nabla_y w_j(y) \, dy = 0.$$

- ⇒ The formula for  $A^*$  is not fully explicit because cell problems must be solved.
- $\Rightarrow A^*$  does not depend on  $\Omega$ , nor f, nor the boundary conditions.
- $\Rightarrow$  The tensor  $A^*$  characterizes the microstructure.
- $\Rightarrow$  Later, we shall compute explicitly some examples of  $A^*$ .

# Conclusion

We obtained

$$u_{\epsilon}(x) \approx u(x) + \epsilon u_1\left(x, \frac{x}{\epsilon}\right)$$

with 
$$u_1(x, y) = \sum_{i=1}^{N} \frac{\partial u}{\partial x_i}(x) w_i(y)$$
 and  

$$\begin{cases} -\operatorname{div}_x \left(A^* \nabla_x u(x)\right) = f(x) \text{ in } \Omega \\ u = 0 \text{ on } \partial \Omega \end{cases}$$
with
$$A_{ji}^* = \int_Y A(y) \left(e_i + \nabla_y w_i(y)\right) \cdot \left(e_j + \nabla_y w_j(y)\right) dy$$

Computing u and  $w_i$  is much simpler than computing  $u_{\epsilon}$  ! We say that  $A_{\epsilon} \stackrel{\text{H}}{\longrightarrow} A^*$  (convergence in the sense of homogenization). This was a formal derivation since we started by assuming that

$$u_{\epsilon}(x) = \sum_{i=0}^{+\infty} \epsilon^{i} u_{i}\left(x, \frac{x}{\epsilon}\right)$$

# Rigorous results

One can prove:

$$u_{\epsilon}(x) = u(x) + \epsilon u_1\left(x, \frac{x}{\epsilon}\right) + r_{\epsilon} \quad \text{with} \quad \|r_{\epsilon}\|_{H^1(\Omega)} \le C\epsilon^{1/2}$$

In particular

$$\|u_{\epsilon} - u\|_{L^2(\Omega)} \le C\epsilon^{1/2}$$

The corrector is not negligible for the strain or the stress

$$\nabla u_{\epsilon}(x) = \nabla_x u(x) + (\nabla_y u_1) \left( x, \frac{x}{\epsilon} \right) + t_{\epsilon} \quad \text{with} \quad \|t_{\epsilon}\|_{L^2(\Omega)} \le C\epsilon^{1/2}$$

$$A\left(\frac{x}{\epsilon}\right)\nabla u_{\epsilon}(x) = A^*\nabla_x u(x) + \tau\left(x,\frac{x}{\epsilon}\right) + s_{\epsilon} \quad \text{with} \quad \|s_{\epsilon}\|_{L^2(\Omega)} \le C\epsilon^{1/2}$$
$$\int_{\Omega} A\left(\frac{x}{\epsilon}\right)\nabla u_{\epsilon} \cdot \nabla u_{\epsilon} \, dx = \int_{\Omega} A^*\nabla u \cdot \nabla u \, dx + o(1)$$

G. Allaire, Ecole Polytechnique

### Non-periodic case

Homogenization works for non-periodic media too (delicate notion). Let  $\chi_{\epsilon}(x)$  be a sequence of characteristic functions ( $\epsilon \neq$  period). For  $A_{\epsilon}(x) = \alpha \chi_{\epsilon}(x) + \beta (1 - \chi_{\epsilon}(x))$  and  $f \in L^{2}(\Omega)$  we consider  $\begin{cases} -\operatorname{div} (A_{\epsilon}(x) \nabla u_{\epsilon}) = f & \text{in } \Omega \\ u_{\epsilon} = 0 & \text{on } \partial \Omega. \end{cases}$ 

**Theorem 7.7.** There exists a subsequence, a density  $0 \le \theta(x) \le 1$  and an homogenized tensor  $A^*(x)$  such that  $\chi_{\epsilon}$  converges "in average" (weakly) to  $\theta$ ,  $A_{\epsilon}$  converges in the sense of homogenization to  $A^*$ , i.e.,  $\forall f \in L^2(\Omega), u_{\epsilon}$ converges in  $L^2(\Omega)$  to the solution u of the homogenized problem

$$-\operatorname{div} (A^*(x)\nabla u) = f \quad \text{in } \Omega$$
$$u = 0 \qquad \qquad \text{on } \partial\Omega.$$

**Disgression:** weak convergence or "in average"

Let  $\chi_{\epsilon}(x)$  be a sequence of characteristic functions,  $\chi_{\epsilon} \in L^{\infty}(\Omega; \{0, 1\})$ . Let  $\theta(x)$  be a function in  $L^{\infty}(\Omega; [0, 1])$ .

The sequence  $\chi_{\epsilon}$  is said to weakly converge to  $\theta$ , and we write  $\chi_{\epsilon} \rightharpoonup \theta$ , if

$$\lim_{\epsilon \to 0} \int_{\Omega} \chi_{\epsilon}(x) \phi(x) \, dx = \int_{\Omega} \theta(x) \phi(x) \, dx \quad \forall \phi \in C_{c}^{\infty}(\Omega).$$

**Lemma.** For any sequence  $\chi_{\epsilon}(x)$  of characteristic functions, there exists a subsequence and a limit  $\theta(x)$  such that this subsequence weakly converges to this limit.

**Remark.** The main difference between  $\chi_{\epsilon}$  and  $\theta$  is that  $\chi_{\epsilon}$  takes only the values 0 and 1, while  $\theta$  is a density which takes values in the whole range [0, 1].

# Two-phase composites

We mix two isotropic constituents  $A(y) = \alpha \chi(y) + \beta (1 - \chi(y))$  with a characteristic function  $\chi(y) = 0$  or 1.

Let  $\theta = \int_Y \chi(y) \, dy$  be the volume fraction of phase  $\alpha$  and  $(1 - \theta)$  that of phase  $\beta$ .

**Definition 7.6.** We define the set  $G_{\theta}$  of all homogenized tensors  $A^*$  obtained by homogenization of the two phases  $\alpha$  and  $\beta$  in proportions  $\theta$  and  $(1 - \theta)$ .

Of course, we have  $G_0 = \{\beta\}$  and  $G_1 = \{\alpha\}$ .

But usually,  $G_{\theta}$  is a (very) large set of tensors (corresponding to different choices of  $\chi(y)$ ).

### Application to shape optimization

Let  $\chi_{\epsilon}$  be a sequence (minimizing or not) of characteristic functions. We apply the preceding results, as  $\epsilon$  goes to 0,

$$\chi_{\epsilon}(x) \rightharpoonup \theta(x) \quad A_{\epsilon}(x) \stackrel{\mathrm{H}}{\rightharpoonup} A^{*}(x)$$
$$J(\chi_{\epsilon}) = \int_{\Omega} j(u_{\epsilon}) \, dx \to \int_{\Omega} j(u) \, dx = J(\theta, A^{*}),$$

тт

with u, solution of the homogenized state equation

$$\begin{cases} -\operatorname{div} \left(A^* \nabla u\right) = f & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

In particular, the objective function is unchanged when

$$J(\theta, A^*) = \int_{\Omega} f u \, dx, \quad \text{or} \quad J(\theta, A^*) = \int_{\Omega} |u - u_0|^2 dx.$$

G. Allaire, Ecole Polytechnique

# Homogenized formulation of shape optimization

We define the set of admissible homogenized shapes

$$\mathcal{U}_{ad}^* = \left\{ (\theta, A^*) \in L^{\infty} \left( \Omega; [0, 1] \times \mathbb{R}^{N^2} \right), A^*(x) \in G_{\theta(x)} \text{ in } \Omega, \int_{\Omega} \theta(x) \, dx = V_{\alpha} \right\}.$$

The relaxed or homogenized optimization problem is

$$\inf_{(\theta,A^*)\in\mathcal{U}^*_{ad}}J(\theta,A^*).$$

### Remarks

$$\nleftrightarrow \mathcal{U}_{ad} \subset \mathcal{U}_{ad}^*$$
 when  $\theta(x) = \chi(x) = 0$  or 1.

- $\Rightarrow$  We have enlarged the set of admissible shapes.
- $\Rightarrow$  One can prove that the relaxed problem always admit an optimal solution.
- ✤ We shall exhibit very efficient numerical algorithms for computing homogenized optimal shapes.
- ✤ Homogenization does not change the problem: homogenized (or composite) shapes are just the characterization of limits of sequences of classical shapes

$$\lim_{\epsilon \to 0} J(\chi_{\epsilon}) = J(\theta, A^*).$$

 $\Rightarrow$  Crucial issue: we need to find an explicit characterization of the set  $G_{\theta}$ .

Strategy of the course

The goal is to find the set  $G_{\theta}$  of all composite materials obtained by mixing  $\alpha$  and  $\beta$  in proportions  $\theta$  and  $(1 - \theta)$ .

- ⇒ One could do numerical optimization with respect to the geometry of the mixture  $\chi(y)$  in the unit cell.
- $\Rightarrow$  We follow a different (and analytical) path.
- $\Rightarrow$  First, we build a class of explicit composites (so-called sequential laminates) which will "fill" the set  $G_{\theta}$ .
- $\Rightarrow$  Second, we prove "bounds" on  $A^*$  which prove that no composite can be outside our previous guess of  $G_{\theta}$ .

Theoretical study of composite materials:

- ⇒ In dimension N = 1: explicit formula for  $A^*$ , the so-called harmonic mean.
- ⇒ In dimension  $N \ge 2$ , for two-phase mixtures: explicit characterization of  $G_{\theta}$  thanks to the variational principle of Hashin and Shtrikman.

### Underlying assumptions:

- ✤ Linear model of conduction or membrane stiffness (it is more delicate for linearized elasticity and very few results are known in the non-linear case).
- ✤ Perfect interfaces between the phases (continuity of both displacement and normal stress): no possible effects of delamination or debonding.

Dimension 
$$N = 1$$

Cell problem: 
$$\begin{cases} -\left(A(y)\left(1+w'(y)\right)\right)' = 0 & \text{in } [0,1]\\ y \to w(y) & 1\text{-periodic} \end{cases}$$

We explicitly compute the solution

$$w(y) = -y + \int_0^y \frac{C_1}{A(t)} dt + C_2$$
 with  $C_1 = \left(\int_0^1 \frac{1}{A(y)} dy\right)^{-1}$ ,

The formula for  $A^*$  is  $A^* = \int_0^1 A(y) (1 + w'(y))^2 dy$ , which yields the harmonic mean of A(y)

$$A^* = \left(\int_0^1 \frac{1}{A(y)} dy\right)^{-1}$$

Important particular case:

$$A(y) = \alpha \chi(y) + \beta \left(1 - \chi(y)\right) \quad \Rightarrow \quad A^* = \left(\frac{\theta}{\alpha} + \frac{1 - \theta}{\beta}\right)^{-1}$$

G. Allaire, Ecole Polytechnique



In dimension  $N \ge 2$  we consider parallel layers of two isotropic phases  $\alpha$  and  $\beta$ , orthogonal to the direction  $e_1$ 

$$\chi(y_1) = \begin{cases} 1 & \text{if } 0 < y_1 < \theta \\ 0 & \text{if } \theta < y_1 < 1, \end{cases} \quad \text{with} \quad \theta = \int_Y \chi \, dy.$$

We denote by  $A^*$  the homogenized tensor of  $A(y) = \alpha \chi(y_1) + \beta (1 - \chi(y_1))$ .

Lemma 7.9. Define 
$$\lambda_{\theta}^{-} = \left(\frac{\theta}{\alpha} + \frac{1-\theta}{\beta}\right)^{-1}$$
 and  $\lambda_{\theta}^{+} = \theta \alpha + (1-\theta)\beta$ . We have
$$A^{*} = \left(\begin{array}{cc} \lambda_{\theta}^{-} & 0 \\ \lambda_{\theta}^{+} & \\ & \ddots \\ 0 & & \lambda_{\theta}^{+} \end{array}\right)$$

Interpretation (resistance = inverse of conductivity). Resistances, placed in series (in the direction  $e_1$ ), average arithmetically, while resistances, placed in parallel (in directions orthogonal to  $e_1$ ) average harmonically.

**Proof.** We explicitly compute the solutions  $(w_i)_{1 \le i \le N}$  of the cell problems. For i = 1 we find  $w_1(y) = w(y_1)$  with w the uni-dimensional solution. For  $2 \le i \le N$  we find that  $w_i(y) \equiv 0$  since, in the weak sense, we have

$$\operatorname{div}_{y}\left(\alpha\chi(y_{1})e_{i}+\beta\left(1-\chi(y_{1})\right)e_{i}\right)=0\quad\text{in}\quad Y,$$

because the normal component (to the interface) of the vector  $(\alpha \chi + \beta (1 - \chi))e_i$  is continuous (actually zero) through the interface between the two phases.

Sequential laminated composites



We laminate again a laminated composite with one of the pure phases.

Simple laminate of two non-isotropic phases

**Lemma 7.11.** The homogenized tensor  $A^*$  of a simple laminate made of A and B in proportions  $\theta$  and  $(1 - \theta)$  in the direction  $e_1$  is

$$A^* = \theta A + (1-\theta)B - \frac{\theta(1-\theta) (A-B)e_1 \otimes (A-B)^t e_1}{(1-\theta)Ae_1 \cdot e_1 + \theta Be_1 \cdot e_1}$$

If we assume that (A - B) is invertible, then this formula is equivalent to

$$\theta (A^* - B)^{-1} = (A - B)^{-1} + \frac{(1 - \theta)}{Be_1 \cdot e_1} e_1 \otimes e_1$$

**Proof.** By definition

$$A_{ji}^* = \int_Y A(y)(e_i + \nabla_y w_i) \cdot e_j \, dy = \int_Y A(y) \left(e_i + \nabla_y w_i(y)\right) \cdot \left(e_j + \nabla_y w_j(y)\right) dy,$$

namely

$$A^*e_i = \int_Y A(y)(e_i + \nabla_y w_i) \, dy.$$

Consequently,  $\forall \xi \in \mathbb{R}^N$ , we have

$$A^*\xi = \int_Y A(y) \left(\xi + \nabla_y w_\xi\right) dy,$$

with 
$$w_{\xi}(y) = \sum_{i=1}^{N} \xi_i w_i(y)$$
 solution of  

$$\begin{cases}
-\operatorname{div}_y \left(A(y)\left(\xi + \nabla w_{\xi}(y)\right)\right) = 0 & \text{in } Y \\
y \to w_{\xi}(y) & Y \text{-periodic}
\end{cases}$$

G. Allaire, Ecole Polytechnique

**Main idea:** defining  $u(y) = \xi \cdot y + w_{\xi}(y)$  we seek a solution, the gradient of which is constant in each phase

$$\nabla u(y) = a\chi(y_1) + b\Big(1 - \chi(y_1)\Big),$$

$$\Rightarrow u(y) = \chi(y_1) \left( c_a + a \cdot y \right) + \left( 1 - \chi(y_1) \right) \left( c_b + b \cdot y \right)$$

Let  $\Gamma$  be the interface between the two phases.

By continuity of u through  $\Gamma$ 

$$c_a + a \cdot y = c_b + b \cdot y$$

$$\Rightarrow (a-b) \cdot x = (a-b) \cdot y \quad \forall x, y \in \Gamma.$$

Since  $(x - y) \perp e_1$ , there exists  $t \in \mathbb{R}$  such that  $b - a = te_1$ .

By continuity of  $A\nabla u \cdot n$  through  $\Gamma$ 

$$Aa \cdot e_1 = Bb \cdot e_1.$$

(In particular, it implies  $-\operatorname{div}(A(y)\nabla u) = 0$  in the weak sense.)

G. Allaire, Ecole Polytechnique

We deduce the value of  $t = \frac{(A-B)a \cdot e_1}{Be_1 \cdot e_1}$ .

Since  $w_{\xi}$  is periodic, it satisfies  $\int_{Y} \nabla w_{\xi} dy = 0$ , thus

$$\int_{Y} \nabla u \, dy = \theta a + (1 - \theta)b = \xi.$$

With these two equations we can evaluate a and b in terms of  $\xi$ . On the other hand, by definition of  $A^*$  we have

$$A^*\xi = \int_Y A(y) \left(\xi + \nabla w_\xi\right) dy = \int_Y A(y) \nabla u \, dy = \theta A a + (1 - \theta) B b.$$

An easy computation yields the desired formula

$$A^*\xi = \theta A\xi + (1-\theta)B\xi - \frac{\theta(1-\theta)(A-B)\xi \cdot e_1}{(1-\theta)Ae_1 \cdot e_1 + \theta Be_1 \cdot e_1}(A-B)e_1$$

The other formula is a consequence of: M invertible implies

$$\left(M + c(Me) \otimes (M^t e)\right)^{-1} = M^{-1} - \frac{c}{1 + c(Me \cdot e)}e \otimes e.$$

### Sequential lamination

We laminate again the preceding composite with always the same phase B. Recall that the homogenized tensor  $A_1^*$  of a simple laminate is

$$\theta \left( A_1^* - B \right)^{-1} = \left( A - B \right)^{-1} + \left( 1 - \theta \right) \frac{e_1 \otimes e_1}{Be_1 \cdot e_1}.$$

**Lemma 7.14.** If we laminate p times with B, we obtain a rank-p sequential laminate with matrix B and inclusion A, in proportions  $(1 - \theta)$  and  $\theta$ 

$$\theta (A_p^* - B)^{-1} = (A - B)^{-1} + (1 - \theta) \sum_{i=1}^p m_i \frac{e_i \otimes e_i}{Be_i \cdot e_i}$$

with

$$\sum_{i=1}^{p} m_i = 1 \text{ and } m_i \ge 0, \ 1 \le i \le p.$$

G. Allaire, Ecole Polytechnique



- A appears only at the first lamination: it is thus surrounded by B. In other words, A =inclusion and B = matrix.
- ✤ The thickness scales of the layers are very different between two lamination steps.
- $\Rightarrow$  Lamination parameters  $(m_i, e_i)$ .

**Proof.** By recursion we obtain  $A_p^*$  by laminating  $A_{p-1}^*$  and B in the direction  $e_p$  and in proportions  $\theta_p$ ,  $(1 - \theta_p)$ , respectively

$$\theta_p \left( A_p^* - B \right)^{-1} = \left( A_{p-1}^* - B \right)^{-1} + (1 - \theta_p) \frac{e_p \otimes e_p}{Be_p \cdot e_p}.$$

Replacing  $(A_{p-1}^* - B)^{-1}$  in this formula by the similar formula defining  $(A_{p-2}^* - B)^{-1}$ , and so on, we obtain

$$\left(\prod_{j=1}^{p} \theta_{j}\right) \left(A_{p}^{*}-B\right)^{-1} = \left(A-B\right)^{-1} + \sum_{i=1}^{p} \left(\left(1-\theta_{i}\right)\prod_{j=1}^{i-1} \theta_{j}\right) \frac{e_{i} \otimes e_{i}}{Be_{i} \cdot e_{i}}$$

We make the change of variables

$$(1-\theta)m_i = (1-\theta_i)\prod_{j=1}^{i-1}\theta_j \quad 1 \le i \le p$$

which is indeed one-to-one with the constraints on the  $m_i$ 's and the  $\theta_i$ 's  $(\theta = \prod_{i=1}^p \theta_i).$ 

46

The same can be done when exchanging the roles of A and B.

**Lemma 7.15.** A rank-*p* sequential laminate with matrix *A* and inclusion *B*, in proportions  $\theta$  and  $(1 - \theta)$ , is defined by

$$(1-\theta) (A_p^* - A)^{-1} = (B-A)^{-1} + \theta \sum_{i=1}^p m_i \frac{e_i \otimes e_i}{Ae_i \cdot e_i}.$$

with

$$\sum_{i=1}^{p} m_i = 1$$
 and  $m_i \ge 0, \ 1 \le i \le p$ .

**Remark.** Sequential laminates form a very rich and explicit class of composite materials which, as we shall see, describe completely the boundaries of the set  $G_{\theta}$ .