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7.5 Shape optimization in the elasticity setting.
D
-

>
>

Bounded working domain D € R™ (N = 2,3).

Q

Linear isotropic elastic material, with Hooke’s law A

2
A:(m—ﬁ“)12®12+2u14, 0 < K, pu < +00
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[Homogenized formulation of shape optimizationj

We introduce composite structures characterized by a local volume fraction

6(x) of the phase A (taking any values in the range [0, 1]) and an homogenized

tensor A*(x), corresponding to its microstructure.

The set of admissible homogenized designs is

w0 ={(0,4%) € 1 (D3[0,1] x RN') , A*(2) € Gy in D},

The homogenized state equation is

(

o= A%e(u)
dive = 0
u =20

on =g

on =0

\
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with e(u) = 3 (Vu+ (Vu)?),
in D,
on FD

on FN

on 0D \ (FD U FN)
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The homogenized compliance is defined by

C(Q,A*):/ g-uds.
I'n

The relaxed or homogenized optimization problem is

min {J(Q,A*) = ¢(6, A%) +e/

(0,A*)eur, D

0(x) dx} .

Bad news: in the elasticity setting an explicit characterization of Gy is still

lacking !

Good news: for compliance one can replace Gy by its explicit subset Ly of

laminated composites.

Furthermore, an optimal composite is a rank-/N sequential laminate with

lamination directions given locally by the eigendirections of the stress o.
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‘ 7.5.2 Sequential laminates in elasticity.

AL =2pa8 + Aa(tré)I, BE=2upé+ Ap(tré)l,
with the identity matrix Is, and k4 B = Aa. g + 24 /N. We assume B to be

weaker than A
0<up <pa, 0<kKp<kKa.
We work with stresses rather than strains, thus we use inverse elasticity

tensors.

Lemma 7.24. The Hooke’s law of a simple laminate of A and B in
proportions 6 and (1 — ), respectively, in the direction e, is

(1-6) (A*_l _ A—l) = (B =AY T 4+ 0f5(e)
with f4(e) the tensor defined, for any symmetric matrix &, by

A+ Aa

TS ((A&)e; - e;)~.

Fo(e)E € = A€ — | Ates)? +
HA
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Reiterated lamination formula

Proposition 7.25. A rank-p sequential laminate with matrix A and
inclusions B, in proportions ¢ and (1 — ), respectively, in the directions
(ei)1<i<p With parameters (m;)1<;<p such that 0 <m; < 1and >, _, m; =1,

is given by

—1

(1-6) (A*—l _ A—l) — (B —A) Qimifj(ei)
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‘ 7.5.3 Hashin-Shtrikman bounds in elasticity.

Theorem 7.26. Let A* be a homogenized elasticity tensor in GGy which is

assumed to be isotropic

2/44
A” :2,u*]4—|— (lﬁ)*— H )IQ@IQ

N

Then, there exist explicit bounds such that its bulk s, and shear p, moduli
satisty
/ﬁ',9_</<;>,<§/<:éF and uggm*guj

They are called Hashin-Shtrikman bounds.

Furthermore, the two lower bounds, as well as the two upper bounds are
simultaneously attained by a rank-p sequential laminate with p = 3 if N = 2,

and p=06if N = 3.
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[Hashin-Shtrikman bounds in elasticityj
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[Back to compliance minimization]

The key argument to avoid the knowledge of GGy is that, thanks to the

complementary energy minimization, compliance can be rewritten as

c(0,A") = g-uds= min Ao oda.
’ T divo=0 in D D
N oNnN=—g on FN

on=0 on 8D\I‘NUI‘D

The shape optimization problem thus becomes a double minimization and the
orders of minimization can be exchanged (we already used this argument in
chapter 5).
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‘Energy bounds and laminatesl

min min (A* lo. 0+ EH) dzx.
divo=0 in D D OSQS]_
on=g on I'N A¥ea,

on=0 on 8D\I‘NUI‘D

Optimality condition. If (#, A*, o) is a minimizer, then A* is a rank-N

sequential laminate aligned with o and with explicit proportions

—1
x—1 -1 1—46 al c
A = A + T ZmzfA(ez) y
=1

and 6 is given in 2-D (similar formula in 3-D)

Bopt = min (1, v Z:j (o] + \02|)> ,

where o is the solution of the homogenized equation.
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‘ 7.5.5 Numerical algorithm for compliance minimization.

Double “alternating” minimization in ¢ and in (6, A*).
e intialization of the shape (6, Af)

e iterations n > 1 until convergence

— given a shape (6,,_1, A>_;), we compute the stress o,, by solving a

linear elasticity problem (by a finite element method)

— given a stress field o,,, we update the new design parameters (6,,, A’)

with the explicit optimality formula in terms of o,,.
Remarks.
[ For compliance, the problem is self-adjoint.

[0 Micro-macro method (local microstructure / global density).
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[Remarks}

The objective function always decreases.
Algorithm of the type “optimality criteria”.
Algorithme of “shape capturing” on a fixed mesh of ().

We replace void by a weak “ersatz” material, or we impose 6 > 1073 to

get an invertible rigidity matrix.

A few tens of iterations are sufficient to converge.
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[Example: optimal cantileverj
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[ Penalization

The previous algorithm compute composite shapes instead of classical

shapes.

Thus we use a penalization technique to force the density in taking values

close to 0 or 1.

Algorithm: after convergence to a composite shape, we perform a few more

iterations with a penalized density

1 — cos(m8opt)
epen — 9

If 0 < Oopr < 1/2, then Open, < Oope, while, if 1/2 < 0, < 1, then Opepn, > Oopt.
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[Convergence history:j

objective function (left), and residual (right),

in terms of the iteration number.

obj ective function
conver gence criterion

iteration number iteration number
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[Example: optimal bridgej
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‘ 7.5.6. Convexification and *“fictitious materials” .

Idea. In the homogenization method composite materials are introduced but
discarded at the end by penalization. Can we simplify the approach by

introducing merely a density 6 7

A classical shape is parametrized by x(x) € {0, 1}.

If we convexify this admissible set, we obtain 6(x) € [0, 1].

The Hooke’s law, which was x(z)A, becomes 6(x)A. We also call this
fictitious materials because one can not realize them by a true
homogenization process (in general). Combined with a penalization scheme,
this methode is called SIMP (Solid Isotropic Material with Penalization).
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Convexified formulation with 0 < f(z) <1

(

o =0(z)Ae(u) with e(u) = 2 (Vu+ (Vu)'),
dive =0 in D,
u=0 onlp

on I'y

on D\ (Tp UTw).

Compliance minimization

min_ (0(9) n, /D e(g;)) |

[ gu=[ @00 wmn [ @@t
Ly D Thigonty D

Tn=0 on 8D\I‘NUI‘D

Now, there is only one single design parameter: the material density 6 (the
microstructure A* has disappeared).
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[Existence of solutions]

Theorem 7.33. The convexified formulation

min min /(0(%)14)_17'°de—|—€/ 0 dx
oot dpmomn o p

Tn=0 on 8D\I‘NUI‘D

admits at least one solution.

Proof. The function, defined on R* x M?
pla,0) =arA o0,

is convex because

1

¢(a7 U) — ¢(a’07 00) + D¢(a07 UO) ) (CL — ap,0 — 00) + ¢(a7 g — CLCLE 00)7

where the derivative D¢ is given by

b
Do¢(ag,00) - (b,7) = —?A_lao <00 + 2a51A_100 - T
0
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[Optimality conditionj

If we exchange the minimizations in 7 and in #, we can compute the optimal 6
which is
1 if A=lr .7 >/

0(z) =
VITTA= .7 if A </

Again we can use an “alternating” double minimization algorithm.
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‘ Numerical algorithm I

e intialization of the shape 6,

e iterations k£ > 1 until convergence

— given a shape 0;_1, we compute the stress o, by solving an elasticity
problem (by a finite element method)

— given a stress field o5, we update the new material density 0, with the

explicit optimality formula in terms of .

Penalization: we use a penalized density

1 — cos(m6,
Bpon = COSZ(” pt) o (SIMP)  fpen =67 p> 1.

In practice: it is extremely simple ! But the numerical results are not as
good ! An explanation is the lack of a relaxation theorem.

Be careful: very delicate monitoring of the penalization...
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[Optimal bridge by the convexification method)

compliance
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[Conclusion

SIMP (or convexification, or “fictitious materials”) is very simple and

very popular (many commercial codes are using it).

SIMP uses very few informations on composites ! In particular, it is

isotropic.

On the contrary to the homogenization method, SIMP is not a

relaxation method: it changes the problem !

There is a gap between the true minimal value of the objective function
and that of SIMP.

SIMP can be delicate to monitor: how to increase the penalization

parameter ?
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Generalizations of the homogenization method'

[1 multiple loads
[1 vibration eigenfrequency
[1 general criterion of the least square type

The two first cases are self-adjoint and we have a complete understanding and

justification of the relaxation process. However, the third case is not

self-adjoint and only a partial relaxation is known.
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[Multiple loads]

Optimal composites are still sequential laminates.

For n loads (f;)1<i<n, the homogenized formulation is

mn
. : : —1
min min min E A" o0+ 00 | dx
diVO'Z':O in D D OSQS]_ A*ELQ 1
1=

o;,n=g; on I'pn

with A* € Ly and
1

(1-6) (A*—l _ A—l) — (B —A) Himifﬁ(ei)

The optimal laminate is no more of rank N. The m;’s optimization is now

done numerically (with numerous enough lamination directions).
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[Optimal bridge for 3 simultaneously applied loadsj
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[ Optimal bridge for 3 independently applied loadsj
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[Vibration eigenfrequencies]

Optimal composites are still sequential laminates.

We maximize the first vibration eigenfrequency

/ A¥e(u) - e(u)dx
min { wi(h, A*) = min 22

0<6<1, A*€Lg uEH 2
plul“dx
D )

\

( )

with the density p = 0pa + (1 — 0)pp, and the space of admissible
displacements H = {u € H*(D)" such that u=0onI'p}.
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[Least square objective functionsj

Homogenized formulation:

min J(0,A") = / (k|u — ug|* + E@)dx
0<0<1, A*€eGy QO

with u solution of
—div (A%e(u)) = f in
u=20 on 0f2,

Difficulty: we don’t know Gy and we cannot replace it by Ly. In other

words, we don’t know which microstructures are optimal...

Partial relaxation: we nevertheless replace Gy by Lg. We thus loose the
existence of an optimal solution but we keep the link with the original

problem.
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Partial relaxation

We restrict ourselves to sequential laminates A* with matrix A and inclusions
B. The number of laminations and their directions are fixed. We merely
optimize with respect to § and the proportions (m;)i1<i<p

1-0)(A-A)" = (A-B)"' - 0> mifales),

with Ve € RY, |e| = 1, V¢ symmetric matrix

1

N2
* )\A‘|‘2NA(£6 e

1 2 2
e) - &= — (|€e|” — (Ee- e
fae)g - &= -~ ([gel” — (€e - e)%)
Thus, the objective function is
J*(0,A%) = J*(0,m;)
with the constraints 0 <6 <1, m; > 0, Zle m; = 1.

We compute its gradient with the help of an adjoint state.
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[Numerical algorithm of gradient type]

Projected gradient with a variable step:

1. Initialization of the design parameters 6y, m; ¢ (for example, constants
satisfying the constraints).
2. Iterations until convergence, for k& > 0:

(a) Computation of the state uy and the adjoint px, with the previous

design parameters 0y, m; k.

(b) Update of the design parameters :

Ori1 max (0, min (1,0, — txVeJ})),

mi,k+1 max (O, m@',k — thmi J,: + Ek) ,

where /. is a Lagrange multiplier for the constraint 2321 m; 1 = 1, iteratively
updated, and t; > 0 is a descent step such that J* (011, mgr1) < J* (O, mi).
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[Example: force inverterj

B

~

Cx)=1
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‘ Other methods of topology optimization I

[0 Discrete 0/1 optimization (no gradients): genetic algorithms.

[1 Level set methods based on geometric optimization.

[1 Topological derivative: sensitivity to the nucleation of a small hole.

[ Phase-field methods.
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[A few words about the levet set method for shape optimizationj

It is a combination of:
[1 Hadamard shape derivative in geometric optimization,

(1 the level set method of Osher and Sethian for front propagation (JCP,
1988).

Level set methods have many applications !
[J Multi-phase fluid mechanics.
[1 Combustion, dendritic or crystal growth.
[1 Crack propagation.
[1 Image processing.

[1 Geometry.
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FRONT PROPAGATION BY LEVEL SET'

More general problem: how to move a hypersurface x(t) according to a given

velocity 9(t, x).

Lagrangian approach: let us solve o.d.e.’s

( dx
i v(t, z(t))

z(0) = xg

\

['0) ={zo} = T(t)={z(t);

[J Reversible method: to go back in time, change the velocity sign !

[1 Shape tracking method.
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Problems with self-intersection and singularity !

How to handle a velocity v which depends on the surface through its

normal, mean curvature, etc. 7
How to devise an Eulerian approach ?

Idea: make the evolution irreversible.
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[The level set method of Osher and Sethian)

Shape capturing method on a fixed mesh of a “large” box D.

A shape () is parametrized by a level set function

(

Y(r)=0 < zxzecddnND
P(r) <0 < xe
L Y(z) >0 & xe(D\Q)

The normal n to € is given by V4 /|V| and the mean curvature H is the

divergence of n. These formulas make sense everywhere in D on not only on
the boundary 0f).
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[Hamilton Jacobi equation]

Assume that the shape (t) evolves with a normal velocity V (¢, x). Then

w(t,a:(t)> =0 for any x(t) € 92(¢).
Deriving in t yields

oy . oY _

(The same is true for any level set w(t, x(t)) =C.)

Since n = V¢ /|V,1¥| we obtain

0
O VIV =0

This Hamilton Jacobi equation is posed in the whole box D, and not only on
the boundary 0f2, if the velocity V is known everywhere.
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(Example]

Choice of the velocity: v = an with m =normal vector
V =a.

(This is the typical case for shape optimization and Hadamard derivative.)

We deduce

oY B
E + OK‘V?M = 0.

This Hamilton-Jacobi equation admits a unique viscosity solution global in
time (Crandall-Lions).
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[Invariance with respect to the extension out of the Surface]

The only meaningfull information is the level set ¢ (t) = 0. It should not
depend on the choice of extended initial data 1y such that I'(0) = {¢y = 0}.

Lemma. Let z — h(z) be an increasing function such that A(0) = 0. If ¢ is a
H-J solution for the initial data g, then h(1)) is a solution for h(1g) too.

Formal proof. Multiply the H-J equation by h'(1)) > 0 which can be put
inside the absolute values.

Consequence: the level set h()(t) = 0 is the same whatever the choice of the

function h.

Cf. works of Barles, Chen-Giga-Goto, Evans-Spruck.
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(Example of an explicit solutionJ

Take a =¢, B =0 = %—zf—i—de\:().

A viscosity solution is | (t,z) = d(z,Tg) — ¢t | with d(x, ') the signed

distance to the initial surface. Irreversible solution !

Conclusion: some corners remain corners, others get rounded !

We must have numerical schemes preserving this property.
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(Upwind scheme for Hamilton-J acobij

To solve the eikonal transport equation oy + ¢|Vy| =0 in D we must use an

ot

upwind scheme to make a difference between sharp corners and rounding

corners.
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