
MAP562 Optimal design of structures
by Grégoire Allaire, Thomas Wick

Ecole Polytechnique
Academic year 2016-2017

Gradient descent and Newton’s method for minimization
in a PDE / function space context

We recapitulate the basic steps to implement gradent descent (with a fixed
step size) and Newton’s method in order to minimize a nonlinear functional
(here the p-Laplace problem) in a function space setting. This setting is a
so-called unconstrained minimization problem.

The problem statement reads:

Problem 1. Let Ω ∈ R2 be a domain and ΓD and ΓN Dirichlet and Neumann
boundary parts, respectively. The function space we work with is V := H1(Ω).
Then the minimization problem reads:

min
u∈V

J(u),

where

J(u) =

∫
Ω

(|∇u|2
2

+
|∇u|p

p

)
dx−

∫
Ω

f · u dx−
∫

ΓN

g · u ds,

and f = 1 and g = −1. Moreover, we choose p = 4. In this context, we must
ensure that p > 2 (the more general problem p < 2 is possible, but difficult from
a theoretical and numerical point of view).

In the following, we formulate the two algorithms (using the same notation
as in the lecture notes, chapter 3). This notation is also (as far as possible) used
in the FreeFem codes (updated on the webpage).

1 Gradient descent with fixed step

In this section, we discuss a gradient descent method with fixed step µ in order
to minimize the above functional J(u) in a function space setting.

Algorithm 1 (Gradient descent with fixed step size, chapter 3, page 34). Choose
an initial guess u0 ∈ V , e.g., u0 = 0. For n = 0, 1, 2, . . . compute

un+1 = un − µJ ′(un).

We stop the iteration when √∫
Ω

(J ′(un))2 < TOL

where, e.g., TOL = 1e− 4. In a function space context the crucial aspect is the
evaluation of J ′(un).

1

A standard procedure to realize the above algorithm is to compute the pro-
jection δu ∈ V . In more detail we replace J ′(un) by δu such that

un+1 = un − µδu

where δu ∈ V is a finite element solution of the projection problem:

Problem 2 (Projection problem). For a given un, find δu ∈ V such that∫
Ω

∇δu · ∇φ = 〈J ′(un), φ〉 ∀φ ∈ V,

where we use a scalar product that is related to the V function space (here the
H1 space). Specifically the right hand side consists of known terms: un, f, g.

We could also have used∫
Ω

δuφ+ α∇δu · ∇φ = 〈J ′(un), φ〉,

with some parameter α > 0.
Specifically, the right hand side term of the projection problem is nothing

else than calculating the directional derivative of J(u) into direction φ ∈ V
(neglecting the index n for the moment):

〈J ′(u), φ〉 = J ′(u)(φ) =

∫
Ω

∇u · ∇φ+

∫
Ω

|∇u|p−2 · ∇u · ∇φ−
∫

Ω

f · φ−
∫

ΓN

g · φds,

=

∫
Ω

(1 + |∇u|p−2) · ∇u · ∇φ−
∫

Ω

f · φ−
∫

ΓN

g · φds.

Remark 1. Please verify yourself by applying the technique presented in the
lecture notes and also my computation on the black board.

Remark 2. The first-order derivative J ′(u)(φ) is nothing else than a variational
form in which u is the sought solution and φ the test function.

Next, we write the projection problem as a root finding problem:

Problem 3 (Projection as root-finding problem). For a given u (in the gradient-
based context, u will be the previous iteration un), find δu ∈ V such that:

−
∫

Ω

∇δu∇φ+ J ′(u)(φ) = 0 ∀φ ∈ V.

To solve this (linear) problem, we introduce finite dimensional subspaces Vh and
use the finite element method and then use for example an LU decomposition
or an iterative solver (CG, GMRES) for linear problems. The obtained solution
δu is then our current iterate used in the gradient descent method.

Problem 4 (Problem 3 realized in FreeFem). In FreeFem the previous setting is
defined as

2

problem Jlin(du,phi) = -int2d(Th)(grad(du)’*grad(phi))

+int2d(Th)((1+sqrt(grad(u)’*grad(u))^(p-2))*(grad(u)’*grad(phi)))

-int2d(Th)(f*phi)

-int1d(Th,GammaN)(g*phi)

+on(GammaD,du=0);

To solve this problem we simply write

Jlin;

and can use the solution du to update the iteration:

u = u - stepsize * du;

Remark 3. In the above algorithm we have to solve at each iteration n such a
linear problem. In FreeFem we use therefore the keyword problem as already
done for linear problems in the first exercise.

Remark 4 (Relationship to ‘standard’ linear problems, Poisson). In fact Problem
3 has exactly the same structure as we know from solving the linear Poisson
problem. Also here we defined a root-finding problem: Find δu ∈ V such that

a(δu, φ)− l(φ) = 0 ∀φ ∈ V,

where

a(δu, φ) = (∇δu,∇φ),

l(φ) = (f, φ) + (g, φ)ΓN
,

where (u, v) denotes the L2 scalar product
∫

Ω
u · v dx.

Remark 5. In general we hope that the sequence (un)n∈N converges towards
the optimal solution. Under several assumptions this convergence can be justi-
fied also from the theoretical point of view. In most cases (and this is standard
in practice!) a theoretical convergence cannot be proven because it is too diffi-
cult, however the algorithm is nevertheless used in practice and yields satisfying
results.

3

2 Newton’s method

In this section we turn our attention to Newton’s method. The crucial difference
is that Newton’s method converges (locally) much faster than gradient descent,
however we need

• to calculate the second derivative of J(u);

• to solve a linear equation system, which is in most cases an expensive
operation.

Another difficulty is that Newton’s method is quite sensitive if the initial guess
u0 is too bad. Common strategies to globalize the method is to introduce a
line search parameter or to work with so-called trust region methods (see the
remark below).

Algorithm 2 (Newton’s method, chapter 3, page 37). Choose an initial guess
u0 ∈ V , e.g., u0 = 0. For n = 0, 1, 2, . . .:

un+1 = un + δu

where δu ∈ V is obtained from solving the linear system:

Find δu ∈ V : J ′′(un)(δu, φ) = −J ′(un)(φ) ∀φ ∈ V

using e.g., a finite element method in a finite dimensional subspace Vh. We stop
the iteration when √∫

Ω

(δu)2 < TOL

where, e.g., TOL = 1e− 4.

To compute the second-order derivative we start with J ′(u)(φ),

J ′(u)(φ) =

∫
Ω

∇u · ∇φ+

∫
Ω

|∇u|p−2 · ∇u · ∇φ−
∫

Ω

f · φ−
∫

ΓN

g · φds,

=

∫
Ω

(1 + |∇u|p−2) · ∇u · ∇φ−
∫

Ω

f · φ−
∫

ΓN

g · φds

and obtain (check yourself !!) by differentiating u now into direction δu using
multiple times the chaine rule and also the product rule:

J ′′(u)(δu, φ) =

∫
Ω

∇δu · ∇φ+

∫
Ω

(p− 2)|∇u|p−4∇u · ∇δu∇u · ∇φ+

∫
Ω

|∇u|p−2 · ∇u · ∇φ

=

∫
Ω

(1 + |∇u|p−2) · ∇δu · ∇φ+

∫
Ω

(p− 2)|∇u|p−4∇u · ∇δu∇u · ∇φ.

Having now the Hessian matrix J ′′(u)(δu, φ) and the first order derivative
J ′(u)(φ) we define again a root-finding problem to solve the linear equation
system:

4

Problem 5. For a given un (previous solution), find δu ∈ V such that

J ′′(un)(δu, φ) + J ′(un)(φ) = 0 ∀φ ∈ V.

In FreeFem we use again the problem functionality to solve this problem. Please
verify yourself each term.

Problem 6 (Problem 5 realized in FreeFem). In FreeFem the previous setting is
defined as

problem Jlin(du,phi)=int2d(Th)((1+sqrt(grad(u)’*grad(u))^(p-2))*(grad(du)’*grad(phi))

+(p-2)*sqrt(grad(u)’*grad(u))^(p-4)*(grad(u)’*grad(du))*(grad(u)’*grad(phi)))

+int2d(Th)((1+sqrt(grad(u)’*grad(u))^(p-2))*(grad(u)’*grad(phi)))

-int2d(Th)(f*phi)

-int1d(Th,GammaN)(g*phi)

+on(GammaD,du=0);

To solve this problem we simply write

Jlin;

and can use the solution du to update the iteration:

u = u + du;

Remark 6 (Line search). A simple method to increase the convergence radius of
Newton’s method (mainly for nonconvex problems) is to introduce a line search
parameter µ ∈ [0, 1] such that:

un+1 = un + µδu

For µ = 1 we make a full Newton step and choosing µ < 1 yields a damped
Newton method which has an increased convergence radius (but which again
does not work in all possible situations well), and also has a reduced order of
convergence (not quadratically anymore). In FreeFem this would read:

u = u + stepsize * du;

5

	Gradient descent with fixed step
	Newton's method

