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This text contains 2 different exams :
M2 Exam consists in Problems 1 and 4 it is for the students who need to validate the full lectures (to

obtain a M2 mark or to obtain more ECTS). No mark will be given to answers to questions ofthe
other problems for these students.

ENSTA Exam consists in Problems 1, 2 and 3 it is for the other students (ENSTA students that only need
to validate the ENSTA lectures). No mark will be given to answers to questions of Problem 4 for
these students (moreover this problem may use notions that were not teached to ENSTA students).

The problems are independent (except for the statements of Problems 1 and 2) and often questions can be
solved without solving the previous questions. The solution can be written either in French or English.

1 Problem 1 (for all students)

An unscrupulous innkeeper charges a different rate for a room as the day progresses, depending on
wether he has many or few vacancies. His objective is to maximize his expected total income during the day.
Let x be the number of empty rooms at the start of the day, and let y be the number of customers that will
ask for a room during the day.

We assume that y is known to the inkeeper. When a customer arrives the innkeeper proposes a price
q ∈ {q1, . . . , qn} where 0 < q1 < . . . < qn. The customer will accept the offer qi with probability pi and
refuse the offer with probability (1 − pi). If the customer refuses the offer, he won’t come back during the
day.

Q 1.1. Let t corresponds to the t-th arrival. Denote byXt ∈ {0, . . . , x} the number of empty rooms between
the (t− 1)-th and the t-th arrivals of a customer and by Yt ∈ {0, . . . , y} the remaining number of customers
which will arrive after the same period of time. Formulate the innkeeper problem as the maximization of an
expected additive reward over an infinite horizon, for the controlled Markov decision process (Xt, Yt), in
which the instananeous reward evaluates to zero whenXt or Yt is equal to zero. Describe the control process
and the dynamics of the controlled process.

Q 1.2. Deduce that the value function v satisfies the following Dynamic programming equation

v(x, y) = max
i∈
{
1,...,n

}(pi(qi + v(x− 1, y − 1)
)

+ (1− pi)v(x, y − 1)
)
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Q 1.3. Denoting by T = y the number of customers which will arrive during an entire day, reformulate the
previous optimization problem as a finite horizon Markov decision process with state process (Xt)t≥0, and
time horizon T , and write the corresponding Dynamic Programming equation.

Q 1.4. Assume that p1q1 < . . . < pnqn and that p1 > p2 > . . . > pn. Show that the innkeeper should
always charge at the highest rate qn.

2 Problem 2 (to validate the ENSTA lectures only)

We consider a variant of Problem 1 in which the customer proposes a price qi with probability pi. The
innkeeper can accept or refuse the offer. If he refuses the offer, then the customer won’t come back during
the day.

Q 2.1. Consider an additional state variable Qt of the controlled Markov chain which is the price proposed
by the t-th customer. Show in that case that the Dynamic Programming equation satisfied by the value
function v maximizing the innkeeper profits is

v(x, y, q) = max
(
q +

n∑
i=1

piv(x− 1, y − 1, qi),
n∑
i=1

piv(x, y − 1, qi)
)
.

Q 2.2. Denote w(x, y) =
∑n

i=1 piv(x, y, qi). Write a fixed point equation for w.

Q 2.3. Show that the optimal policy is given by a threshold, that is the offer of the customer is accepted if it
is larger than a function q(x, y). Give the expression of the threshold.

Q 2.4. Show by induction on y, that x ∈ N 7→ w(x, y) is nondecreasing.

Q 2.5. Show by induction on y, that x ∈ N 7→ w(x, y) is convex, that is the slope w(x, y)− w(x− 1, y) is
a nondecreasing function of x ∈ N.

Q 2.6. Deduce that x 7→ q(x, y) is nondecreasing and give an interpretation of this property.

Q 2.7. Assume now that y is not known and random, and that after each arrival of a customer, the probability
of an additional arrival is α ∈ (0, 1). This means that with probability 1−α there will be no arrivals anymore.

Consider now a state process composed of Xt, the number of empty rooms, Qt, the price proposed by
the t-th customer, and Yt, the possibility of an additional arrival, that is Yt = 0 if there will be no arrivals in
the future and Yt = 1 otherwise. Formulate the new innkeeper problem as the maximization of an expected
additive reward over an infinite horizon, for the controlled Markov decision process (Xt, Qt, Yt), in which
the instananeous reward evaluates to zero when Xt or Yt is equal to zero.

Q 2.8. Show that the value function satisfies the following Dynamic Programming equation

v(x, q, 1) = max
(
q + α

n∑
i=1

piv(x− 1, qi, 1), α

n∑
i=1

piv(x, qi, 1)
)
.

with v(x, q, 0) = 0 for all x, q.
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Q 2.9. Interpret this equation as the Dynamic Programming equation of an infinite horizon discounted
problem, and explain why this equation has a unique solution.

Q 2.10. How can it be solved ?

Q 2.11. Denote w(x) =
∑n

i=1 piv(x, qi, 1). Using the properties of the fixed point equation in 2.8, show
that w satisfies the same properties as above, that is that x ∈ N 7→ w(x, y) is nondecreasing and convex.

Q 2.12. Deduce that the optimal policy is still given by a threshold, and that the threshold function x 7→ q(x)
is nondecreasing.

3 Problem 3 (to validate the ENSTA lectures only)

We consider a discrete time controlled Markov chain (or Markov decision process) whose dynamics is
given by

Xt+1 = ft(Xt, Ut,Wt+1) .

We denote by X the state space of the controlled Markov chain, by U its action (or control) space and assume
that the disturbances Wt+1 belong to the set W. In addition to the sequence (Xt)t≥0, the decision maker
observes along time a sequence

(
Yt
)
t≥0 of random variables taking values in Y = {1, . . . , n}, Yt : Ω →

{1, . . . , n} is such that P({Yt = k}) = πk for k ∈ Y. The sequence of random variables (Wt+1, Yt)t≥0
are independent (and independent of X0). The law of Wt+1 knowing Yt is given and known and denoted by
Pt+1(w|y) (we assume that it is a discrete law over W). We want to compute

min
U∈U

E
[ T−1∑
i=0

ci(Xi, Ui,Wi+1) +KT (XT )
]
, (1)

where the strategies/policies depend possibly on all the history, that is on the past states (Xs, Ys)s≤t and the
past controls (Us)s<t.

Q 3.1. Explain which state you have to use, why you can use state feedbacks and propose a Dynamic
Programming Equation to compute the solution to Problem (1), in which the value functions are functions
of (x, y) ∈ X× Y.

Q 3.2. Show that the mapping V t(x) :=
∑n

i=1 πiVt(x, i) satisfies a recursive equation similar to Dynamic
Programming.

Q 3.3. Rewritting the previous equation, by using a control depending on the value of the observation y ∈ Y,
show that this equation can be interpreted as the Dynamic Programming equation of a controlled Markov
chain with state space X, control space Un and disturbance space Y×W.

3



4 Problem 4 (to validate the full M2 lectures only)

Let us consider a MDP over the state space E = {1, . . . , n}, with action space C(x) ⊂ C = E when the
current state is x ∈ E and deterministic dynamics Xk+1 = Uk, meaning that the transition probabilities are
independent of time and equal to P (Xk+1 = y | Xk = x, Uk = u) = M

(u)
xy = δyu (where δxy = 1 if x = y

and 0 otherwise). Let r : E × C → R be a reward function.
We consider the maximization of the following long run time average criteria, among all state and control

processes (Xk, Uk)k≥0 determined by any strategy and starting at some state x ∈ E :

J((Xk)k≥0; (Uk)k≥0) = lim sup
T→∞

{
1

T
E

[
T∑
k=0

r(Xk, Uk)

]}
, (2)

and denote by ζ(x) its value (its supremum).
We associate to the above process the directed graph G, with set of nodes equal to E and set of arcs A

equal to the set of (x, y) ∈ E × E such that y ∈ C(x).

Q 4.1. We assume that G is strongly connected.
Using results of the course, show that there exists ρ ∈ R and v ∈ RE such that

ρ+ v(x) = Fx(v) := max
y∈C(x)

(r(x, y) + v(y)) ∀x ∈ E .

Q 4.2. Deduce the value of ζ(x), for all x ∈ E .

Q 4.3. Let π be a deterministic policy (or feedback strategy), that is an element of Π := {π : E → C |
π(x) ∈ C(x), ∀x ∈ E}, and consider (following the course) the vector and matrix

r(π)x = r(x, π(x)), M (π)
xy = Mπ(x)

xy = δyπ(x), ∀x, y ∈ E .

Show that the graph of the Markov matrixM (π) necessarily contains one cycle, that is a path (x1, . . . , xk, xk+1)
for some k ≤ n, such that xk+1 = x1 and xi 6= xj when 1 ≤ i 6= j ≤ k.

Q 4.4. Show that the set C = {x1, . . . , xk} of nodes of this cycle is a final class of the Markov matrixM (π).

Q 4.5. Let mC be the probability measure over E which is equal to the uniform probability over C. Show
that mC is an invariant measure of M (π).

Q 4.6. Recall that F (v) ≥ r(π) +M (π)v for all v ∈ RE and π ∈ Π. Deduce that

ρ ≥ r(x1, x2) + · · ·+ r(xk−1, xk) + r(xk, x1)

k
.

Q 4.7. Show that indeed the previous inequality holds for all cycles (x1, . . . , xk, x1) of G.

Q 4.8. Let π be an optimal policy for a solution v of the ergodic equation in Q 4.1, that is a policy such that

ρ1 + v = r(π) +M (π)v .

Show that

ρ =
r(x1, x2) + · · ·+ r(xk−1, xk) + r(xk, x1)

k
,
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for any cycle (x1, . . . , xk, x1) of the graph of M (π). Deduce that

ρ = max
r(x1, x2) + · · ·+ r(xk−1, xk) + r(xk, x1)

k
,

where the maximum is taken over all cycles (x1, . . . , xk, x1) of G. This scalar is called the maximal cycle
mean of the graph G with weights r.

Q 4.9. Let β > 0 be a parameter and consider the nonnegative n× n matrix A(β) with entries

A(β)
xy :=

{
exp(βr(x, y)) when y ∈ C(x)

0 otherwise.

Consider also the positive vector V (β) ∈ RE+ with entries

V (β)
x = exp(βvx), ∀x ∈ E ,

where v ∈ RE is a solution of the ergodic equation in Q 4.1. Show that

exp(βρ)V (β) ≤ A(β)V (β) ≤ n exp(βρ)V (β) .

Q 4.10. Recall that from Perron-Frobenius theorem, for any irreducible nonnegative matrix A, the spectral
radius ρ(A) of A is an eigenvalue associated to a positive row vector m and a positive column vector v, that
is mA = ρ(A)m and Av = ρ(A)v. Deduce that

exp(βρ) ≤ ρ(A(β)) ≤ n exp(βρ) ,

and so

lim
β→+∞

log ρ(A(β))

β
= ρ .

Q 4.11. Consider now the following stochastic Markov decision process (MDP) with long run time average
criteria. The state space is still E = {1, . . . , n}, but the action space is now C(x) ⊂ C when the current
state is x ∈ E , where C is the set of subsets of E of cardinality 1 or 2 identified to symmetric pairs of
elements of E . Moreover, the dynamics is stochastic with Xk+1 being equal to any element of the set Uk
with uniform probability. This means that the transition probabilities are independent of time and, when u
has two elements for instance, they are equal to P (Xk+1 = y | Xk = x, Uk = u) = M

(u)
xy = 1/2 for y ∈ u

and 0 otherwise. Let r : E × C → R be a reward function.
We consider the maximization of a long run time average criteria as in (2), and we consider the directed

graph G, with set of nodes equal to E and set of arcsA equal to the set of (x, y) ∈ E ×E such that y ∈ u for
some u ∈ C(x).

We assume again that G is strongly connected. Show, using results of the course, that there exists ρ ∈ R
and v ∈ RE such that

ρ+ v(x) = Fx(v) := max
u={y,z}∈C(x)

(
r(x, u) +

v(y) + v(z)

2

)
∀x ∈ E ,

where in the condition u = {y, z}, we allow y and z to be equal (when u has cardinality 1).
Interpret ρ.
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Q 4.12. Consider now the nonnegative 3-dimensional array (tensor) A(β) with entries

A(β)
xyz :=

{
exp

(
2βr(x, {y, z})

)
when {y, z} ∈ C(x)

0 otherwise.

We say that the vector w ∈ Rn+ is a (homogeneous) Perron eigenvector of A(β) if

n∑
jk=1

A
(β)
ijkwjwk = λw2

i ∀i ∈ {1, . . . , n} ,

where λ ≥ 0 is what is called the spectral radius ofA(β) (that is the maximum of the moduli of homogeneous
eigenvalues).

Rewrite the above equation as the ergodic dynamic programming equation of a Markov decision process
(MDP) with a long run time average criteria :

ρ+ v(x) = F (β)
x (v) ,

in which ρ = log(λ)/(2β) and vx = log(wx)/β for all x ∈ E . Explain the parameters of F (β).

Q 4.13. Let v ∈ RE be a solution of the ergodic equation in Q 4.11.
Show that

ρ+ v(x) ≤ F (β)
x (v) ≤ log n

β
+ ρ+ v(x) .

Q 4.14. Denote now λ(β) the spectral radius of A(β). Show, using techniques of the course, that

ρ ≤ log
λ(β)

2β
≤ log n

β
+ ρ .
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