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This text contains 2 different exams :

M2 Exam consists in Problems 1 and 4 it is for the students who need to validate the full
lectures (to obtain a M2 mark or to obtain more ECTS). No mark will be given to answers
to questions of Problem 2 or 3 for these students.

ENSTA Exam consists in Problems 1, 2 and 3 it is for the other students (ENSTA stu-
dents that only need to validate the ENSTA lectures). No mark will be given to answers to
questions of Problem 4 for these students (moreover this problem may use notions that were
not teached to ENSTA students).

Problem 2 is a following of Problem 1, but Problems 1, 3 and 4 are independent. The solution can
be written either in French or English. Documents (handwritten or typed courses and exercises
notes, together with books related to the course) are allowed.

1 Problem 1 (for all students)

We consider a Paris taxicab driver. For the present problem 1, he is driving passengers inside
Paris only. The taxi driver can get a trip either by being hailed, or by waiting at a cab station,
or by radio. For each demand of a trip by a potential passenger, the benefit is known from the
begining (it may be proportional to its length in kilometers), a minimal duration is also known, but
the actual duration maybe increased by traffic jam. Given the destination of the trip, the benefit
and the minimal duration, the taxi driver can accept to do it or not.

Let us “discretize” a working day of the taxi driver into N steps (corresponding to time units),
and assume that at each step n ∈ {0, . . . , N − 1} (or time interval [n, n + 1)) in which the taxi is
free, a passenger is asking for a trip to the taxi driver. We shall denote by Bn and Dn the benefit
and minimal duration of this trip.

We assume that all the variables Dn, Bn are defined for all n ≥ 1, and that they constitute (all
together) a sequence of identically distributed independent random variables (note however that
Dn and Bn should be dependent). We also assume that (Dn, Bn) take a finite set of positive integer
and positive real values respectively, and let (dk, bk), k = 1, . . .K be their possible values, and pk
be their probabilities. We also denote by d̄ the maximum of all the dk. As said above, the minimal
duration of a trip is known from the begining, however the variations in duration arrive during the
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trip. We shall model these variations as follows : once the trip is accepted by the driver, at each
time step, the duration may increase of one time unit with some probability γ ∈ (0, 1) (which may
depend on the current duration), or stay unchanged with probability 1 − γ. Moreover, the taxi
driver can accept a trip until the last step, although he will have to drive after step N .

The aim of the taxi driver is to maximize his expected total income (in one day).

Q 1.1. For each step n ≥ 1, if the taxi is free and the driver choose to accept a demand of a
passenger, his benefit will be equal to Bn and the minimal time he will be busy is the minimal
duration of the trip, that is Dn. Otherwise, he has to look for a new passenger and this costs him
some fixed amount C.

For each step n ≥ 1, let Yn ∈ {0, . . . , d̄} be the (minimal) remaining time units before the taxi
gets free, with Yn = 0 if the taxi is already free. We assume that there exists a nondecreasing
function γ : R+ → [0, 1) such that if Yn > 0, then the remaining time at step n+ 1 will be Yn − 1
with probability 1−γ(Yn) (the total duration of the trip is unchanged) or stays Yn with probability
γ(Yn) (the total duration of the trip increases of one time unit). Denote by Un the choice of the
taxi driver : Un = 1 if the driver accepts the demand of the passenger and Un = 0 if he does not
accept it, and in particular if the taxi is already occuped.

Formulate the taxi driver problem as the maximization of an expected additive reward over
a finite horizon N , for the Markov decision process with state process (Yn, Bn, Dn) and control
process Un. Describe the dynamics of the controlled process and the instantaneous rewards.

Q 1.2. Deduce that the value function of the problem satisfies the following Dynamic programming
equation, for y ∈ {0, . . . , d̄} and (b, d) ∈ {(bk, dk) | k = 1, . . . ,K},

vn(y, b, d) =

K∑
k=1

pk(γ(y)vn+1(y, bk, dk) + (1− γ(y))vn+1(y − 1, bk, dk)) , if y > 0

vn(0, b, d) = max(−C +
K∑
k=1

pkvn+1(0, bk, dk), b+
K∑
k=1

pk(γ(y)vn+1(d, bk, dk) + (1− γ(y))vn+1(d− 1, bk, dk)))

vT (y, b, d) = 0 .

Q 1.3. Denote wn(y) =
∑K

k=1 pkvn(y, bk, dk), for y ∈ {0, . . . , d̄}. Write a recurrence equation for
the functions wn.

Q 1.4. Show that the optimal policy is given by a threshold, that is if the taxi is free at step
n (Yn = 0), then the driver accepts the passenger if Bn ≥ b(n,Dn). Give the expression of the
threshold.

Q 1.5. Consider the case γ ≡ 0. Write a recurrence equation for zm = wN−m(0) and show that the
map m 7→ zm is convex on any interval (−∞, n] (by induction on n ≥ 0). Deduce that the above
threshold b(n, b) is nonincreasing with respect to n. Explain.
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2 Problem 2 (to validate the ENSTA lectures only)

We consider a variant of Problem 1.
Now, the Paris taxicab driver is driving passengers either inside Paris or between Orly Airport

and Paris or Roissy Airport and Paris, in both sides. The price for a trip between Airports and
Paris is fixed and one shall assume that the benefit of the driver for such a trip is fixed. This trip
has a minimal duration, which maybe increased by traffic jam.

When in Paris, the taxi driver can get a trip inside Paris, but also to one of the Airports, he
can refuse it. In Airports, the taxi driver need to go to the cab station, and cannot refuse a demand
of a trip between this airport and Paris.

Let us denote by O,R, P the possible positions of the taxi cab, where O is for Orly, R for
Roissy, and P for Paris, and denote by Xn ∈ {O,R, P} the position of the taxi cab, at step n, or
the position at the end of its current trip, when it is busy. For each n = 1, . . . , N , if the taxi cab
is free and in Airport A ∈ {O,R} (Xn = A), then the passenger is asking for a trip between this
airport and Paris, we denote by BA the fixed benefit of the trip for the taxi driver, and by DA

the minimal duration of the trip (in time units). If the taxi cab is free and in Paris (Xn = P ), we
denote by Zn ∈ {O,R, P} the destination of the (potential) passenger who is asking for a trip. If
the destination Zn is one of the airports, then again BA will be the fixed benefit of the trip for the
taxi driver, and DA will be the minimal duration of the trip. Otherwise, if Zn = P , Bn and Dn

denote as before the benefit and minimal duration of the trip.
We assume now that (Zn, Dn, Bn)n≥1 is a sequence of identically distributed independent ran-

dom variables taking its values in {(zk, dk, bk) | k = 1, . . .K}, and that pk is the probability of
(zk, dk, bk). When zk = A ∈ {O,R}, the variables dk and bk are fixed to DA and BA. We shall thus
assume that z1 = O, z2 = R and zk = P for k ≥ 3. We also model the evolution of the duration of
the trips (in Paris or between Paris and the airports) as in Problem 1.

The aim of the taxi driver is still to maximize his expected total income (in one day).

Q 2.1. At each step n in which the taxi cab is free in Paris, the driver has the choice of either
accept the trip which is proposed and gain Bn, refuse it and stay in Paris at the cost C, or go to
one of the airports A ∈ {O,R} at the cost CA. The corresponding values of Un can be denoted
1, 0, O,R.

Formulate the new problem as the maximization of an expected additive reward over a finite
horizon N , for the Markov decision process with state process (Xn, Yn, Zn, Bn, Dn) and control
process Un. Describe the new dynamics of the controlled process and the instantaneous rewards.

Q 2.2. Write the corresponding dynamic programming equation of the value function vn(x, y, z, b, d),
and deduce the one of wn(x, y), where wn(x, y) =

∑K
k=1 pkvn(x, y, zk, bk, dk) when x = P and

wn(A, y) = vn(A, y, P,BA, DA) for A ∈ {O,R}.

Q 2.3. Instead of bounding the duration N of the day, we assume now that the taxi driver is
becoming more and more tired, and thus at each step n his interest in the following benefits of the
day is multiplied by some factor α ∈ (0, 1). Another way to see this is that conditionnally to take
a passenger at time n, and to finish the trip at time n + m, the taxi driver will be returning to
home after the trip with a probability equal to 1 − αm. Formulate the new problem either as the
maximization of an expected discounted payoff over an infinite horizon or by adding a cemetery
state c to the state space of the MDP.
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Q 2.4. Write the corresponding dynamic programming equation of the value function v(x, y, z, b, d).
Denote w(x, y) =

∑K
k=1 pkv(x, y, zk, bk, dk) when x = P and w(x, y) = v(A, y, P,BA, DA) when

x = A ∈ {O,R}. Show that w satisfies, for x ∈ {P,O,R} and y ∈ {0, . . . , d̄},

w(x, y) = α(γ(y)w(x, y) + (1− γ(y))w(x, y − 1)) , if y > 0

w(P, 0) =
K∑
k=1

pk
[
max(−C + αw(P, 0),−CO + w(O,DO),−CR + w(R,DR), bk + w(zk, dk))

]
w(A, 0) = bA + w(P,DA) , for A ∈ {O,R} .

Q 2.5. Explain why this equation has a unique solution. What is the policy iteration algorithm
computing w and v ? How many steps are needed for such an algorithm in general, given the number
of possible actions ?

Q 2.6. Show that a stationary optimal policy is given by a threshold, and give the expression of
the threshold.

Q 2.7. Assume that γ ≡ 0. Give a necessary and sufficient condition for the optimal policy to be
to accept all demands ?

3 Problem 3 (to validate the ENSTA lectures only)

Q 3.1. Let (Wn)n≥0 be a sequence of independent identically distributed random variables taking
its values in a subset W of R with zero expectation and finite variance.

Consider the Markov Decision Process with (infinite) state space E = R, action (control) space
C = R, and dynamics

Xn+1 = λXn + Un +Wn

with λ ∈ (0, 1). We want to solve the finite horizon Markov Decision problem :

vT (x) = minE

[(
T−1∑
k=0

αkc(Xk, Uk)

)
+ αTϕ(XT ) | X0 = x

]
,

in which α ∈ (0, 1), c(x, u) = (ax2 + u2)/2 and ϕ(x) = x2/2, for some a > 0. Write a Dynamic
programming equation associated to this problem. (note that assuming that all parameters are
rational, one can reduce the problem to the countable state space E = Q and so all the results of
the course can be applied).

Q 3.2. Write a recurrence equation in T for vT .

Q 3.3. Show that, for all T ≥ 0, the value function satisfies : vT (x) = aTx
2/2+bT , for some aT > 0

and bT ∈ R.

Q 3.4. Show that an optimal feedback policy at time k (when the horizon is T ) can be of the form
πk(x) = −ckx with ck > 0.

Q 3.5. What happens when T goes to infinity ?
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4 Problem 4 (to validate the full M2 lectures only)

Let E and C be finite sets and for all x ∈ E , let C(x) be a subset of C. We denote by A :=
{(x, u) | x ∈ E , u ∈ C(x)} the set of all possible pairs (state, action), and by Π = {π : E → C |
π(x) ∈ C(x) ∀ ∈ E} the set of (stationary) policies for the Markov decision process.

Let us consider the operator B : RE → RE :

[B(v)](x) = max
u∈C(x)

r(x, u) +
∑
y∈E

M (u)
xy v(y)

 , x ∈ E ,

where r : A → R and for all (x, u) ∈ A, (M
(u)
xy )y∈E is a probability vector on E .

For each π ∈ Π, denote by r(π) ∈ RE the vector with entries r
(π)
x = r(x, π(x)), by M (π) ∈ RE×E

the Markov matrix with entries M
(π)
xy = M

(π(x))
xy , and by B(π) the affine operator :

B(π)(v) = r(π) +M (π)v .

Q 4.1. Explain for which Markov Decision Processes B is the dynamic programming operator
(explain the parameters). Interpret also B(π) as a dynamic programming operator, and explain why

B(v) = max
π∈Π
B(π)(v), ∀v ∈ RE .

Q 4.2. For all v ∈ RE , we denote t(v) := maxx∈E v(x), b(v) := minx∈E v(x), and ‖v‖H = t(v)−b(v),
the latter beeing called Hilbert’s semi-norm. Show that, for all v, w ∈ RE , we have

t(B(v)− B(w)) ≤ max
(x,u)∈A

∑
y∈E

M (u)
xy (v − w)(y) .

Deduce that B is nonexpansive for the Hilbert semi-norm ‖ · ‖H :

‖B(v)− B(w)‖H ≤ ‖v − w‖H ∀v, w ∈ RE .

(on can first show that B is non expansive for t and b).

Consider the following constant :

β := 1− min
(x,u),(x′,u′)∈A

∑
y∈E

min(M (u)
xy ,M

(u′)
x′y )

 ∈ [0, 1] . (1)

Q 4.3. Deduce from Question 4.2 the following inequality :

‖B(v)− B(w)‖H ≤ β‖v − w‖H ∀v, w ∈ RE .

(One may have to use the set of the y ∈ E in which M
(u)
xy < M

(u′)
x′y .)

Q 4.4. For α ∈ (0, 1), let Bα : v 7→ B(αv). Deduce from the previous question that Bα is contracting
for the Hilbert’s semi-norm with contraction factor αβ.
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Q 4.5. Denote by v∗ the fixed point of Bα, and let vn be the sequence of value iterations for Bα,
starting in v0 ∈ RE . Show that

‖vn − v∗‖H ≤
(αβ)n

1− αβ
‖v1 − v0‖H .

Q 4.6. For all v ∈ RE , we denote by ‖v‖∞ = max(t(v), b(v)) the sup-norm of v. Show that for all
v, w ∈ RE , and π ∈ Π, we have

t(B(π)(v)− B(π)(w)) ≤ max
(x,u)∈A

∑
y∈E

M (u)
xy (v − w)(y) .

Deduce that, for all v, w ∈ RE , we have

‖B(v)− B(π)(v)− B(w) + B(π)(w)‖∞ ≤ β‖v − w‖H .

Denote by Π∗ the set of all optimal stationnary policies obtained from Dynamic programming
equation, or equivalently the set of elements π of Π such that B(αv∗) = B(π)(αv∗). Assume that
Π∗ is a proper subset of Π. This implies that there exists a positive real κ > 0 such that for all
π ∈ Π \Π∗, and x ∈ E , we have

either v∗(x)− B(π)(αv∗)(x) ≥ κ or v∗(x)− B(π)(αv∗)(x) = 0 .

Q 4.7. For the sequence vn of value iterations for Bα, starting in v0 ∈ RE , we shall consider

N0 := inf{k ≥ 0 | αβ‖vn − v∗‖H < κ ∀n ≥ k} .

Show that for all n ≥ N0, any optimal policy π for vn (B(αvn) = B(π)(αvn)) belongs to Π∗.

Q 4.8. Does it means that the sequence vn converges in finite time ? If not, how can we compute
v∗ using vn ?

Q 4.9. Give an upper bound on N0 using v0, αβ and κ only.

Q 4.10. If β < 1, what does the above result says for the relative value iterations for the ergodic
equation ?
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