Exam of the course Markov decision processes : dynamic programming and applications Marianne Akian

ENSTA Course SOD312 \& M2 Optimization (Paris-Saclay University and IP Paris)
Mardi 8 novembre 2022
Durée 3h

This text contains 2 different exams :
M2 Exam consists in Problems 1 and 3. It is for the students who need to validate the full lectures (to obtain a M2 mark or to obtain more ECTS). No mark will be given to answers to questions of Problem 2 for these students.

ENSTA Exam consists in Problems 1 and 2. It is for the other students (ENSTA students that only need to validate the ENSTA lectures). No mark will be given to answers to questions of Problem 3 for these students (moreover this problem may use notions that were not teached to ENSTA students).
Problems 1,2 and 3 are independent. The solution can be written either in French or English. Documents (handwritten or typed courses and exercises notes, together with books related to the course) are allowed.

1 Problem 1 (for all students)

Consider a problem of conservation of a threatened species in some environmentally protected zone. Let X_{n} denotes the number of population of the threatened species during the nth year (years are numbered $0,1,2, \ldots$), and U_{n} be the number of population of predators of the threatened species during the same year. We assume that U_{n} can be choosen, and that there are positive integers $\ell \leq M$, such that $X_{n} \in \mathcal{E}=\{0,1, \ldots, M\}, U_{n} \in \mathcal{C}=\{0,1, \ldots, M\}$, and

$$
X_{n+1}= \begin{cases}\left\lceil\alpha_{n+1} X_{n}\left(M+1-\left(U_{n}+X_{n}\right)\right)\right\rceil & \text { if } U_{n}+X_{n} \leq M \text { and } X_{n}>\ell \\ 0 & \text { otherwise }\end{cases}
$$

where $\lceil x\rceil$ denotes the least integer that is greater than or equal to $x,\left(\alpha_{n}\right)_{n \geq 1}$ is a sequence of identically distributed independent random variables with positive values $\left((M+1) \alpha_{n}\right.$ represents the growth factor of the population when this population is small enough, α_{n} may depend on weather conditions but not on the number of the population itself).

Q 1.1. Explain why $\left(X_{n}\right)_{n \geq 0}$ is the sequence of states and $\left(U_{n}\right)_{n \geq 0}$ the sequence of controls of a stationary Markov decision process and give the transition probabilities $M_{x y}^{(u)}$. Explain what is the best choice of the constrained control sets $\mathcal{C}(x)$.

Q 1.2. In order to avoid extinction of the given threatened species, we choose appropriate constrained control sets $\mathcal{C}(x)$ and would like to find a (pure or relaxed) strategy minimizing the probability that $X_{N} \leq \ell$, for some given N. Write this problem as a Markov decision problem with finite horizon N.

Q 1.3. What is the Dynamic programming equation satisfied by the value function of this problem? Explain how an optimal strategy can be obtained.

Q 1.4. We replace the previous criterion by considering the following problem :

$$
\max \mathbb{P}\left(X_{1}+\cdots+X_{N} \geq N h \mid X_{0}=x\right)
$$

where $h \in(\ell, 1),\left(X_{n}\right)_{n \geq 0}$ is the sequence of states of the above MDP, and the maximization holds over the set of all (pure or relaxed) strategies. Write this problem as a Markov decision problem with finite horizon N, and enlarged state space.

Q 1.5. What are now the corresponding dynamic programming equation, and the optimal policies?
Q 1.6. Since extinction is still possible (with positive probability), we would like now to maximize the expected extinction time if it occurs before the N th year. Explain why this is equivalent to the following Markov decision problem (still with finite horizon N)

$$
\max \mathbb{E}\left[\tau \mid X_{0}=x\right],
$$

where τ is the first time $\leq N$ such that $X_{\tau} \leq \ell$, and the maximization holds over the set of all (pure or relaxed) strategies. Give the corresponding dynamic programming equation, and determine an optimal strategy.

2 Problem 2 (to validate the ENSTA lectures only)

Q 2.1. Consider two independent Markov chains $\left(Y_{n}^{1}\right)_{n \geq 0}$ and $\left(Y_{n}^{2}\right)_{n \geq 0}$ taking their values in the finite state spaces \mathcal{E}^{1} and \mathcal{E}^{2} respectively, with transition matrices M^{1} and M^{2}. We built a Markov decision process with state space $\mathcal{E}=\mathcal{E}^{1} \times \mathcal{E}^{2}$ and action space $\mathcal{C}=\{1,2\}$, with the following transition matrix :

$$
M_{\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right)}^{(u)}:= \begin{cases}M_{x_{1} x_{1}^{\prime}}^{1} \delta_{x_{2} x_{2}^{\prime}} & \text { if } u=1, \\ M_{x_{2} x_{2}^{2}}^{2} \delta_{x_{1} x_{1}^{\prime}} & \text { if } u=2,\end{cases}
$$

where $\delta_{x x^{\prime}}=1$ if $x=x^{\prime}$ and $\delta_{x x^{\prime}}=0$ otherwise. Explain the relation between the coordinates X_{n}^{1} and X_{n}^{2} of a state sequence $X_{n} \in \mathcal{E}$ of the Markov decision process (associated to any strategy, for instance a pure stationary Markov strategy π, so that $\left.U_{n}=\pi\left(X_{n}\right)\right)$ and the Markov chains Y_{n}^{1} and Y_{n}^{2}.

Q 2.2. Let the instantaneous reward at each time n of the process be equal to :

$$
r(u, x)=r_{i}\left(x_{i}\right) \quad \text { for } u=i \in\{1,2\}, \text { and } x=\left(x_{1}, x_{2}\right) \in \mathcal{E}
$$

Consider the discounted problem with discount factor $0 \leq \alpha<1$:

$$
v^{\gamma}(x)=\max _{\sigma} \max _{\tau} \mathbb{E}\left[\sum_{k=0}^{\tau-1} \alpha^{k} r\left(U_{k}, X_{k}\right)+\alpha^{\tau} \gamma \mid X_{0}=x\right]
$$

where the maximization holds over all strategies σ and all stopping times τ (with respect to the filtration of the history process associated to σ). Write the dynamic programming equation satisfied by v^{γ}.

One can alternatively consider a Markov decision process with enlarged state space $\overline{\mathcal{E}}=\mathcal{E} \cup\{0\}$ (0 is a cemetery point), enlarged action space $\overline{\mathcal{C}}=\mathcal{C} \cup\{0\}$, constrained action spaces given by $\overline{\mathcal{C}}(x)=\overline{\mathcal{C}}$ when $x \in \mathcal{E}$ and $\overline{\mathcal{C}}(0)=\{0\}$, transition probabilities extending M by $\bar{M}_{x, x^{\prime}}^{(u)}=M_{x, x^{\prime}}^{(u)}$ for $x, x^{\prime} \in \mathcal{E}$ and $u \in \mathcal{C}$, and $\bar{M}_{x, 0}^{(0)}=1$ for $x \in \overline{\mathcal{E}}$, and instantaneous reward \bar{r} extending r by $\bar{r}(u, x)=r(u, x)$ for $x \in \mathcal{E}$ and $u \in \mathcal{C}, \bar{r}(0, x)=\gamma$ for $x \in \mathcal{E}$ and $\bar{r}(u, 0)=0$ for $u \in \overline{\mathcal{C}}$. Then v^{γ} is the restriction to \mathcal{E} of the value of the discounted problem with infinite horizon and discount factor α, and the action $u=0$ means stopping.

Q 2.3. Build an optimal policy (or pure Markov stationary strategy) π of the problem by using the dynamic programming equation of $\mathrm{Q}, 2.2$.

Q 2.4. For each $i \in\{1,2\}$, let $v^{i, \gamma}$ be the value function of the stopping time problem :

$$
v^{i, \gamma}\left(x_{i}\right)=\max _{\tau} \mathbb{E}\left[\sum_{k=0}^{\tau-1} \alpha^{k} r_{i}\left(Y_{k}^{i}\right)+\alpha^{\tau} \gamma \mid Y_{0}^{i}=x_{i}\right]
$$

where the maximization holds over all stopping times τ and $x_{i} \in \mathcal{E}_{i}$. Let $F^{i, \gamma}$ be the operator from $\mathbb{R}^{\mathcal{E}_{i}}$ to itself such that

$$
\left[F^{i, \gamma}(v)\right]\left(x_{i}\right)=\max \left(\gamma, r_{i}\left(x_{i}\right)+\alpha \sum_{x_{i}^{\prime} \in \mathcal{E}_{i}} M_{x_{i} x_{i}^{\prime}}^{i} v\left(x_{i}^{\prime}\right)\right) .
$$

Write the dynamic programming equation satisfied by $v^{i, \gamma}$ using $F^{i, \gamma}$.
Q 2.5. Using the properties of dynamic programming operators, deduce that, for all $x \in \mathcal{E}_{i}$, the map $\gamma \in \mathbb{R} \mapsto v^{i, \gamma}(x) \in \mathbb{R}$ is convex. (Note that this implies that it is continuous.)
Q 2.6. Denote by $\|\cdot\|_{\infty}$ the sup-norm on $\mathbb{R}^{\mathcal{E}_{i}}$. Show that

$$
\left\|v^{i, \gamma}\right\|_{\infty} \leq \max \left(|\gamma|, \frac{\left\|r_{i}\right\|_{\infty}}{1-\alpha}\right)
$$

Q 2.7. Let

$$
m_{i}\left(x_{i}\right)=\min \left\{\gamma \mid r_{i}\left(x_{i}\right)+\alpha \sum_{x_{i}^{\prime} \in \mathcal{E}_{i}} M_{x_{i} x_{i}^{\prime}}^{i} v^{i, \gamma}\left(x_{i}^{\prime}\right) \leq \gamma\right\}
$$

Describe the optimal policy for the problem of Q.2.4 when $m_{i}\left(x_{i}\right)>\gamma$. Using the above properties of $\gamma \mapsto v^{i, \gamma}\left(x_{i}\right)$, describe also the optimal policy when $m_{i}\left(x_{i}\right)<\gamma$.

We want to infer the optimal policy of the problem of Q.2.2 using the optimal policies of each problem of Q. 2.4 with $i=1,2$.

Q 2.8. Show that for all $x \in \mathcal{E}$, and $i=1,2, v^{i, \gamma}\left(x_{i}\right) \leq v^{\gamma}\left(x_{1}, x_{2}\right)$.
Q 2.9. Deduce that if $x \in \mathcal{E}$ is such that $\gamma<m_{i}\left(x_{i}\right)$ for some $i=1,2$, then it is not optimal to stop in state x, that is for any optimal policy $\pi: \mathcal{E} \rightarrow \overline{\mathcal{C}}$, we have $\pi(x) \neq 0$.
Q 2.10. Let F^{γ} be the operator from $\mathbb{R}^{\mathcal{E}}$ to itself such that

$$
\left[F^{\gamma}(v)\right](x)=\max \left(\left[F^{1, \gamma}\left(v\left(\cdot, x_{2}\right)\right)\right]\left(x_{1}\right),\left[F^{2, \gamma}\left(v\left(x_{1}, \cdot\right)\right)\right]\left(x_{2}\right)\right),
$$

where $v\left(x_{1}, \cdot\right)$ denotes the map w from $\mathcal{E}_{2} \rightarrow \mathbb{R}$ such that $w\left(x_{2}\right)=v\left(x_{1}, x_{2}\right)$ for all $x_{2} \in \mathcal{E}_{2}$. Show that the function

$$
w(x)=v^{1, \gamma}\left(x_{1}\right)+v^{2, \gamma}\left(x_{2}\right)-\gamma
$$

satisfies $F^{\gamma}(w) \leq w$. Deduce that $v^{\gamma} \leq w$.
Q 2.11. Deduce that if $x \in \mathcal{E}$ is such that $\max \left(m^{1}\left(x_{1}\right), m^{2}\left(x_{2}\right)\right) \leq \gamma$, then it is optimal to stop $(\pi(x)=0)$.

Q 2.12. Deduce also that if $x \in \mathcal{E}$ is such that $m^{2}\left(x_{2}\right) \leq \gamma<m^{1}\left(x_{1}\right)$, then it is optimal to choose the action $1(\pi(x)=1)$. One may need to use that $v^{i, \gamma}\left(x_{i}\right) \leq v^{\gamma}\left(x_{1}, x_{2}\right)$ for all $x \in \mathcal{E}$.

3 Problem 3 (to validate the full M2 lectures only)

We consider a stationnary Markov Decision Process with finite state space $\mathcal{E}=\{1, \cdots, n\}$ and control space \mathcal{C}. We assume that $\mathcal{C}(x)=\mathcal{C}$ is independent of the state, and denote by $M_{x y}^{(u)}$ the transition probabilities (formally, $M_{x y}^{(u)}=\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x, U_{n}=u\right)$, for $x, y \in \mathcal{E}$ and $\left.u \in \mathcal{C}\right)$. \mathbb{R}_{+}denotes the set of positive reals. We consider a positive function $\gamma: \mathcal{E} \times \mathcal{C} \rightarrow \mathbb{R}_{+}$which can be seen either as a discount factor, a multiplicative cost or a multiplicative reward.

Given a (pure or random) strategy $\sigma=\left(\sigma_{k}\right)_{k \geq 0}$, we consider

$$
\begin{align*}
J^{(T, \sigma)}(x) & :=\mathbb{E}\left[\prod_{k=0}^{T-1} \gamma\left(X_{k}, U_{k}\right) \mid X_{0}=x\right], \tag{1}\\
\zeta^{\sigma}(x) & :=\limsup _{T \rightarrow \infty}\left\{J^{(T, \sigma)}(x)\right\}^{\frac{1}{T}}, \tag{2}
\end{align*}
$$

where the expectation and the process $(X, U):=\left(X_{k}, U_{k}\right)_{k \geq 0}$ are induced by σ. The following study is related to the problem of maximization or minimization of the ergodic risk sensitive criterion $\zeta^{\sigma}(x)$ among all strategies.

We denote by Π the set of all stationary (feedback) policies, that is the maps $\pi: \mathcal{E} \rightarrow \mathcal{C}$. For any $\pi \in \Pi$, we denote by $M^{(\pi)}$ the $\mathcal{E} \times \mathcal{E}$ matrix with entry (x, y) equal to $M_{x y}^{(\pi(x))}$ and by $A^{(\pi)}$ the $\mathcal{E} \times \mathcal{E}$ matrix with entry (x, y) equal to $\gamma(x, \pi(x)) M_{x y}^{(\pi(x))}$. (Recall that the elements of $\mathbb{R}^{\mathcal{E}}$ are seen either as functions from \mathcal{E} to \mathbb{R} or as (column) vectors, in particular as elements of \mathbb{R}^{n}.)

In the sequel, we denote by Exp the map from $\mathbb{R}^{\mathcal{E}}$ to $\mathbb{R}_{+}^{\mathcal{E}}$ which takes the exponential componentwise : $\operatorname{Exp}(v)=\left(\exp \left(v_{x}\right)\right)_{x \in \mathcal{E}}$, for $v=\left(v_{x}\right)_{x \in \mathcal{E}} \in \mathbb{R}^{\mathcal{E}}$. We also denote by Log the inverse map of Exp, so $\log (v)=\left(\log \left(v_{x}\right)\right)_{x \in \mathcal{E}}$, for $v=\left(v_{x}\right)_{x \in \mathcal{E}} \in \mathbb{R}_{+}^{\mathcal{E}}$.

Q 3.1. For any $\pi \in \Pi$, write the Kolmogorov equation satisfied by the functions $J^{(T, \pi)}$, with $T \geq 0$, and deduce that $\zeta^{\pi}(x) \leq \rho\left(A^{(\pi)}\right)$, for all $x \in \mathcal{E}$, where ρ denotes the spectral radius of a matrix.

Q 3.2. We assume in this question that the graph of $M^{(\pi)}$ is strongly connected (or equivalently that $M^{(\pi)}$ is irreducible). Using the existence of a Perron vector of $A^{(\pi)}$ (a positive eigenvector associated to the eigenvalue $\rho\left(A^{(\pi)}\right)$), show that there exists $C>0$ such that $J^{(T, \pi)}(x) \geq C \rho\left(A^{(\pi)}\right)^{T}$, for all $x \in \mathcal{E}$. Deduce that $\zeta^{\pi}(x)=\rho\left(A^{(\pi)}\right)$, for all $x \in \mathcal{E}$.

3.1 The minimization problem

Q 3.3. Consider the operator \mathcal{B} from $\mathbb{R}_{+}^{\mathcal{E}}$ to itself defined as follows :

$$
[\mathcal{B}(v)]_{x}:=\min _{u \in \mathcal{U}}\left\{\gamma(x, u) \sum_{y \in \mathcal{E}} M_{x, y}^{u} v_{y}\right\}
$$

and let \mathcal{B}^{T} be the T th iterate of this operator. When the map $v \in \mathbb{R}_{+}^{\mathcal{E}}$ is fixed, show that $\left[\mathcal{B}^{T}(v)\right]_{x}$ is the value of a Markov Decision problem with the above MDP parameters and a finite horizon criterion to be precised.

Q 3.4. Let $\mathcal{T}=\log \circ \mathcal{B} \circ \operatorname{Exp}: \mathbb{R}^{\mathcal{E}} \rightarrow \mathbb{R}^{S}, v \mapsto \log (\mathcal{B}(\operatorname{Exp}(v)))$. Show that \mathcal{T} is order preserving and additively homogeneous.

Q 3.5. Deduce that, for all $\alpha<1$, the operator \mathcal{T}_{α} such that $\mathcal{T}_{\alpha}(v)=\mathcal{T}(\alpha v)$ is a contraction on $\mathbb{R}^{\mathcal{E}}$ and has a unique fixed point, that shall be denoted by v_{α}.

Q 3.6. Let $L:=\max _{x, u}|\log \gamma(x, u)|$. Show that $(1-\alpha)\left\|v_{\alpha}\right\|_{\infty} \leq L$, where for any $v \in \mathbb{R}^{\mathcal{E}}$, $\|v\|_{\infty}=\max _{x \in \mathcal{E}}\left|v_{x}\right|$ denotes the sup-norm.

Q 3.7. Since \mathcal{E} is a finite set, there exists z_{α} such that $v_{\alpha}\left(z_{\alpha}\right)=\min _{x \in \mathcal{E}} v_{\alpha}(x)$. Then, we set

$$
\mu_{\alpha}=(1-\alpha) v_{\alpha}\left(z_{\alpha}\right) \quad \text { and } \quad w_{\alpha}(x)=v_{\alpha}(x)-v_{\alpha}\left(z_{\alpha}\right)
$$

Show that

$$
\exp \left(\mu_{\alpha}+w_{\alpha}(x)\right)=\min _{u \in \mathcal{U}}\left\{\gamma(x, u) \sum_{y \in \mathcal{E}} M_{x, y}^{u} \exp \left(\alpha w_{\alpha}(y)\right)\right\}
$$

For all $\alpha<1$, we shall consider $\pi_{\alpha} \in \Pi$ such that $\pi_{\alpha}(x)$ realizes the minimum in the previous equation $\left(\pi_{\alpha}(x)\right.$ exists since \mathcal{C} is a finite set).

Q 3.8. Using the properties that \mathcal{E} and \mathcal{C} are finite sets, and the previous results, show that for any sequence $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ in $[0,1)$ converging to 1 , there exists a subsequence also denoted $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ satisfying :

$$
\pi_{\alpha_{n}}(x)=\pi(x), \quad z_{\alpha_{n}}=z, \quad \forall n \in \mathbb{N}, \quad \lim _{n \mapsto \infty} \mu_{\alpha_{n}}=\mu, \quad \text { and } \quad \lim _{n \mapsto \infty} w_{\alpha_{n}}(x)=w(x), \quad \forall x \in \mathcal{E}
$$

for some $\pi \in \Pi, z \in \mathcal{E}, \mu \in \mathbb{R}$ and some map $w: \mathcal{E} \rightarrow[0,+\infty]$ which may be infinite.

Q 3.9. Show that μ and w satisfy the following equations:

$$
\exp \left(\mu+w_{x}\right)=\min _{u \in \mathcal{U}}\left\{\gamma(x, u) \sum_{y \in \mathcal{E}} M_{x, y}^{u} \exp \left(w_{y}\right)\right\}=\sum_{y \in \mathcal{E}} A_{x, y}^{(\pi)} \exp \left(w_{y}\right) \forall x \in \mathcal{E} .
$$

Q 3.10. Let $\pi \in \Pi, z \in \mathcal{E}$ and $w \in[0,+\infty]^{\mathcal{E}}$ be as in Q. 3.8 and let $\mathcal{I}=\{x \mid w(x)<+\infty\}$. Show that $z \in \mathcal{I}$ and that \mathcal{I} satisfies the following invariance property :

$$
(I(\pi)) \quad \text { If } x \in \mathcal{I} \text { and } M_{x, y}^{(\pi)}>0 \text { then } y \in \mathcal{I} .
$$

Q 3.11. Assume now that for all $\pi \in \Pi$, the matrix $M^{(\pi)}$ is irreducible. Show that any set $\mathcal{I} \subset \mathcal{E}$ satisfying the invariance property $(I(\pi))$ of Q .3 .10 for some $\pi \in \Pi$ is either empty or equal to \mathcal{E}. Deduce that the map w of Q. 3.8 is finite everywhere, $w \in \mathbb{R}^{\mathcal{E}}$, and that it satisfies $\mu \mathbf{1}+w=\mathcal{T}(w)$.
Q 3.12. Let $v^{*}=\operatorname{Exp}(w), \lambda^{*}=\exp (\mu)$ and π be as in Q. 3.8. Show that $A^{(\pi)} v^{*}=\lambda^{*} v^{*}$ and $A^{\left(\pi^{\prime}\right)} v^{*} \geq \lambda^{*} v^{*}$, for all $\pi^{\prime} \in \Pi$, that $\mathcal{B}\left(v^{*}\right)=\lambda^{*} v^{*}$ and that π is an optimal policy in the computation of $\mathcal{B}\left(v^{*}\right)$ in Q. 3.3.
Q 3.13. Deduce, from the previous question and using Perron-Frobenius theorem, the following equalities :

$$
\lambda^{*}=\min _{\pi \in \Pi} \rho\left(A^{(\pi)}\right)=\sup \left\{\lambda \mid \lambda>0, v \in \mathbb{R}_{+}^{\mathcal{E}} \text {, s.t. } A^{\left(\pi^{\prime}\right)} v \geq \lambda v \forall \pi^{\prime} \in \Pi\right\} .
$$

3.2 The maximization problem

All the above arguments can be done similarly when the minimization is replaced by maximization in the definition of \mathcal{B}, leading, under the irreducibility of all matrices $M^{(\pi)}$, to the existence of $\lambda^{*} \in \mathbb{R}$ and $v^{*} \in \mathbb{R}_{+}^{\mathcal{E}}$ such that $\mathcal{B}\left(v^{*}\right)=\lambda^{*} v^{*}$ and

$$
\lambda^{*}=\max _{\pi \in \Pi} \rho\left(A^{(\pi)}\right)=\inf \left\{\lambda \mid \lambda>0, v \in \mathbb{R}_{+}^{\mathcal{E}}, \text { s.t. } A^{\left(\pi^{\prime}\right)} v \leq \lambda v \forall \pi^{\prime} \in \Pi\right\} .
$$

Q 3.14. We can obtain without any assumption $\mu \in \mathbb{R}, w \in[0,+\infty]^{\mathcal{E}}$ and $\pi \in \Pi$ such that

$$
\exp \left(\mu+w_{x}\right)=\max _{u \in \mathcal{U}}\left\{\gamma(x, u) \sum_{y \in \mathcal{E}} M_{x, y}^{u} \exp \left(w_{y}\right)\right\}=\sum_{y \in \mathcal{E}} A_{x, y}^{(\pi)} \exp \left(w_{y}\right) \forall x \in \mathcal{E}
$$

Show that, for all $\pi^{\prime} \in \Pi$, the set $\mathcal{I}=\{x \mid w(x)<+\infty\}$ satisfies the invariance property $\left(I\left(\pi^{\prime}\right)\right)$. Deduce that a sufficient condition for w to be finite is now that the graph of the MDP is strongly connected.
Q 3.15. We admit the following result (see Lemma 5.62 of Lecture notes) : for every $v \in \mathbb{R}^{\mathcal{E}}$ and probability ν on \mathcal{E}, we have

$$
\log \left(\sum_{x^{\prime} \in \mathcal{E}} \nu_{x^{\prime}} \exp \left(v_{x^{\prime}}\right)\right)=\sup _{\theta \in \Delta_{S}}\left(-\mathcal{K} \mathcal{L}(\theta, \nu)+\sum_{x^{\prime} \in \mathcal{E}} \theta_{x^{\prime}} v_{x^{\prime}}\right)
$$

where $\Delta_{\mathcal{E}}$ is the set of probabilities on \mathcal{E} and $\mathcal{K} \mathcal{L}$ is the Kullback-Leibler distance defined as :

$$
\mathcal{K} \mathcal{L}\left(\theta, \theta^{\prime}\right)=\sum_{x \in \mathcal{E}} \theta_{x} \log \left(\frac{\theta_{x}}{\theta_{x}^{\prime}}\right) .
$$

Show that λ^{*} and v^{*} can be computed by solving a Linear Program with an infinite number of linear inequality constraints, or equivalently by solving a convex program.

