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This text contains 2 different exams :

M2 Exam consists in Problems 1 and 3. It is for the students who need to validate the full
lectures (to obtain a M2 mark or to obtain more ECTS). No mark will be given to answers
to questions of Problem 2 for these students.

ENSTA Exam consists in Problems 1 and 2. It is for the other students (ENSTA students
that only need to validate the ENSTA lectures). No mark will be given to answers to ques-
tions of Problem 3 for these students (moreover this problem may use notions that were not
teached to ENSTA students).

Problems 1,2 and 3 are independent. The solution can be written either in French or English.
Documents (handwritten or typed courses and exercises notes, together with books related to the
course) are allowed.

1 Problem 1 (for all students)

Consider a problem of conservation of a threatened species in some environmentally protected
zone. Let Xn denotes the number of population of the threatened species during the nth year
(years are numbered 0, 1, 2, ...), and Un be the number of population of predators of the threatened
species during the same year. We assume that Un can be choosen, and that there are positive
integers ` ≤M , such that Xn ∈ E = {0, 1, . . . ,M}, Un ∈ C = {0, 1, . . . ,M}, and

Xn+1 =

{
dαn+1Xn(M + 1− (Un +Xn))e if Un +Xn ≤M and Xn > `

0 otherwise,

where dxe denotes the least integer that is greater than or equal to x, (αn)n≥1 is a sequence of
identically distributed independent random variables with positive values ((M+1)αn represents the
growth factor of the population when this population is small enough, αn may depend on weather
conditions but not on the number of the population itself).

Q 1.1. Explain why (Xn)n≥0 is the sequence of states and (Un)n≥0 the sequence of controls of a

stationary Markov decision process and give the transition probabilities M
(u)
xy . Explain what is the

best choice of the constrained control sets C(x).
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Q 1.2. In order to avoid extinction of the given threatened species, we choose appropriate constrai-
ned control sets C(x) and would like to find a (pure or relaxed) strategy minimizing the probability
that XN ≤ `, for some given N . Write this problem as a Markov decision problem with finite
horizon N .

Q 1.3. What is the Dynamic programming equation satisfied by the value function of this problem ?
Explain how an optimal strategy can be obtained.

Q 1.4. We replace the previous criterion by considering the following problem :

maxP (X1 + · · ·+XN ≥ Nh | X0 = x) ,

where h ∈ (`, 1), (Xn)n≥0 is the sequence of states of the above MDP, and the maximization holds
over the set of all (pure or relaxed) strategies. Write this problem as a Markov decision problem
with finite horizon N , and enlarged state space.

Q 1.5. What are now the corresponding dynamic programming equation, and the optimal policies ?

Q 1.6. Since extinction is still possible (with positive probability), we would like now to maximize
the expected extinction time if it occurs before the Nth year. Explain why this is equivalent to the
following Markov decision problem (still with finite horizon N)

maxE [τ | X0 = x] ,

where τ is the first time ≤ N such that Xτ ≤ `, and the maximization holds over the set of all (pure
or relaxed) strategies. Give the corresponding dynamic programming equation, and determine an
optimal strategy.

2 Problem 2 (to validate the ENSTA lectures only)

Q 2.1. Consider two independent Markov chains (Y 1
n )n≥0 and (Y 2

n )n≥0 taking their values in the
finite state spaces E1 and E2 respectively, with transition matrices M1 and M2. We built a Markov
decision process with state space E = E1 × E2 and action space C = {1, 2}, with the following
transition matrix :

M
(u)
(x1,x2),(x′1,x

′
2)

:=

{
M1
x1x′1

δx2x′2 if u = 1 ,

M2
x2x′2

δx1x′1 if u = 2 ,

where δxx′ = 1 if x = x′ and δxx′ = 0 otherwise. Explain the relation between the coordinates X1
n

and X2
n of a state sequence Xn ∈ E of the Markov decision process (associated to any strategy, for

instance a pure stationary Markov strategy π, so that Un = π(Xn)) and the Markov chains Y 1
n and

Y 2
n .

Q 2.2. Let the instantaneous reward at each time n of the process be equal to :

r(u, x) = ri(xi) for u = i ∈ {1, 2}, and x = (x1, x2) ∈ E
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Consider the discounted problem with discount factor 0 ≤ α < 1 :

vγ(x) = max
σ

max
τ

E

[
τ−1∑
k=0

αkr(Uk, Xk) + ατγ | X0 = x

]
,

where the maximization holds over all strategies σ and all stopping times τ (with respect to the
filtration of the history process associated to σ). Write the dynamic programming equation satisfied
by vγ .

One can alternatively consider a Markov decision process with enlarged state space Ē = E ∪{0}
(0 is a cemetery point), enlarged action space C̄ = C ∪ {0}, constrained action spaces given by

C̄(x) = C̄ when x ∈ E and C̄(0) = {0}, transition probabilities extending M by M
(u)
x,x′ = M

(u)
x,x′

for x, x′ ∈ E and u ∈ C, and M
(0)
x,0 = 1 for x ∈ Ē , and instantaneous reward r̄ extending r by

r̄(u, x) = r(u, x) for x ∈ E and u ∈ C, r̄(0, x) = γ for x ∈ E and r̄(u, 0) = 0 for u ∈ C̄. Then vγ is
the restriction to E of the value of the discounted problem with infinite horizon and discount factor
α, and the action u = 0 means stopping.

Q 2.3. Build an optimal policy (or pure Markov stationary strategy) π of the problem by using
the dynamic programming equation of Q.2.2.

Q 2.4. For each i ∈ {1, 2}, let vi,γ be the value function of the stopping time problem :

vi,γ(xi) = max
τ

E

[
τ−1∑
k=0

αkri(Y
i
k ) + ατγ | Y i

0 = xi

]
,

where the maximization holds over all stopping times τ and xi ∈ Ei. Let F i,γ be the operator from
REi to itself such that

[F i,γ(v)](xi) = max

γ , ri(xi) + α
∑
x′i∈Ei

M i
xix′i

v(x′i)

 .

Write the dynamic programming equation satisfied by vi,γ using F i,γ .

Q 2.5. Using the properties of dynamic programming operators, deduce that, for all x ∈ Ei, the
map γ ∈ R 7→ vi,γ(x) ∈ R is convex. (Note that this implies that it is continuous.)

Q 2.6. Denote by ‖ · ‖∞ the sup-norm on REi . Show that

‖vi,γ‖∞ ≤ max(|γ|, ‖ri‖∞
1− α

) .

Q 2.7. Let

mi(xi) = min{γ | ri(xi) + α
∑
x′i∈Ei

M i
xix′i

vi,γ(x′i) ≤ γ} .

Describe the optimal policy for the problem of Q.2.4 when mi(xi) > γ. Using the above properties
of γ 7→ vi,γ(xi), describe also the optimal policy when mi(xi) < γ.

We want to infer the optimal policy of the problem of Q.2.2 using the optimal policies of each
problem of Q.2.4 with i = 1, 2.
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Q 2.8. Show that for all x ∈ E , and i = 1, 2, vi,γ(xi) ≤ vγ(x1, x2).

Q 2.9. Deduce that if x ∈ E is such that γ < mi(xi) for some i = 1, 2, then it is not optimal to
stop in state x, that is for any optimal policy π : E → C̄, we have π(x) 6= 0.

Q 2.10. Let F γ be the operator from RE to itself such that

[F γ(v)](x) = max
(
[F 1,γ(v(·, x2))](x1) , [F 2,γ(v(x1, ·))](x2)

)
,

where v(x1, ·) denotes the map w from E2 → R such that w(x2) = v(x1, x2) for all x2 ∈ E2. Show
that the function

w(x) = v1,γ(x1) + v2,γ(x2)− γ

satisfies F γ(w) ≤ w. Deduce that vγ ≤ w.

Q 2.11. Deduce that if x ∈ E is such that max(m1(x1),m2(x2)) ≤ γ, then it is optimal to stop
(π(x) = 0).

Q 2.12. Deduce also that if x ∈ E is such that m2(x2) ≤ γ < m1(x1), then it is optimal to choose
the action 1 (π(x) = 1). One may need to use that vi,γ(xi) ≤ vγ(x1, x2) for all x ∈ E .

3 Problem 3 (to validate the full M2 lectures only)

We consider a stationnary Markov Decision Process with finite state space E = {1, · · · , n} and

control space C. We assume that C(x) = C is independent of the state, and denote by M
(u)
xy the

transition probabilities (formally, M
(u)
xy = P (Xn+1 = y | Xn = x, Un = u), for x, y ∈ E and u ∈ C).

R+ denotes the set of positive reals. We consider a positive function γ : E × C → R+ which can be
seen either as a discount factor, a multiplicative cost or a multiplicative reward.

Given a (pure or random) strategy σ = (σk)k≥0, we consider

J (T,σ)(x) :=E

[
T−1∏
k=0

γ(Xk, Uk) | X0 = x

]
, (1)

ζσ(x) := lim sup
T→∞

{
J (T,σ)(x)

} 1
T

, (2)

where the expectation and the process (X,U) := (Xk, Uk)k≥0 are induced by σ. The following study
is related to the problem of maximization or minimization of the ergodic risk sensitive criterion
ζσ(x) among all strategies.

We denote by Π the set of all stationary (feedback) policies, that is the maps π : E → C. For

any π ∈ Π, we denote by M (π) the E × E matrix with entry (x, y) equal to M
(π(x))
xy and by A(π) the

E × E matrix with entry (x, y) equal to γ(x, π(x))M
(π(x))
xy . (Recall that the elements of RE are seen

either as functions from E to R or as (column) vectors, in particular as elements of Rn.)
In the sequel, we denote by Exp the map from RE to RE+ which takes the exponential compo-

nentwise : Exp(v) = (exp(vx))x∈E , for v = (vx)x∈E ∈ RE . We also denote by Log the inverse map of
Exp, so Log(v) = (log(vx))x∈E , for v = (vx)x∈E ∈ RE+.
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Q 3.1. For any π ∈ Π, write the Kolmogorov equation satisfied by the functions J (T,π), with T ≥ 0,
and deduce that ζπ(x) ≤ ρ(A(π)), for all x ∈ E , where ρ denotes the spectral radius of a matrix.

Q 3.2. We assume in this question that the graph ofM (π) is strongly connected (or equivalently that
M (π) is irreducible). Using the existence of a Perron vector of A(π) (a positive eigenvector associated
to the eigenvalue ρ(A(π))), show that there exists C > 0 such that J (T,π)(x) ≥ Cρ(A(π))T , for all
x ∈ E . Deduce that ζπ(x) = ρ(A(π)), for all x ∈ E .

3.1 The minimization problem

Q 3.3. Consider the operator B from RE+ to itself defined as follows :

[B(v)]x := min
u∈U

γ(x, u)
∑
y∈E

Mu
x,yvy

 ,

and let BT be the T th iterate of this operator. When the map v ∈ RE+ is fixed, show that [BT (v)]x
is the value of a Markov Decision problem with the above MDP parameters and a finite horizon
criterion to be precised.

Q 3.4. Let T = Log ◦B ◦ Exp : RE → RS , v 7→ Log(B(Exp(v))). Show that T is order preserving
and additively homogeneous.

Q 3.5. Deduce that, for all α < 1, the operator Tα such that Tα(v) = T (αv) is a contraction on
RE and has a unique fixed point, that shall be denoted by vα.

Q 3.6. Let L := maxx,u | log γ(x, u)|. Show that (1 − α)‖vα‖∞ ≤ L, where for any v ∈ RE ,
‖v‖∞ = maxx∈E |vx| denotes the sup-norm.

Q 3.7. Since E is a finite set, there exists zα such that vα(zα) = minx∈E vα(x). Then, we set

µα = (1− α)vα(zα) and wα(x) = vα(x)− vα(zα).

Show that

exp(µα + wα(x)) = min
u∈U

γ(x, u)
∑
y∈E

Mu
x,y exp (αwα(y))

 .

For all α < 1, we shall consider πα ∈ Π such that πα(x) realizes the minimum in the previous
equation (πα(x) exists since C is a finite set).

Q 3.8. Using the properties that E and C are finite sets, and the previous results, show that for
any sequence (αn)n∈N in [0, 1) converging to 1, there exists a subsequence also denoted (αn)n∈N
satisfying :

παn(x) = π(x) , zαn = z , ∀n ∈ N , lim
n7→∞

µαn = µ , and lim
n7→∞

wαn(x) = w(x) , ∀x ∈ E .

for some π ∈ Π, z ∈ E , µ ∈ R and some map w : E → [0,+∞] which may be infinite.
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Q 3.9. Show that µ and w satisfy the following equations :

exp(µ+ wx) = min
u∈U

γ(x, u)
∑
y∈E

Mu
x,y exp (wy)

 =
∑
y∈E

A(π)
x,y exp (wy) ∀x ∈ E .

Q 3.10. Let π ∈ Π, z ∈ E and w ∈ [0,+∞]E be as in Q. 3.8 and let I = {x | w(x) < +∞}. Show
that z ∈ I and that I satisfies the following invariance property :

(I(π)) If x ∈ I and M
(π)
x,y > 0 then y ∈ I.

Q 3.11. Assume now that for all π ∈ Π, the matrix M (π) is irreducible. Show that any set I ⊂ E
satisfying the invariance property (I(π)) of Q. 3.10 for some π ∈ Π is either empty or equal to E .
Deduce that the map w of Q. 3.8 is finite everywhere, w ∈ RE , and that it satisfies µ1+w = T (w).

Q 3.12. Let v∗ = Exp(w), λ∗ = exp(µ) and π be as in Q. 3.8. Show that A(π)v∗ = λ∗v∗ and
A(π′)v∗ ≥ λ∗v∗, for all π′ ∈ Π, that B(v∗) = λ∗v∗ and that π is an optimal policy in the computation
of B(v∗) in Q. 3.3.

Q 3.13. Deduce, from the previous question and using Perron-Frobenius theorem, the following
equalities :

λ∗ = min
π∈Π

ρ(A(π)) = sup{λ | λ > 0, v ∈ RE+, s.t. A(π′)v ≥ λv ∀π′ ∈ Π} .

3.2 The maximization problem

All the above arguments can be done similarly when the minimization is replaced by maximi-
zation in the definition of B, leading, under the irreducibility of all matrices M (π), to the existence
of λ∗ ∈ R and v∗ ∈ RE+ such that B(v∗) = λ∗v∗ and

λ∗ = max
π∈Π

ρ(A(π)) = inf{λ | λ > 0, v ∈ RE+, s.t. A(π′)v ≤ λv ∀π′ ∈ Π} .

Q 3.14. We can obtain without any assumption µ ∈ R, w ∈ [0,+∞]E and π ∈ Π such that

exp(µ+ wx) = max
u∈U

γ(x, u)
∑
y∈E

Mu
x,y exp (wy)

 =
∑
y∈E

A(π)
x,y exp (wy) ∀x ∈ E .

Show that, for all π′ ∈ Π, the set I = {x | w(x) < +∞} satisfies the invariance property (I(π′)).
Deduce that a sufficient condition for w to be finite is now that the graph of the MDP is strongly
connected.

Q 3.15. We admit the following result (see Lemma 5.62 of Lecture notes) : for every v ∈ RE and
probability ν on E , we have

log

(∑
x′∈E

νx′ exp(vx′)

)
= sup

θ∈∆S

(
−KL(θ, ν) +

∑
x′∈E

θx′vx′

)
,

where ∆E is the set of probabilities on E and KL is the Kullback-Leibler distance defined as :

KL(θ, θ′) =
∑
x∈E

θx log

(
θx
θ′x

)
.

Show that λ∗ and v∗ can be computed by solving a Linear Program with an infinite number of
linear inequality constraints, or equivalently by solving a convex program.
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