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This text contains 2 different exams :

M2 Exam consists in Problems 1, 3 and 4 it is for the students who attended and need to validate Part
1 and Part 2 of the course (to obtain a M2 grade and/or to obtain more ECTS at ENSTA). No score
will be given to answers to questions of Problem 2 for these students.

ENSTA Exam consists in Problems 1 and 2 it is for the other students (ENSTA students who only
need to validate Part 1 of the course (6x3 hours of ENSTA lectures). No score will be given to
answers to questions of Problem 3 and 4 for these students (moreover these problems may use
notions that were not teached in Part 1).

The solution can be written either in French or English. Documents (handwritten or typed courses and
exercises notes, together with books related to the course) are allowed. Problem 4 is independent of the
other problems, and often questions can be solved without solving the previous questions.

1 Problem 1 (for all students)

An unscrupulous innkeeper charges a different rate for a room as the day progresses, depending on
wether he has many or few vacancies. His objective is to maximize his expected total income during the day.
Let x be the number of empty rooms at the start of the day, and let N be the number of customers that will
ask for a room during the day.

We assume that N is known to the inkeeper. When a customer arrives the innkeeper proposes a price
q ∈ {q1, . . . , qL} where 0 < q1 < . . . < qL. The customer will accept the offer qi with probability pi and
refuse the offer with probability (1 − pi), where p1 > p2 > . . . > pL. If the customer refuses the offer, he
won’t come back during the day.

Q 1.1. Let t corresponds to the t-th arrival. Denote by Xt ∈ {0, . . . , x} the number of empty rooms between
the (t− 1)-th and the t-th arrivals of a customer, and by Ut ∈ {1, . . . , L} the level of price proposed by the
innkeeper. Formulate the innkeeper problem as the maximization of an expected additive payoff with finite
horizon (and possibly exit time), for the Markov decision process with state process Xt, control process
Ut and time horizon T = N . Describe the dynamics (the transition probabilities) of the MDP and the
instantaneous rewards.

1



Q 1.2. Explain how an optimal strategy of the innkeeper can be obtained by using the following Dynamic
programming equation for t ∈ {0, . . . , T − 1} :vt(x) = max

i∈
{
1,...,L

} (
pi
(
qi + vt+1(x− 1)

)
+ (1− pi)vt+1(x)

)
, x ∈ {1, . . . , x}

vt(0) = 0 .

Q 1.3. Show by backward induction on t, that the functions vt : x ∈ {0, . . . , x} 7→ vt(x) of Q 1.2 are
nondecreasing.

Q 1.4. Assume that p1q1 < . . . < pLqL. Show, in that case, that the innkeeper should always charge at the
highest rate qL.

2 Problem 2 (to validate the ENSTA lectures only)

We consider the framework and notations of Problem 1, for which we assume now that pℓqℓ = max{piqi, i =
1, . . . L} for some ℓ < L. For t ∈ {0, . . . , T − 1} and x ∈ {1, . . . , x}, we denote

ι(t, x) = max

Argmax
i∈
{
1,...,L

}(
pi
(
qi + vt+1(x− 1)

)
+ (1− pi)vt+1(x)

) .

Q 2.1. Show that vt ≥ vt+1 for all t ∈ {0, . . . , T − 1}.

Q 2.2. Consider the map wt : x ∈ {1, . . . , x} 7→ vt(x) − vt(x − 1). Show the following properties by
backward induction on t ∈ {0, . . . , T} :

— wt is nonincreasing (which means that vt is a discrete concave function) ;
— x ∈ {0, . . . , x} 7→ vt(x)− vt+1(x) is nondecreasing.

Q 2.3. Show that for all x, x′ ∈ {1, . . . , x} and t ∈ {0, . . . , T − 1}, we have :

(pι(t,x′) − pι(t,x))(wt+1(x
′)− wt+1(x)) ≤ 0 .

Deduce that x ∈ {1, . . . , x} 7→ ι(t, x) is nonincreasing and give an interpretation of this property.

Q 2.4. Show that for all x ∈ {1, . . . , x}, and t.t′ ∈ {0, . . . , T − 1}, we have :

(pι(t′,x) − pι(t,x))(wt′+1(x)− wt+1(x)) ≤ 0 .

Q 2.5. Deduce that, for all x ∈ {1, . . . , x}, the map t ∈ {0, . . . , T − 1} 7→ ι(t, x) is nonincreasing and ≥ ℓ
and give an interpretation of these properties.

Q 2.6. Assume now that y is not known and random, and that after each arrival of a customer, the probability
of an additional arrival is α ∈ (0, 1). This means that with probability 1−α there will be no arrivals anymore.

Consider now a state process composed of Xt, the number of empty rooms, and Yt, the possibility of an
additional arrival, that is Yt = 0 if there will be no arrivals in the future and Yt = 1 otherwise. Formulate
the new innkeeper problem as the maximization of an expected additive reward over an infinite horizon, for
the Markov decision process with state (Xt, Yt), in which the instananeous reward evaluates to zero when
Yt is equal to zero.
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Q 2.7. Show that the value function satisfies the following Dynamic Programming equation
v(x, 1) = max

i∈
{
1,...,L

} (
pi
(
qi + αv(x− 1, 1)

)
+ (1− pi)αv(x, 1)

)
, x ∈ {1, . . . , x}

v(0, 1) = 0

v(x, 0) = 0, x ∈ {0, . . . , x} .

Q 2.8. Interpret this equation as the Dynamic Programming equation of an infinite horizon discounted
problem, and explain why this equation has a unique solution.

Q 2.9. How can it be solved?

Q 2.10. Denote ṽ(x) = v(x, 1) and w : x ∈ {1, . . . , x} 7→ w(x) = ṽ(x)− ṽ(x− 1). Using the properties
of the fixed point equation in Q 2.7, show that the map w is non increasing, meaning that ṽ is concave.

Q 2.11. Deduce that the optimal policy π : {1, . . . , x} → {1, . . . , L} is nonincreasing and ≥ ℓ.

Q 2.12. Assume that L = 2 and ℓ = 1. Show that the number of policy iterations starting at the constant
policy π(x) ≡ ℓ is at most x and compute explicitely one policy iteration.

3 Problem 3 (to validate the full (M2/Part1 and Part2) lectures only)

We consider a variant of Problem 1, in which some rooms may become unusable although they are
empty, but the innkeeper observes the number of empty and usable rooms only when the customer accept
the offer.

Q 3.1. Denote now by Xt ∈ {0, . . . , x} the number of empty and usable rooms between the (t − 1)-th
and the t-th arrivals of a customer, by Ut ∈ {1, . . . , L} the level of price proposed by the innkeeper, by
Ct+1 ∈ {0, 1} the decision of the customer after this period of time : Ct+1 = 1 if he accepts the offer
and Ct+1 = 0 otherwise, and by Yt+1 the observation after this period : Yt+1 = Xt+1 if Ct+1 = 1 and
Yt+1 = −1 (meaning no observation) otherwise. We also assume that the number of empty and usable
rooms evolves as follows : Xt+1 = max(Xt − Ct+1 − Wt, 0) with Wt a sequence i.i.d random variables
with values in {0, . . . , x} and law φ : φ(w) = P (Wt = w). The probabilities of acceptation of customers
are the same as in Problem 1. No penalty occurs when the offer is accepted but no room is available, that is
if Xt − Ct+1 −Wt < 0. In that case the reward of the innkeeper is zero.

Formulate the innkeeper problem as a Partially Observable Markov Decision Process (POMDP) with
state process (Xt, Ct), control process Ut, observation process Yt and additive payoff with finite time horizon
T = N . Describe the transition probabilities of the POMDP and the instantaneous rewards.

Q 3.2. Compute the dynamics of the belief and show that after one step of the POMDP, starting at some
belief b, one can only reach the Dirac measures (in any point of {0, . . . , x}) and bM where M is the transition
matrix of Xt when there are no customers : Mxx′ = P (max(x−Wt, 0) = x′).

Q 3.3. Write the dynamic programming equation satisfied by the value vt(b, c) of the POMDP as a function
of the belief b at step t on the state variable x, and of the decision c of the customer. Show in particular that
vt does not depend on c.
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4 Problem 4 (to validate the full (M2/Part1 and Part2) lectures only)

Let us consider a MDP over the state space E = {1, . . . , n}, with action space C(x) ⊂ C = E when the
current state is x ∈ E and deterministic dynamics Xk+1 = Uk, meaning that the transition probabilities are
equal to P (Xk+1 = y | Xk = x, Uk = u) = M

(u)
xy = δyu (where δxy = 1 if x = y and 0 otherwise). Let

r : E × C → R be a reward function.
We consider the maximization of the following long run time average criterion, among all state and

control processes (Xk, Uk)k≥0 determined by any strategy σ and starting at some state x ∈ E :

Jσ(x) = lim sup
T→∞

{
1

T
Eσ

[
T∑

k=0

r(Xk, Uk) | X0 = x

]}
, (1)

and denote by ζ(x) its value (its supremum).
We associate to the above MDP the directed graph G, with set of nodes equal to E and set of arcs A

equal to the set of (x, y) ∈ E × E such that y ∈ C(x).

Q 4.1. We assume that G is strongly connected.
Using results of the course, show that there exists ρ ∈ R and v ∈ RE such that

ρ+ v(x) = [B(v)](x) := max
y∈C(x)

(r(x, y) + v(y)) ∀x ∈ E ,

and relate the solution with the value of ζ(x), for x ∈ E .

Q 4.2. Let π be a policy, that is an element of Π := {π : E → C | π(x) ∈ C(x), ∀x ∈ E} (the set
of stationary pure Markov strategies), and consider (following the notations of the course) the vector and
matrix

r(π)x = r(x, π(x)), M (π)
xy = Mπ(x)

xy = δyπ(x), ∀x, y ∈ E .

Show that the graph of the Markov matrix M (π) necessarily contains one cycle, that is a path (x1, . . . , xk, xk+1)
for some k ≤ n, such that xk+1 = x1 and xi ̸= xj when 1 ≤ i ̸= j ≤ k.

Q 4.3. Show that the set C = {x1, . . . , xk} of nodes of this cycle is a final class of the Markov matrix M (π).

Q 4.4. Let mC be the probability measure over E which is equal to the uniform probability over C. Show
that mC is an invariant measure of M (π).

Q 4.5. Recall that B(v) ≥ r(π) +M (π)v for all v ∈ RE and π ∈ Π. Deduce that

ρ ≥ r(x1, x2) + · · ·+ r(xk−1, xk) + r(xk, x1)

k
.

Q 4.6. Show that indeed the previous inequality holds for all cycles (x1, . . . , xk, x1) of G.

Q 4.7. Let π be an optimal policy for a solution v of the ergodic equation in Q 4.1, that is a policy such that

ρ1+ v = r(π) +M (π)v .

Show that

ρ =
r(x1, x2) + · · ·+ r(xk−1, xk) + r(xk, x1)

k
,
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for any cycle (x1, . . . , xk, x1) of the graph of M (π). Deduce that

ρ = max
r(x1, x2) + · · ·+ r(xk−1, xk) + r(xk, x1)

k
,

where the maximum is taken over all cycles (x1, . . . , xk, x1) of G. This scalar is called the maximal cycle
mean of the graph G with weights r.

Q 4.8. Let β > 0 be a parameter and consider the nonnegative n× n matrix A(β) with entries

A(β)
xy :=

{
exp(βr(x, y)) when y ∈ C(x)
0 otherwise.

Let w(β) be a positive eigenvector of A(β) associated to its spectral radius λ(β) = ρ(A(β)), meaning :

A(β)w(β) = λ(β)λw(β) ,

and such that w(β)1 = 1. Such a vector w(β) exists and is unique by Perron-Frobenius theorem.
Rewrite the above equation as the ergodic dynamic programming equation of a Markov decision process

(MDP) with a long run time average criterion :

ρ(β)1+ v = B(β)(v) ,

in which ρ(β) = log(λ(β))/(β) and vx = log(w
(β)
x )/β for all x ∈ E . Explain the parameters of B(β).

Q 4.9. Let (ρ, v), with ρ ∈ R and v ∈ RE , be a solution of the ergodic equation in Q 4.1.
Show that

ρ+ v(x) ≤ [B(β)(v)](x) ≤ log n

β
+ ρ+ v(x) ∀x ∈ E .

Q 4.10. Deduce, using techniques of the course, that

ρ ≤ log(λ(β))

β
≤ log n

β
+ ρ so lim

β→+∞

log(λ(β))

β
= ρ .

Q 4.11. Assume that the solution v of Q 4.1 is unique up to an additive constant, and let w(β) be as above.

Show that wx = limβ→+∞
log(w

(β)
x )

β exists for all x ∈ E and that w = (wx)x∈E is a solution of the ergodic
equation in Q 4.1 : ρ1+ w = B(w).
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