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Abstract

This paper considers the optimal investment policy for
an investor who has available one bank account paying a
fixed interest rate » and n risky assets whose prices are
correlated log-normal diffusions. We suppose that trans-
actions between the assets incur a cost proportional to the
size of the transaction. The problem is to maximize a func-
tion of the total net wealth on a finite horizon. Dynamic
programming leads to a parabolic variational inequality
for the value function which is solved by using a numerical
algorithm based on policies iterations and multigrid meth-
ods. Numerical results are presented dealing with the is-
sue of domestic asset allocation, that is the optimat split
between cash, long bonds and equities. The impact of the
transaction costs on the risk return characteristics of the
optimal policies is analyzed.

Key words. Portfolio selection, transaction costs, vis-
cosity solution, variational inequality, multigrid methods.

Introduction

Most of the methods used in portfolio management are
derived from the works of H. Markowitz [9]. One of the
problems is that the optimization proposed by Markowitz
is made under a static framework. This paper aims to study
dynamic optimization when the market is not frictionless.
Previous studies in this direction have been done, in par-
ticular in [5], [6], [11, [2], [12].

The paper is organized as follows. Section 1 of the pa-
per presents the model that we have adopted [5], [1]. It
makes explicit the dynamics which the risky assets are
supposed to follow, the utility function of the investor and
how the transaction costs are taken into account. In section
2, using Dynamic Programming methodology, we estab-
lish the partial differential equations whose solutionlead to
the optimal strategy. The third part deals with the numer-
ical methods. In the last section, numerical tests are per-
formed in the case of two correlated risky assets and one
riskless account. This example has been chosen to apply
these techniques to the domestic asset allocation issue and
to illustrate the decision that a manager must make to split
his portfolio between cash, bonds and stocks. The impact
of the transaction costs on the optimal policy and on the
risk return characteristics of the optimal policies is stud-

ied.
1. The model

Consider an investor who has available one riskless
bank account paying a fixed rate of interest » and n risky
assets modeled by log-normal diffusions with expected
rates of return o; > r and rates of return variation o?. Any
movement of money between the assets incurs a transac-
tion cost proportional to the size of the transaction, paid
from the bank account.

Let so(t) (resp. s;(t) for ¢ = 1...n) be the amount of
money in the bank account (resp. in the i-th risky asset) at
time ¢ and refer as s(t) = (si(t))i=o,... ,» the investor po-
sition at time ¢. The evolution equations (in a given prob-
ability space (2, F, P)) of the investor holdings are

dso(t) = rso(t)dt
) (1= p)dMa(t) = (1+ X)dLi(2)),
i=1
dsi(t) = a,'si(t)dt + 055 (t)dVV,(t)
+dLi(t) — dM;(t), i=1,...,n,

with initial values s;(07) = =;, ¢ = 0,...,n, where
W;(t),7 = 1,...,n,are correlated Wiener processes. De-
note by p;; the correlation rate between the processes W;
and W; defined as :

E(Wi()W;(t)) = pij t for i # j.

An investment policy is a set P =
(L£i(t), Mi(t))i=1,... n) of adapted processes which
represent cumulative purchase and sale of stock i on [0, ]
respectively such that £;(t), M;(t) are right-continuous,
non-decreasing and £;(0~) = M;(07) = 0. The process
5(t) is thus right continuous with left-hand limit, s(¢~) de-
notes the left hand limit of the process s at time ¢. The co-
efficients A; and p; represent the proportional transaction
costs. Wesuppose A; >0, 0<u; <1, i=1...n
We consider the admissible region S = R} which
means that short position in any of the holdings is for-
bidden. A policy is admissible if the bankruptcy time
7 = inf {t > 0,s(t) ¢ S} is larger than some fixed finite
horizon T. We denote by P the set of admissible policies.
Define the net wealth of the investor as the amount of
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money in the bank account resulting from the sale of the
risky assets at time ¢ :

_so +El~,u si(t

This definition of the wealth represents what is actually
available for either consumption or investment. The in-
vestor’s objective is to maximize over all admissible poli-
cies the quantity

__1_ 1-v —
Bl (1) "1s(0) = 2]
where E denotes expectation and v > 0, # 1. The coef-
ficient + is the relative risk aversion. The risk is maximal
for 4 = 0 (all the money is put in the asset with the largest
rates of return «; and return variation o) and decreases as
~ goes to +oco. Define the value function as

V(t,z) = sup E[-—p(T)l—7|s(t) =z] (1)
PeP

Given a policy, define the random return of the portfolio
at time ¢ as R(t) = -—(—L where p = p(0) is the initial
wealth. We are 1nterested in computing the expectation of
the return E(R(T') | s(0) = «) and the risk measured by
the variance of the return Var(R(T') | s(0) = x) for the
optimal policy. Given the optimal feedback. define

R(t,z) =E(p(T)]|s(t) ==) 2)
V(t,z) = E(p(T)?|s(t) =z). 3)
We can write:
B(R(T) | 5(0) =2) = R(?)’ ) _q,
2
Var(R(T) | 5(0) = 2) = Wg;”) - R(i’zz) ‘

II. Dynamic Programming Method

Theorem : The value function V (¢, z) defined in (1) is
concave, continuousin z; for; = 0, ..., nand in ¢. More-
over V is a viscosity solution of the parabolic variational
inequality (VI) :

max{a—v-}—AV max L;V, max MV}=0

x>0
1nS\{:c0=O}><[0 T(,

\ max{ 6V + AV, max M;V}=0
m >0
in {J:o = 0} X [0 7,
| V(Ty2) = g5 (=0 + 20 (1 - w)2)' 7,
4
where AV =1 Z?—l aijxi‘”i 8:2;::,
+Z, Ly iz +reo a"fo
LiV (1 + ’\ ) + 33:‘
v

MV =(1—ﬂi)%—37,7

a;;i = o2, and aij = pijoio; for ¢ # 3.

Moreover, if the condition A\; + p; > 0 is satisfied, the
solution is unique in the class of continuous functions in
S x [0, T] which satisfy

Ve, t)| <C+|z||'™7), VeeS,te0,T]

for some constant C > 0. mSketch of the
proof. Concavity of V implies continuity in the interior
of §. Continuity on the boundary is obtained by proving
the following: V is (1 — v)-continuous when v < 1 (see
[1]). When v > 1, V is locally lipschitz-continuous with
respect to z in S \ {0} and tends to co when z goes to 0.

We can then state a weak Dynamic Programming Prin-
ciple:

vt € [0, T, for any stopping time § € [t, T,
V(t,z) = sup BV (6,s(67;t,z, P))
PePt
where 7 € [t, T[— s(n; ¢, z, P) is the unique solution of

dso(n) = rso(n)dn +

(—(1+ X)dLi(n) + (1 — pi)dM;(6)),
i=1
dsi(n) = aisi(n)dn + oisi(n)dWi(n —t) +
dLi(n) — dM;(n), i
sitT)=z;, 1=0,...,n
and P is the set of admissible controls defined as
{P: [t,T]xQ —R"xR",
(9,(.0) — (;C,’,Mi)i:l,...n(91w)}v
» V0 € [0,T], Li(0) and M;(0) are Fy_ measurable,
« the mappings § — £; (), M;(6) are continuous, non

decreasing and £;(t~) = M;(t™) =0,
o inf{0 >¢,5(0)¢S}>T.

Then, following Fleming and Soner [6, chapter 8, Theo-
rem 5.1], we prove that V' is a subsolution and a superso-

lution of the parabolic VI.
Uniqueness of the viscosity solution is proven by using
the Ishii technique (see [1], [4]). |

At time t, the admissible region S is divided as follows:
B' = {ze€S8, LiV(t,z)=0},
St = {eeS, MV(tz)=0},
NT® = S\ (BifUS),

n
NT" = (NT".
NT* is the no transaction region at time ¢. Outside NT*,

an instantaneous transaction brings the position to the
boundary of NT* : buy stock i in B;’, sell stock i in S;".



After the initial transaction the agent position remains in
NT' = {z € S,(%% + AV)(t,z) = 0}, and further
transactions occur only at the boundary (see [5]). The dis-
crete control which selects the equation which satisfies the
maximum in (4) indicates the optimal policy.

Given the optimal policy, we can state the Kolmogorov
equations satisfied by the functions R (¢, z) and V(¢, z) de-
fined in (2) and (3).

vt € [0, T[, R(¢, z) satisfies

(%—R + AR)(t,z) =0 inNT,
LiR(t,z) =0 in B;*, ®)
MR(t,z) =0 in S,

with R (T, z) = pand V(t, z) satisfies (5) with V(T z) =
2
pe.
Reduction of the state dimension: The value function
V defined by (1) has the homothetic property [5]

Vp >0, V(t,pz) = p "V (¢, ). (6)

Consequently, the (n + 1)-dimensional VI (4) satisfied by
V can bereduced to a n-dimensional VI by considering the
new state variables :

{p = 1’.0+Zil "

l—pi)zs
Yi = ﬁ—pL,l—l...

where p represents the net wealth and y; the fraction in-
vested in stock <. We have

V(t,z) = p' Y W(t,y) where

Wity = Zyz, _m,.. 1_yn) (7

The function W satisfies

max{——-VZ + A"W, max L]W, max M;W}
1<i<n 0
S

:Oain An\{y1+..-+yn=1}><[1 [1
W . -

~ , —
max{—at + AW, 1r2ia'gng’W}_O

7:>0
1n{y1 + s = 1} x [0, T,
W(T,y) = 135,
®)
where A, = {y € R™y; > 0,37 i < 1},
62

AW = a + W,

3 g b+

oW - dW
Yy —_ —_—
nw = 5y~ =)W = jz;yj 5
- ow
MW =%y

®

Ai + pi

v, =

1-— ﬂ,’ ’
~ k
Ak = y yl Z a'l] 5]61 - y;)(@l Y5 )
i,j=1

by = yk Z[—’Yzaijyj + i = r](dik — ¥i),
i= Jj=1

B = r+Z(a,—r -——Za,jy,y]
i,j=1

The symbol é;; denotes the Kronecker index which is
equal to 0 when ¢ # j and equal to 1 when 7 = j.

Remark: The function W only depends on v =
(Vi)i=1..n- Letus denote by V) ,, the value function in or-
der to express explicitly the dependency of V' on the trans-
action costs and by W) , the solution of (8). We have :

Wiult,y) = Wool(t,y)
n
uotl—Zyz,yl,m,yn

Using (6),we get
V)\’u(t, Z’) = Vuyo(t, Zo, (1 - /11)181, e (1 - /ln).’l?n).

Let us outline an explanation for this observation: a pur-
chase of an amount of As; of asset ¢ corresponds to an ef-
fective monetary value of (1 — u;)As; = As;. The in-
vestor pays (1 + A;)As; = (1+v;)As;. The problem can
thus be reformulated as if the transaction costs (equal to v;)
would appear only on purchase and not on sale. ®Similar
homothetic property is valid for R (¢, z) and V(t, z). We
have R(t,z) = pR(t,y) where R(t,y) satisfies

(%R + AR)(t,y) =0 in NT",

LiR(t,y) =0 in B;', (10)
) (tyy) =0 inSit)

R(T,y) =1

with A7, LY, M; defined by (9) with y = 0. Similarly,
Vit,z) = pZV(t y) where V(t, y) satisfies (10) with y =
—1. Consequently, the expectation and the variance of the
return of the portfolio are

B(R(T) | 5(0) = 2) =R(0,) — 1

= — 2

Var(R(T) | 5(0) = =) = V(0,y) —R(0,9) .
The problem consists in solving first equation (8) to ob-
tain the value function and the optimal strategy, and sec-

ond, equation (10) with y = 0 and v = —1 to determine
the mean return and the risk of the optimal portfolio.



III. Numerical study

We proceed with a technical change of variables which
transforms the simplex A,, into [0, 1]™ :

21:y1+...+yn,

5= Yi+...+Yn

= 1=2,...,n.
yi—1+--~+yn

Equation (8) is transformed into an equation of the form :

0
max(-f + B%9, » renax(z) BFg)=0 (11

in[0,1]"x[0,T[and ¢(T, z) = T_i_'y where B? isasecond
order operator, BY are first order operators and P(z) C
P={12,...,2n}.

The solution of equation (11) leads to the optimal feed-
back P(t,z) € Paq U {0}. P(t,z) = 0 means that
z € NT*, otherwise z € Bf or S} according to the value
of P(t, z). Equation (10) is then equivalent to

‘Z—‘f+B°W:0 if P(t,2) =0
(12)
BP(t,2)¢(t,z) =0 otherwise

o(T,2z) =1

The return and variance of the portfolio is obtained by
solving equation (12) for v = 0 and v = —1 respectively.

For the numerical study, equations (11) and (12) are dis-
cretized and then solved by means of an iterative method.
We use a Cranck-Nicholson scheme, for the time dis-
cretization, with time discretization step At = —TN—, that is
we make the following approximation:

0¢ 0 B(t + At,z) — ¢(t, z)
(5 + B6)(t,2) ~ =
1

+ §(BO¢(t + At, (L‘) + BO¢(t7 x))

This discretisation leads to N elliptic equations with
unknowns ¢(t,.) in terms of ¢(t + At,.), ¢ =
kAt,k = 0,...,N, which are solved backward start-
ing from ¢(7),.). Each equation is discretized in space
by using classical finite difference approximation [8] and
then solved by the Multigrid-Howard algorithm [1] based
on the “Howard algorithm” (policy iteration) [7] and the
multigrid method [10]. This procedure and the computer
implementation is automatized by the expert system Pan-
dore [3].

IV. The application to the domestic asset allocation
issue

As an example for our numerical study, we focus on the
domestic asset allocation issue. The riskless rate r is fixed
at 6% . The drift o of the first asset (long bond portfolio)
is fixed at a level of 9% and its standard deviation oy

equal to 7%. The parameters of the other risky asset
have been chosen to simulate the equity market : drift
a5 equal to 11% and volatility o2 equal to 20%, which is
representative of the French stock market on the long run.
The correlation coefficient p between the two risky assets
is set at 40% and the time horizon T is equal to 1 year.

The Merton problem:

When the transaction costs are equal to zero, the optimal
investment strategy is to keep a constant fraction of total
wealth in each risky asset (see [11], [5], [6]). Indeed, set
A = p = 0 in equation (8). We obtain :

oW - oW oW
max(w + AW, 1???71 gy? 121?5)(" _??_-{/'_))
)
=0 inA, X[O’T[’
W(T,y) = 1%

(13)
which is equivalent to

W(t,y) = W(t) constant withrespecttoy,

ow

S L=+ (o= 7y = (e )W
<0 in Aon,

W(T) = 1.

The value function W defined by (7)-(1) is the minimal so-
lution of VI (13)and (1 —+)W is positive. Hence, W sat-
isfies

S+ (1= 9) max{r + (o = r,y) = 5 (ay, YW =0
which coincides with the Bellman equation of the problem
where the proportion y; is considered as a control variable
[5]. The optimal proportion 7~ is given by
= —l-a“l(a —r) ifm* € Ag,
v

7™ € Argmax((a — 7, y) + 1 (ay,y)) otherwise.

yEAn 2
Denote
2 (1_ _ _2
B=(1—7) max{r+(e—mn v) — 5(ay,v)}-

(¢ =rya™Ha— r)))

Ifr €A, B=(1-7)(r+

2y
We have 3% = —BW and the value function W is thus
equal to
W BE(T_t)
t) = .
(t) T

The regions “sell i” and “buy ¢” are characterized Vt €
[0,T)by B! = {y € As, wi < m},Sf = {y €



An, ¥i > m}.Seta = r+ (a—r,77)and o =
(am*,m*)1/2. We have

R(t,y) = 8T8 P(t,y) = e2x+7)T-1),

Consequently, in the case of no transaction costs, the mean
and the variance of the return are

{ E(R(T) | 5(0) = z) .
Var(R(T) | 5(0) = z) = e*T (e T —1).

T — 1

In the presence of transaction costs, the investor can
be led to keep his portfolio unchanged when the costs
incurred by the transactions are larger than the benefit
in terms of utility provided by the readjustment of the
portfolio. The existence of the no transaction region is
the main difference with the Merton problem. In the fol-
lowing, we show how this region is modified in function
of the level of transaction costs and of the time remaining
before the end of the investment.

Sensitivity to transaction costs at the beginning
and at the end of the investment period

When the time remaining before the end of the investment
period is important, investors have a strong incentive to
trade on risky assets as long as the transaction costs are
not too high. The numerical tests show (see table IV) that
transaction costs as high as 1% on both assets should not
prevent the rational investor to adjust his portfolio. This
adjustment leads him to the closest point on the boundary
of the no transaction region. The results are different

transaction region tends to be larger when the transaction
costs increase and when the end of the investment period
is closer. Indeed, the investor faces a trade-off between
the instantaneous cost of transacting and the expectation
of a higher level of final utility if he rades. Given that,
the adjustment is all the more efficient than the time

remaining is long.

transaction | no transaction region

costs for asset 1 and asset 2
0% yl = 17.3%
y2 = 82.7%

0.1% 244% < yl <37.5%
96.9% < y2 < 100%

0.5% 21.8% < yl < 56.3%
15.6% < y2 < 100%
0.75% 21.8% < y1 < 78.1%
6.3% < y2 < 100%
1% 18.8% < y1 < 93.8%
3.1% < y2 < 100%
2% 94% < y1 < 100%
0% < y2 < 100%

Table 2. Sensitivity to transaction costs at the end of the invest-
ment period

Mean variance properties of the portfclios:
We analyze now the impact of the transaction costs on
the financial characteristics of the investment presented

through graphs in the mean-variance plan.

Figure 1

transaction costs | no transaction region
on both assets | for asset 1 and asset 2
0% yl = 17.3%
y2 =82.7%
0.1% 244% < yl <37.5%
96.9% < y2 < 100%
0.5% 18.8% < yl < 43.8%
96.9% < y2 < 100%
0.75% 18.8% < yl < 56.3%
96.9% < y2 < 100%
1% 18.8% < yl < 68.8%
96.9% < y2 < 100%
2% 18.8% < yl < 100%
3.1% < y2 < 100%

Table 1. Sensitivity to transaction costs at the beginning of the

investment period:

when the same calculations are performed nearer to the
end of the investment period (see Table IV) : the time
remaining is 20% of the initial period. At this stage of
the process the only example in which it may be sensible
to trade on risky assets is when the transaction costs
are as low as 0.1% on both assets. As expected, the no
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Fig. 1. Impact of uniformed transaction costs on the entire effi-
cient frontier

represents the efficient frontiers when the transaction
costs are equal respectively to 0 (Merton case) (upper
curve) and 1% on both assets. The risk aversion v varies
from 0.7 to 50. We see that when the risk aversion is



low enough, the only impact of the transaction costs is
a decrease in returns of about 1%. This decrease occurs
because the initial transaction involves the entire portfolio
that must be split between the two risky assets. However,
for an investor with such a behavior towards risk, the
expected returns of the risky assets remain interesting so
that he does not modify the risk level of his portfolio.
At the left end of the graph, the conclusion is slightly
different since risk adverse investors tend to be even
less adventurous when they face transaction costs. As
expected, the risk adverse investor demands high rewards
to take risk. Figure 2 shows how the risk return of the
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Fig. 2. Impact of increasing transaction costs on the strategy

optimal policy is modified when the transaction costs
increase from 0 to 2%. This graph confirms that the main
impact is observed on returns which decrease. The fixed
risk aversion of the investor is quite low (y = 0.7) in
this example and then the expenses linked to the trades
do no prevent him to invest on the risky assets.  The
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Fig. 3. Impact of different transaction costs on the strategy

impact of having two different transaction costs for the
risky assets is displayed in Figure 3. This test has been
performed with a rather low risk aversion (y = 0.7) and
with v; + v5 = 1.5. Transaction cost on bond increases
from 0.1 to 1.4 as cost on stock decreases from 1.4 to
0.1 from left to right on the graph. When bonds have
much lower transaction costs compared to the stocks, the
investor prefers portfolio with lower risk than the ones
he would have implemented with comparable transaction
costs on the two assets. On the other hand, if the stocks
are much cheaper to buy and sell the investor increases
the risk of his portfolio. Indeed, when the bonds are
cheaper than the stocks, the excess return of the equities is
diminished a lot and then the reward that they offer for the
risk they entail is much less attractive. When the bonds
incur high costs there is no point buying them since they
do not provide any more a satisfactory risk premium over
the riskless asset. Then, since the investor considered
is not too risk adverse, he prefers being invested on the
stock market.
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