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Abstract

In this paper, we study the general system of linear equations
in the (max, +) algebra. We introduce a symmetrization of
this algebra and a new notion called balance which general-
izes classical equations. This construction results in the linear
closure of the (max, +) algebra in the sense that every non-
degenerate system of linear balances has a unique solution
given by Cramer’s rule.

1 Introduction

The (max, +) algebra plays a crucial role in at least two fields:

o path algebra (research of the path of maximal weight in a
graph).

o performance evaluation of Discrete Event Dynamic Sys-
tems (DEDS).

In this paper, we examine a fundamental problem in this
algebra: solving systems of linear equations.

Let us start by introducing the notation used throughout this
paper. We shall denote max by @ (i.e. max(a, b) isnoted a®b),
and use @ instead of the usual addition 4 (e.g. 2®3 = 5). —oco
(also denoted by ¢) is the null element for & (z & —co = x)
and is absorbing for the product (—co ® # = —0o0). 0 is the unit
dement: 0@z = z. (RU{—oc0}, B, ®)iscalled the “(max, +)
algebra”, or simply Rp,ax. Usual computational rules hold in
Rmax (forinstance a® (bdc) = (bdc)@a = (bQa)P(cQa)).
This in particular allows us to define and manipulate vectors
and matrices as usual. For simplicity, we sometimes omit ®
(we write ab instead of a ® b).

A general account of this kind of algebraic structures can
be found in Gondran and Minoux [7] for the graph theoretic
point of view and Cohen, Moller, Quadrat and Viot [4] for the
Discrete Event Systems point of view.

For more than thirty years, it has been known that the implicit
vector equation x = ARz @ b (A being a n X n matrix) can
be solved by iteration, leading to the study of A* = Id® A &
A? @ .... Other vector equations of the type H®@ z = b (H
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not being necessarily a square matrix) also can be dealt with
by using residuation theory (see Blyth [1]). But for the most
general system of n linear equations with » unknowns

Az db=CRzdd ()

where A and C' are n x n matrices with entries in R ;.. and b,d
are vectors of (Rpnax)™, no result existed until now to the best
of the authors’ knowledge. In section 2, we first explain why
the general equation (1) is essential for the study of Discrete
Event Systems. Then, we embed the (max, +) algebra into a
symmetrized algebra (cf. Section 3.2), where the balancerela-
tion A plays the role of equality (Definition 3.1). The original
elements are identified with positive elements in this new alge-
bra. We associate the system of balances (A& C)z A (d o b)
with system (1). Among the many solutions balances may
have, a restricted class can be associated with solutions in the
(max, +) algebra: these are signed solutions (i.e. positive,
negative, or null). The main result of this paper states that non-
degenerate systems of linear balances always have a unique
signed solution, given by Cramer’srule (Theorem 6.1). When
this solution is positive, it determines the unique solution of
system (1).

Example 1.1 Find the solutions of:

max(z,y —4,1) = max(z — 1,y + 1,2) @)
max(z + 3,y + 2, —5) = max(y + 2,7)

or in matrix form

5 )= (5= del]= (3]

This problem is solved in Section 6.1. Before going into further
details, let us make a simple remark: if a > b, the equation
a = z @ bisequivalent to a = x. This suggests the

naive rule: “a©b=a if a>b". 3)

We can now try to “solve” system (2) using this naive rule:
(2) (1) zd(—Yydl=(-lzalys?2
(i) 3z@2y®(-5)=29®7
(@)= e(Dz=1e(-9ye(2e1)
= (@) e=1lys2
(i')and (it) = 3(ly®2)®2yd (-5) =2y 7
= d®262)y=78(-5)65=> dy=7T=>y=3.
Together with (¢)’, we getz = 1®3®2 = 4, and it is immediate
to check that (z,y) = (4, 3) is a solution of system (2).

Our goal is to make it clear when and why these calculations
are valid.



2 Linear System Theory for Discrete Event Systems

To see why equations of type (1) are fundamental in the
(max, +) algebra and its applications, we need to review some
of the work done in developing a system theory in this algebra.
In the context of DEDS, Cohen, Dubois, Moller, Quadrat and
Viot (see [2, 4]) have developed a system theory, analogous to
the conventional system theory for linear differential and re-
current equations. They have shown that a restricted class of
deterministic Petri nets, timed event graphs, can be described
by linear recurrent equations in the [R5 algebra. This class
can be used to model flexible workshops, some distributed pro-
cessing systems, and in particular systems involving synchro-
nization constraints. A complete study, leading to the concepts
of state-space representation and transfer function can be found
in [4].

The study of general linear equations of type (1) appears to
be the theoretical background needed to deal with the following
interesting topics:

Notionsof rank Many notions of rank and of linear depen-
dence in vector structures over the (max, +) algebra can be
found in the literature. The following is a conventional one.

Definition 2.1 {u;};c; isfreeiffthecanonical map {\;}ic;r —
EBZ.EI A;ju; isonetoone.

This condition is practically “never” fulfilled. The following
notion of weak independence has been studied by Moller [9]
and Wagneur [13].

Definition 2.2 {u;};cr isweakly independent iff no vector u;
is spanned by the others {u; }; ;.

Weak independence has some “pathological” features: for in-
stance, there exists an infinite family weakly independent in
]Rf’nax (see Cuninghame Green [5]).

From the early work of Gondran and Minoux [6], there is
a more appealing definition of linear dependence, bearing a
strong resemblance with classical linear algebra:

Definition 2.3 {u;};cr isdependent iff there exists a partition
I = JU K and anon-trivial family of scalars {A;} such that

Dics Ay = Drex Avur.

We have: {u;} free = {u;} non-dependent = {u;} weakly
independent. In the case of Definition 2.3, the column vector
defined by A = ();) is solution of an equation of the type
UA = U’A which is a homogeneous form of equation (1).

Controllability, Observability Itis well known that the only
invertible matrices with entries in R, can be written as
M = DS where D is a diagonal matrix with invertible en-
tries and S is a permutation matrix (see e.g. [5]). This means
that endomorphisms of (Rp,x)" are “never” invertible. As a
consequence, defining an effective notion of controllability or
observability is far from being obvious and the only notions
studied so far are structural (see [3]). A sharper theory should
be based on the notion 2.3 of dependence.

Minimality Some attempts (cf. Olsder [10]) have already
been made suggesting that minimal realizations may be related
to “two-sided” ARMA models:

Y(n)®ATYn—1)@...0 A Y(n—k) o B Un)®...
OB Un—k) =AY (n—-1)D... A, Y(n—k)D
@BIU(n)@...® BfU(n — k)

which clearly have the form of equation (1).

3 Symmetrizing the (max, +) algebra

A natural approach to our problem may have been to embed
the (max, +) algebra into a structure in which every non-trivial
scalar linear equation has at least one solution. Indeed, solving
a @ x = € means Symmetrizing a. Because max is idempotent
(i.e. a®a = max(a, a) = a), the following remark shows how
hopeless it is to adapt the classical symmetrization of monoids
(e.g. the way we build Z from IN) to the R context:

Proposition 3.1 Every idempotent group is reduced to the null
element.

Proof Assume the group (G, @) is idempotent with null element
e. Let b be the symmetric elementof ¢ € G. Thena = a®e =
a®(adb)=(aPa)db=adb=c. L]

3.1 Thealgebraof pairs

2

ax €ndowed with the

Let us now consider the set of pairs R
natural dioid! structure:

($/7I“) @ (yljyll) — (r/ @ y’ ;13// @ yll)
(xl’ III) ® (yl’ y//) — (xly/ @ mllyll’ Ily” @ xlly/)

with (¢, €) as the null element and (0, ¢) as the unit element.

Letz = (2’, #') and define the minussign as ez = (z”, z').
The absolute value of z is denoted by |z| = 2’ @ z”. The
balance operator (-)* is defined by z* = ¢ & = = (||, |z]).
It is immediate to check that | | and * are dioid morphisms
(respectively onto IR, »x and the diagonal of ]anax). In addition,
we have the following properties:

v) additive morphism &(a & b) = (€a) P (6bh)
S(a®b)=(ca)@b .

(i a* = ()
(74) idempotence a** =a*

(4ii) absorpsion ab® = (ab)* 4
(4v) involution o(ca)=a @)
(

(

vi) signrule

In particular (iv) — (vi) allow us to write as usual ¢ @ (©b) =
asb.

IRecall that a dioid is a set D together with two laws @ and ® such that
@): (D, ) is associative, commutative, idempotent (ie. Va a @ a = a),
with null element e, (i)): (D, ®) is associative with unit element e, (iii):
product is distributive over addition and (iv): the null element is absorbing (
Va a®@e=¢ec® a = e).



3.2 Quotient structure

Definition 3.1 [Balancerelation] Let = (z’,2”) andy =
(v, y"). Wesay that « balances y (denoted by 2 A y) if and
onlyife' @ y’' =z" & y'.

It is fundamental to notice that A is not transitive. For instance,
consider (0,1) A (1,1), (1,1) A (1,0) but (0,1) X (1,0)!
Since A cannot be an equivalence relation, there is no point
to define the quotient structure of R2 . by A (opposed to the
conventional algebra in which N2/A ~ 7). However, we can

introduce a new relation R on RZ

;13/ # ‘IH,y/ # y//’and .'LJ @ yll —

I“ @ y/

(', 2")=(y,y") otherwise
which is an equivalence relation, stronger than A . It is easy
to check that R is compatible with the structure laws of R%

with the balance relation A and also with the &, | | and *
operators.

(xl’xll) R (y/’yll) =N

Definition 3.2 We st Sax = R2,. /= and we call it the
symmetrized algebra Of R ;.

We distinguish three kinds of equivalence classes:

(t,—o0) = {(t,2"); " <t} called positive
( t) ={(z',t); 2’ <t} called negative
t,1) t,t)} called balanced.

By associating (¢, —co) with t € Ry, we can identify R pnax
with the subdioid of positive or null classes, R2_ . The set of
negative or null classes (of the form Sz forz € R® ) will be
denoted by RS, the set of balanced classes (of the form z*)

by R? ... This yields the decomposition

A
[l
——

Smax = R® URS  UR®

max max max (5)

¢ being the only element common to any two of these three sets.
This should be compared with Z = NT UN~.

These conventions allow us to write 3 & 2 instead of
(3, —00)®(—00,2). Wethushave392 = (3,2) = (3, —o0) =
3. More generally, calculations in S,,x can be summarized as
follows

aob=a ifa > b
bSa=0a ifa>b (6)
aSa=a’

This includes and generalizes the initial naive rule (3).
Because of its importance, we introduce the notation RY, ..

for the set R®  URES, . The elements of RY  are called

signed elements. They are either positive, negative or null. We

have:

Proposition 3.2 RY,.\ {¢} = Smax\ R?
invertible e ements of S,ax.

is the set of all

max

Proof t @ (—t) = (&t) @ (& —1t) = 0fort € Ryax\ {£} obvi-
ously shows that every non-null element of RY _is invertible.
Moreover, formula (4 (iii)) shows that IR? .. is absorbing for

the product. Thus, 2°y # 0 forall y € Spax since 0 ¢ R? ..
| |

Remark 3.11t can be proved that R is the weakest equivalence
relation stronger than A . In this sense R is natural.

Remark 3.2 There is a nicer algebraic way to introduce the
relation R. Let Sol(a) = {z € R2,. ; = A a}, then it can
easily be verified that

z Ry <= Sol(z) = Sol(y) ™

which makes it clear that R is an equivalence relation. This
leads to a very simple proof of the compatibility of R with
addition. Because the following propositions are equivalent:

z € Sol(a @ ¢)
rAahe
rScAa
xS c € Sol(a)

Sol (a) = Sol (b) implies that Sol (a @ ¢) = Sol (b & ¢).

Remark 3.3 The equivalent formulation (7) allows extending
symmetrization to more general dioids than the (max,+) al-
gebra. In fact, it is always possible to define the quotient of
the additive monoid of pairs by the map a — Sol(a) , but this
quotient may not be compatible with multiplication! What is
specific to the total order structure of R, 5« is the decomposition
(5). Since our goal here is to give an existence and uniqueness
theorem, we only consider the case of a totally ordered multi-
plicative group, the generic case of which being the (max, +)
algebra. But a more general theory can be developed along the
same lines.

4 Linear balances

41 General properties

Before solving general linear balances, we need to explain why

balances in S,.x generalize equations in R,,x. The main
algebraic features of balances are:
Properties4.1

(%) alAa (reflexivity)

(7)) aAbeobAa (symmetry)

(#it) aAb <o a6bAc

(iv) aAb cAd = adcAbdd

(v aAb = acAbc
Let us prove (v): ¢ A b < a6be RS, andas RS, is
absorbing, (¢ © b)e = ac © be € R, i.e. ac A be. L]

Although A is not transitive, when some variables are
signed, we can manipulate balances in the same way as we
manipulate equations:

Property 4.2 [Weak substitution]

zAa
cx Ab andz ERY .. = caAbd
Proof We have z € R®_ or z € RS Assume for in-

max max*
stance that z € R®_ = = (2/,£). With obvious notations:

@ad =adandd2' b = "2’ @b . Addingc'a”’ B a’ to
the last equality, we getc'z' dc'a”’ @ a”’ BV = "' ®c'a” B
c'a” &V, whichyields c’a’ & c’a’ ® V' = "' & /a”’ &V,
ie. ca Ab. =
By taking ¢ = 0, the weak substitution property 4.2 becomes:




Property 4.3 [Wesak transitivity]
aAz, zAbandz € RY, . = aAbd

max

We conclude by a simple remark which allows translating bal-
ances into equalities:

Property 4.4 [Reduction of balances]
¢ Ayand (z,y) € (R, Sr=y

max)2

Itis immediate to extend balances to the vector case. Properties
4.1, — v), 4.2, 4.3 and 4.4 still hold when a, b, z,y and ¢
are matrices with appropriate dimensions, provided we replace
“c RY .. by “everyentry € RY ”. Therefore, we say a vector

is signed iff every entry is signed.

4.2 From equationsto balances

We now consider a solution z of the equation (1) in R ,ax. We
have Az @ b A Cz @ d (reflexivity), and by (4.1,ii%):

(AeCz@(bhod Ac. (8)

Conversely, assuming that x is a positive solution of (8), we get
Az b ACz@dwithAz@band Czx d e RS CRY

max max-*

Using 4.4, we get Az & b = Cz & d. So, we have:

Proposition 4.5 The set of solutions of the general linear sys-
tem of equations (1) in R, and the set of positive solutions
of the associated linear balance (8) in S max Coincide.

Thus, the original problem reduces to studying linear balances
in Spax.

Remark 4.1 The case where a solution z of (8) has some
negative and some positive entries is also of interest. We
write ¢ = 2zt & 2~ with 27,27 € (RE_)". Partitioning
the columns of A and C' according to the sign of the entries
ofz: A = At ® A-,C = CT & C~ (in such a way that
Az = Atet o A~z and Cz = Ctaet © C~27), we can
affirm the existence of a solution to the new problem

AtzT e C 2~ @b=A"z"dCTzt o d.

4.3 Thescalar linear balance

Theorem 46 Let a € Ry, \{c} andb € R, then the
balance

ardbAce 9

has the unique signed solution: =’ = &a~'b.

Proof From properties 4.1,v and 4.1,iii, az ¢ b A ¢ is equiv-
alent to 2 A & a~'b. Using the reduction property 4.4 and
ca"lb e RY_, wegetz =ath. "

max’

Remark 4.2 Non-trivial linear balances always have solutions
in S ax, that is why S, may be considered as a linear closure
of Rmax.

Remark 4.3 We can describe all the solutions of (9). For all
t € Rnax, We have obviously at®* A ¢. Adding this balance to
az’ &b A e, wegeta(z’ ©1*) ®b A e. Thus,

=2 ot (10)

is solution of (9). If ¢t > |z’|, then z; = t* is balanced.
Conversely, it can be checked that every solution of (9) may
be written as in (10). The unique signed solution 2" is also the
least solution.

Remark 44 1f b ¢ RY .., we lose uniqueness of signed so-
lutions. Every z such that |az| < [b] (ie. |z| < |a=1b]) is

solution of balance (9).

Remark 451f a ¢ R .., we again lose uniqueness. Assume
b € RY .. (otherwise, the balance holds for all value of z), then

every « such that |az| > |b| is a solution.

5 A fundamental identity

Before dealing with general systems, we need to extend the
determinant machinery to the S ,,x context. We define the sign
of a permutation o by sgn(o) = 0 if o iseven and sgn(o) = 60
if o is odd. Then the determinant of an n x n matrix A = (a; ;)
is given (as usual) by

n

det A = Pysgn(0) (X ai (i) -

i=1

det remains an n-linear antisymmetric function of the rows (or
columns). det A is balanced (but non-null in general) if two
rows (or columns) of the matrix A are identical. We denote
by A the transpose of the matrix of cofactors ([A*]; ; =
cof;j ;(A)), and by Id the identity matrix (with 0 on the diagonal
and ¢ elsewhere). The following is just a “combinatorial”
identity, that can be shown by adapting a result by Reutenauer
& Straubing [12] or the usual demonstration:

Theorem 5.1 AA A det A Id .

Remark 5.1 The formulation of Reutenauer and Straubing con-
sists in defining a “positive determinant” dett A (where the
sum is taken over all even permutations) and a “negative” de-
terminant det ™ A (odd permutations). The matrix of “positive”
cofactors is defined by

(s dett A(jli) ifi+ jeven
hi det™ A(jli) ifi+ jodd

where A(i|j) denotes the matrix A from which row ¢ and col-
umn j are removed, and the matrix of “negative” cofactors
A~ 5 defined similarly. With these notations, Theorem 5.1
can be rewritten as follows:

AAYY @ detAld = AAN™ $detTALd .

This formula does not use the & sign and is valid in any semi-
ring. The symmetrized algebra appears as a natural way of
handling (and proving in an algebraic way) such identities.

6 Solving systemsof linear balances

6.1 Cramer’srule

Because of the remarks of section 4, we only consider the
solutions of balances in (R, ,.)", that is signed solutions. We
can now state the fundamental result for the existence and

uniqueness of signed solutions of linear systems:



Theorem 6.1 (Cramer system) Let A beann x n matrixwith
entriesin Smax and b € (Smax)™. Then every signed solution
of
Az Ab (11)
satisfies: '
det A.z A Ap (12)
Conversely, assumethat A%%p issigned and det A isinvertible,

thenthe* Cramer solution” z* = (det A)~* A% istheunique
signed solution of (11).

Proof Assume det A isinvertible and A% is signed. By right-
multiplying the identity AA*Y A det A 1d by (det A)~1b we
easily see that the Cramer signed solution 2" satisfies (11). This
proves the converse implication. We shall consider the direct
implication only when det A is invertible. The proof is by
induction on the size of the matrix. Let us prove (12) for the
last row, i.e. det Az, A (A9b),. Developing with respect
to the last column, det A = @}_; ax ncofy ,(A) we get that
at least one term is invertible, say a; ncofi ,(A4). We now
partition in an obvious way A, b and z:

N ST I . z!
A—[ A AM]’ _[b’ A S
where A; jisanl x (n— 1) matrix, A’ isan (n—1) x (n— 1)

matrix, etc...

Alylr’EBalyna:n Abl (a)

Az Ab = { Ad' @ Ay pen AV (B)

Since det A’ = (60)"*!cof; ,,(A4) is invertible, we apply the
induction hypothesis to

(8) & ()

which implies that 2’ A (det A')~*A™™Y(b & A, pa,). Using
the weak substitution property 4.2, we replace 2’ € (R, )" ™1
in (a):

Az Ab o Apnty

Ay 1(det ANTTAPYWY © Ay pan) @ ay pzn A by
ie.

[det A’ a3, & Ay 1 A"V A, W], A
det A" by & Ay 1 A

Here, we recognize the developments of (50)"+! det A and
(50)*1(Ap),,. Thus

det A .z, A (A*b), .

Since the same result holds when developing with respect to
any column £ other than n, this concludes the proof. ]

Remark 6.1Let D, be the determinant of the matrix obtained
by replacing the i-th column of A with b, then (A%Yb); = D,,.
Assume det A invertible, then the equation (12) is equivalent
to:

(Vi) x; A (det A)_lei .
If A%p € (RY,.)", thenz; = (det A)~1D,,, whichisexactly
the classical 2-th Cramer formula.

Example 6.1 Let us go back to our original problem (Example
1). The balance corresponding to equation (2) is

0 &l x 2
RS
with determinant 1 = 4 (invertible).
|2 el 10 2]
Dx_‘7 ! ‘_8, Dy_‘?) 7‘_7

adi D 8

adjp fd _ \ 2
e[ 5] (3] e
So,z =8 =8 -4 =4y="1v=7_4=3gives the
unique positive solution in S, of balance (13). Thus, it is the
unique solution of equation (2) in R 5.

Example 6.2 In the two dimensional case, the condition
Aip € (RY_ )™ has a very clear geometric interpretation.
The following picture represents the solutions to balances in
the plane of signed coordinates (R Y,,.)%.

From Theorem 6.1, we

easily see that the two oo *

lines L; and L, meet \Qi @1y 42 /

at a single point: (1,1). o

However, L, which is ES,, 62 5160 L fe ge
“paralle]” to L, has T ‘ mex
a degenerate intersection 50

with L1 because the sec- LaigOyAlby, :

ond Cramer determinant = &eseseesess 55 L;x o)A 2
of system Ly, L} is bal- o ES.

anced.

Remark 6.2 det A being invertible is not a necessary condition
for system Az A b to have a signed solution for all values of

b ! Consider

0 0 ¢
0 0 ¢

0 0
det A = . Lett € RY, . such that |b;| < [¢] for all coordinate

i,andletz = [t ot ¢ ] Then Az Ab.

Remark 6.3 As already noticed by Gondran and Minoux (see
[6]), determinants have a natural interpretation in terms of as-
signment problems. So the Cramer computations have the same
complexity as n+ 1 assignment problems, which can be solved
using flow algorithms.

A=

6.2 General case

We can even solve Az A b in some degenerate cases:

Theorem 6.2 Assumethatdet A # ¢ (but possiblydet A A ¢)
thenfor all valuesof b thereexistsasigned solutionz of Az A b
such that |z| =| det A|~1| A%ip|.

It is remarkable that the classical Gauss-Seidel and Jacobi al-
gorithms can be adapted to the S,,x case, for which we have
convergence after n iterations (!). This in particular provides an
algorithmic proof of Theorem 6.2. We write A= DU & L,
with U upper-triangular, L lower-triangular and D diagonal.
Let us introduce the notation “z |A| y” for zAy and |z| = |y|.
We now state:



Theorem 6.3 [Jacobi algorithm] Assume the domination
property | det A| = | @, ai ;| # ¢ then:
1/ There exists a (perhaps non-unique) sequence of signed vec-
tors {«? } such that

(i) e=2"<2l<...<2P < ...

(it) D!t A s (Us L)zP &b .
2/ Such a sequence is stationary after n iterations (z* =
"t = . )andz" isasolutionof Az Ab
3/ |z"| = | det A|~1|A%p|.

Sketch of proof 1/ can be shown by an induction argument
which is omited due to the lack of space. To understand why
P is stationary, we introduce zF = |zF|. (ii) yields zP+! =
M#P+1a|D|=1 b with M = |D|~1|U & L|. We have #P+! =
(d® M & ... MP)|D|~[b]. The domination hypothesis
implies that M has no circuits with weight > 0, which implies
that the series M* = [dBM SM?@. . .& MP . . . isstationary

afterstepn — 1,i.e. 2" = #?*t1 = . (thisis a classical result,
cf. [7], p.72, Theorem 1). Because " and 2"t are signed,
" < z"*t!and |27| = |21 imply 2™ = 2"*+!. Replacing

in (24), we get Dz” A & (U @ L)z & b which is equivalent
to Az™ A b. This concludes the proof of 2/. Statement 3/
follows:

Lemma6.4 (|D|71U @ L))*|D|~! = | det A|~1|A].

This can be deduced from a theorem due to Yoeli ([14], Theo-

rem 4). ]

Example 6.3 We apply the Jacobi algorithm to

5 o0 3 1 o1
1 3 ol T2 A 4
3 92 1° T3 0
with [det A|7' A= 0 1 2 ]t,
5z1 14 &1 rl=0-4
33 |A 4 = < zi=1
1°z3 Al 0 3 =—lor ©—1, say z3 = —1
527 |A| 023 © 33301 = ©2 2=0-3
2

323 |A © 1zl Bl ©4=4 =< z3 =

1°22 1A ©3z1 ©22500=3 2 =20r0 2, sayzs =2

525 1A ©5 1 =00
3z3 |A 4 andz3 > 23 = {23 =
1°z5 1A 3 5 =2

Different choices for z3 and z3 yield another solution: z3 =

0,23 =1,23 = 62.

For the homogeneous system, the analogy with the classical sit-
uation is complete. The following result generalizes a theorem
of Gondran and Minoux [6]:

Theorem 6.5 [Homogeneous case] Let A beann x n matrix
with entriesin S,ax. Then the equation Az A ¢ hasa signed
non-null solutionif and only if det A A «.
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Erratum and Further References
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— Remark 3.1. Read congruence instead of equivalence rela-
tion.

— The theory initiated in this paper has been developed in:

1. Synchronization and Linearity, F. Baccelli, G. Cohen, G.J.
Olsder and J.P. Quadrat, Wiley, 1992.

2. Théorie des systemes linéaires dans les dioides, S.
Gaubert, These del’ Ecole des Mines de Paris, July, 1992.



