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1. Abstract
We discuss two new applications of the level set method in shape and topology optimization of structures
in the context of linear elasticity. The first one is the minimization of a stress-based objective function.
For such a criterion we compute a shape derivative, as well as a topological derivative, using an adjoint
equation. The second one is the so-called worst-case or robust optimal design problem for minimal com-
pliance. In the latter case we seek an optimal shape which minimizes the largest, or worst, compliance
when the loads are subject to some unknown perturbations. We first propose a stable algorithm to
compute such a worst perturbation (possibly non unique), based on the maximization of a nonlinear en-
ergy. Then, in the framework of Hadamard method, we compute the directional shape derivative of this
criterion. Since this criterion is usually merely directionally differentiable, we introduce a semidefinite
programming approach to select the best descent direction at each step of a gradient method. In the
context of the level set method we implement a gradient algorithm for the minimization of these two
objective functions and present several numerical examples in 2-d and 3-d.
2. Keywords: Topology optimization, level set method, shape derivative.

3. Introduction
Since the pioneering papers [2], [3], [8], [10], [11], there has been a burst of publications on the application
of the level set method to shape and topology optimization of structures. Most of the recent papers focus
on numerical issues for improving the level set method but do not extend so much its range of applicability,
focusing merely on compliance minization which is a notably simpler problem than optimization of a
general objective function. The goal of the present paper is, on the contrary, to extend the range of
objective functions which are successfully treated by the level set method. More specifically we first
consider the case of objective functions depending on the stress tensor [1], then we treat the so-called
worst-case or robust optimal design problem for minimal compliance [7]. It clearly demonstrates that
the level set method is a versatile tool for structural optimization which can tackle industrial, and not
merely academic, problems.
A structure is occupying a bounded domain Ω ⊂ IRd (d = 2 or 3) with a boundary made of three disjoint
parts

∂Ω = Γ ∪ ΓN ∪ ΓD, (1)

where only Γ is subject to optimization and free to move, while ΓN and ΓD are fixed. Homogeneous
Neumann boundary condition (no traction) is imposed on the free boundary Γ, a Dirichlet boundary
condition on ΓD and a Neumann boundary condition on ΓN . All admissible shapes Ω are required to be
a subset of a fixed working domain D. The shape Ω is occupied by a linear isotropic elastic material with
Hooke’s law A defined, for any symmetric matrix ξ, by

Aξ = 2µξ + λ
(

Trξ
)

I2,

where µ and λ are the Lamé moduli of the material. The displacement field u in Ω is the solution of the
linearized elasticity system















− div (Ae(u)) = 0 in Ω
u = 0 on ΓD

(

Ae(u)
)

n = g on ΓN
(

Ae(u)
)

n = 0 on Γ,

(2)
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where g is a given surface load. For simplicity we do not consider volume forces here although there is
again no difficulty to take them into account (see [3]). The objective function is denoted by J(Ω) which
is implictly defined in terms of the solution u = u(Ω) of (2). We define the set of admissible shapes that
must be subset of the working domain D, of fixed volume V and satisfying (1)

Uad =
{

Ω ⊂ D such that |Ω| = V,ΓN ∪ ΓD ⊂ ∂Ω
}

. (3)

Our model problem of shape optimization is

inf
Ω∈Uad

J(Ω). (4)

In practice we often work with an unconstrained problem. Introducing a Lagrange multiplier ℓ, we
consider the Lagrangian minimization

inf
Ω∈Uad

L(Ω) = J(Ω) + ℓ|Ω|. (5)

4. Main results
We briefly recall the classical notion of shape derivative, going back to Hadamard, and which is at the
root of a gradient method for the minimization of (4). Starting from a smooth and bounded reference
shape Ω, we consider domains of the type

Ωθ =
(

I2 + θ
)

(Ω), (6)

with I2 the identity mapping from IRd into IRd and θ a vector field in C1(IRd, IRd). It is well known that,
for sufficiently small θ, (I2 + θ) is a diffeomorphism in IRd. We remark that all admissible domains Ωθ

belong to the class of homotopy of the reference domain Ω (it implies that in 2-d the number of connected
components of the boundary remains constant). In other words, no change of topology is possible with
this method of shape variation.
The shape derivative of J(Ω) at Ω is defined as the differential at the origin θ = 0 of the application
θ → J

(

(I2 + θ)(Ω)
)

, i.e.

J
(

(I2 + θ)(Ω)
)

= J(Ω) + J ′(Ω)(θ) + o(θ) with lim
θ→0

|o(θ)|

‖θ‖
= 0 ,

where J ′(Ω) is a continuous linear form on C1(IRd, IRd). Because of the constraint (1) on the boundary
of all admissible shapes, we assume that all vector fields θ vanish on ΓN and ΓD, which ensures that Ωθ

satisfy (1).

4.1. Minimum stress optimal design
In this section we consider a stress-based objective function

J(Ω) =

∫

Ω

k(x)|σ|2dx, (7)

where k(x) ∈ L∞(D) is a given piecewise smooth non-negative function (a weighting factor that can
localize the objective function). More generally we can set

J(Ω) =

∫

Ω

j(x, σ(x))dx, (8)

with a smooth function j. This allows us, for example, to minimize the equivalent Von Mises stress
intensity in Ω, or to reach a stress target σ0 (a useful criterion for mechanism design). In both formulas
(7) and (8), the stress tensor is

σ = Ae(u)

where u = u(Ω) is the solution of (2).
In [1] we proved that the shape derivative of (8) is

J ′(Ω)(θ) =

∫

Γ

θ · n
(

j(x, σ) +Ae(u) · e(p)
)

ds, (9)
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where σ = Ae(u) and p is the adjoint state, assumed to be smooth, defined as the solution of











− div (Ae(p)) = div
(

Aj′(x, σ)
)

in Ω

p = 0 on ΓD
(

Ae(p)
)

n = −
(

Aj′(x, σ)
)

n on ΓN ∪ Γ,

(10)

where j′ denotes the partial derivative of j(x, σ) with respect to σ.

4.2. Robust compliance
The notion of worst-case optimisation is an old one, well studied in the literature. In the case of com-
pliance minimization it was called robust or principal compliance and studied in [5]. In the framework
of Hadamard method of shape variations it was further explored in [7]. Let us recall its definition in the
present context. The compliance for (2) is defined as

CΩ(g) =

∫

ΓN

g · u ds = max
v∈V (Ω)

EΩ(v, g) , (11)

where V (Ω) = {v : Ω → IRd such that v = 0 on ΓD} is the space of kinematically admissible displace-
ments, and EΩ is the elastic energy

EΩ(v, g) = −

∫

Ω

Ae(v) · e(v) dx+ 2

∫

ΓN

g · v ds .

Of course, the unique maximizer of the elastic energy in the right hand side of (11) is precisely u. We
assume that the load g can be decomposed in some known average value ḡ and some unknown perturbation
δg, i.e. g = ḡ + δg. For a given average load ḡ and a given perturbation threshold m ≥ 0, the robust or
worst-case compliance is defined by

J(Ω) = max
‖δg‖≤m

CΩ(ḡ + δg) . (12)

Several possible choices of the norm in the maximization (12) are possible but, for simplicity, we consider

‖δg‖2 =

∫

ΓN

|δg|2ds .

Other choices could correspond to a localization of the above norm to some subset of ΓN or to integrate
only some components of the vector field δg. Since the robust compliance (12) is defined through two
successive maximizations, we can exchange their order and perform explicitly the maximization with
respect to δg to obtain a new equivalent formulation

J(Ω) = max
v∈V (Ω)

(

−

∫

Ω

Ae(v) · e(v) dx + 2

∫

ΓN

ḡ · v ds+ 2m‖v‖

)

. (13)

The special case ḡ = 0 yields the so-called Auchmuty variational principle for the first (minimal) eigenvalue
of a spectral problem where the eigenvalue appears on ΓN only. As is the case for the first eigenvalue
which may admit several independent eigenvectors, the maximization (13) may have several maximizers
(corresponding to different worst perturbations δg). This is at the root of numerical difficulties which are
solved in [7]. Furthermore, it implies that the robust compliance (12) is usually not differentiable, but
merely directionnaly differentiable (i.e., it admits different derivatives in different directions).
In [7] we proved that the robust compliance (12) admits the following directionnal derivative

J ′(Ω)(θ) = max
u∈M

∫

Γ

θ · n
(

−Ae(u) · e(u)
)

ds (14)

where M is the set of maximizers in the definition (13) of J(Ω). In establishing (14) we crucially use the
fact that ΓN is fixed so the norm ‖v‖ does not vary with Ω satisfying the constraint (1). Our paper [7]
also considers more complex cases with bulk forces and design dependent loads.

4.3. Level set algorithm
This section recalls the framework of the level set method as proposed by Osher and Sethian [9]. Consider
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a bounded domain D ⊂ IRd in which all admissible shapes Ω are included, i.e. Ω ⊂ D. In numerical
practice, the domain D will be uniformly meshed once and for all. We parameterize the boundary of Ω
by means of a level set function ψ, defined in D by







ψ(x) = 0 ⇔ x ∈ ∂Ω ∩D,
ψ(x) < 0 ⇔ x ∈ Ω,
ψ(x) > 0 ⇔ x ∈

(

D \ Ω
)

.
(15)

During the optimization process, the shape Ω(t) is going to evolve according to a fictitious time parameter
t ∈ IR+ which corresponds to descent stepping. The evolution of the level set function is governed by the
following Hamilton-Jacobi transport equation [9]

∂ψ

∂t
+ V |∇ψ| = 0 in D, (16)

where V (t, x) is the normal velocity of the shape’s boundary (a scalar function from IR+ ×D into IR).

Equation (16) is simply obtained by differentiating the definition of a level set of ψ, ψ
(

t, x(t)
)

= Cst,

and replacing the velocity ẋ(t) by V n where the normal n is equal to ∇ψ/|∇ψ|. The main advantage
of the non-linear equation (16) with respect to a simpler linear transport equation (involving a vector
velocity) is that every point x ∈ D moves along the normal direction to the level set of ψ in x. Recall
that, in theory, a tangential velocity does not change the level sets of ψ, although in practice it yields
numerical diffusion which may cause large errors in the position of the boundary ∂Ω. Furthermore, (16)
takes care of possible self-intersections of the level sets of ψ and appropriately regularize, or not, possible
corners in the shape.
The choice of the normal velocity V is based on the shape derivative computed in the previous sections
for the Lagrangian (5)

L′(Ω)(θ) =

∫

∂Ω

−V θ · n ds. (17)

For the stress-based objective function (8) the integrand V is given in terms of the state u and adjoint
state p by

V = −
(

j(σ) + Ae(u) · e(p) + ℓ
)

with ℓ, the Lagrange multiplier for the volume constraint as defined in (5). Remark that V is defined
everywhere in D and not only on the boundary ∂Ω, which is a crucial point for solving (16). We have
implicitly chosen a simple normal velocity based on steepest descent, θ = V n. Transporting ψ by (16)
is equivalent to moving the boundary ∂Ω (the zero level set of ψ) along the descent gradient direction
−L′(Ω). The length of the time interval on which (16) is integrated corresponds to the descent step.
For the robust compliance objective function (12) the choice of the normal velocity V is more involved.
Indeed, remark that the dependence on (θ ·n) is not fully explicit in the directional shape derivative (14)
when the set of maximizers M is not reduced to a single maximizer. In such a case, the idea is to take
the steepest descent, i.e. to choose (θ · n) which minimizes the directional shape derivative (14), subject
to a constraint on the magnitude of (θ · n). To implement this idea we add another ingredient which is a
regularization of the gradient direction, i.e. we choose a smooth norm to evaluate the constraint on the
magnitude of (θ · n). In other words, we change the usual interpretation of the inner product between
L′(Ω) and θ as the L2(Γ) scalar product of some integrand with W = (θ ·n), and we introduce instead the
H1(D) scalar product (see [4], [6]). More precisely, we compute the normal velocity V as the minimizer
of

min
R

D
(|∇W |2+W 2)dx≤1

{

J (W ) = max
u∈M

∫

Γ

W
(

−Ae(u) · e(u)
)

ds

}

(18)

where the function J (W ) is nothing but the shape derivative J ′(Ω)(θ) with the notation W = θ ·n. The
solution of the minimization (18) is actually a low dimensional problem, easy to solve when exploiting
the structure of the set M (its cardinal is roughly the multiplicity of an eigenvalue, so very often less
than 2 in practice). Solving (18) is made by means of a semi-definite programming (SDP) algorithm. We
refer to [7] for more details on this issue.
Overall, the level set method allows us to replace the Lagrangian evolution of the boundary ∂Ω by the
Eulerian solution of the transport equation (16) in the entire fixed domain D. On the same token, the
elasticity equations for the state u (and for the adjoint state p) are extended to the whole domain D by
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using the so-called “ersatz material” approach. It amounts to fill the holes D\Ω by a weak phase mimick-
ing void but avoiding the singularity of the stiffness matrix. This is a well-known procedure in topology
optimization which we already described in our previous work [3]. In numerical practice, the weak mate-
rial mimicking holes in D \Ω is chosen as 10−3A. The Young modulus of the plain material A is set to 1
and its Poisson’s ratio is 0.3. For more details on the numerical implementation we refer to our paper [3].

4.4. Numerical results for stress minimization
Our first test case is the well-known L-beam problem, designed to have a re-entrant corner. On Figure 1
we display the boundary conditions and the optimal designs for three objective functions of the type

∫

Ω

k(x)|σ|αdx , with α = 2, 5, 10.

The localizing function k(x) is equal to 1 everywhere except on a small zone around the point on the right
side where the vertical load is applied, where it is set to 0. We use such a localizing function because our
goal is to reduce the stress singularity developed in the re-entrant corner and not the one caused by the
applied load. The three optimal designs are quite different: for α = 10 we clearly see that the shape is
smoothed and “rounded” around the re-entrant corner where a stress singularity can develop.
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Figure 1: L-beam problem. From top to bottom and left to right: boundary conditions and optimal
structures for

∫

Ω
k(x)|σ|α with α = 2, 5 and 10.

Our second test case is a 3-d optimal mast. The four corners of the bottom of the structure are fixed.
Eight vertical loads are applied at the lower corners and the mid-points of the lower edges of the upper
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part of the design domain. By symmetry the computation is done on one fourth of the structure. The
optimal design for

∫

Ω
|σ|2dx is displayed on Figure 2.

Figure 2: Optimal 3-d mast for
∫

|σ|2.

4.5. Numerical results for robust compliance minimization

Figure 3: Boundary conditions and loadings for the cantilever test case: the vertical arrow is the average
force ḡ while the horizontal perturbations δg are localized in the black box

Our first test case is a cantilever optimization in a 1 × 2 rectangular working domain. The shape is
clamped on the left wall and a unit vertical load is applied in the middle of the right wall. Horizontal
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perturbations are allowed in a non-optimizable box (the black box of Figure 3) in the middle of the
right wall. We perform several runs with an increasing parameter m, i.e. perturbations of bigger norm
are allowed. Different Lagrange multipliers are used so that the optimal shapes have always a volume
approximatively equal to 0.2. The other parameters are the same for each run.

Figure 4: Different values of m = 0.1, 0.15, 0.2, 0.3, 0.5, 1. in the cantilever problem.

Figure 4 shows the solutions for increasing m (m increases from left to right and then from top to
bottom). When m is equal to 0 the robust-compliance problem is a standard compliance problem whose
solution is a short cantilever. It can be checked that the upper-left shape is close to this solution (m is
the smallest) and the lower-right shape is closer to a beam (m is the biggest). When m is large, the force
term is negligible and the problem becomes an eigenvalue problem.
Our second test case is the design of a 3-d chair. The four bottom corners are fixed while the back and
the seat of the chair are not subject to optimization and support pressure loads. The pressure applied on
the back of the chair is 5 times smaller than the pressure applied on the seat. Perturbations are allowed
both on the back and on the seat: they are vertical on the seat and horizontal, perpendicular to the back,
5 times smaller on the back.
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Figure 5: Loading and optimal shape of the chair for m = 0 (left) and m = 1 (right).

Two optimal shapes, for m = 0 and m = 1, are displayed on Figure 5. The robust-compliance optimal
chair has a more complex topology and seems more stable.
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