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1. Abstract

We propose a new functional of the domain, to be used in shape and topology optimization problems as a means
to enforce the manufacturability of structures by additive manufacturing processes. Instead of considering merely
the final shape, it aggregates objective functions (like compliance) for all the intermediate structures of the shape
appearing in the course of its layer by layer assembly and subject to their self-weights. We compute its shape
derivative and implement it into a shape and topology optimization algorithm based on the level set method. It
turns out that this class of constraint functional is very costly to evaluate, due to the large number of successive
layers required to build the final shape (each of them requiring a finite element analysis). Therefore, we introduce
an interpolation algorithm which significantly accelerates the computational effort. The main idea is to build a
piecewise affine approximation of the cost function and of its shape derivative by using the derivative of the elastic
displacement with respect to the height of the intermediate structure (this is another application of the concept of
shape derivative). Eventually, a numerical validation and some concrete examples are discussed.
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3. Introduction

The additive manufacturing technologies have demonstrated a unique potential in realizing structures with a high
degree of complexity, thereby allowing to process almost directly the designs predicted by topology optimization
algorithms [6]. These breakthroughs however come along with new challenges. One of them is to overcome the
difficulty of building shapes showing large overhangs, i.e. regions hanging over void without sufficient support
from the lower structure. Hitherto, ad hoc criteria, based on a minimum angle between the structural boundary and
the horizontal directions, have been used to tackle this issue [5, 7, 8, 9].

In a recent paper [1] we introduced a new geometric and mecanical constraint, related to various processes, in-
cluding metallic powder bed additive manufacturing, and analysed its mathematical properties. The purpose of the
present communication is to give a simple introduction to this model and to show several numerical applications.
In metallic powder bed additive manufacturing the structure is built layer by layer. For each layer metallic powder
is spread on the bed before it is scanned by the (laser or electron) beam in order to melt the powder in the structural
region. At the end of the process, the powder is removed, revealing the final structure Q. For simplicity, we assume
that the components of one single layer of material are built simultaneously during the manufacturing process. In
Section 5 we introduce a functional which appraises the constructibility of the shape at each stage of its assembly.
In particular, overhang constraints are naturally addressed by this formulation. To achieve our purpose, in the
setting of the optimization problem, we distinguish the mechanical situation where the final shape Q is utilized,
on which the optimization criterion is based, and that where Q (and all its intermediate structures, see Figure 1) is
under construction, which guides the definition of our constraint functional. Our first main result is to provide a
shape derivative for this new constraint functional (which is not a standard result because the intermediate upper
boundaries are not subject to optimization, being dictated by the additive manufacturing process). It turns out that
this class of constraint functional is very costly to evaluate, due to the large number of successive layers required
to build the final shape (each of them requiring a finite element analysis). Therefore, we propose a piecewise affine
interpolation algorithm, the goal of which is to significantly accelerate the computational effort. The main idea
is to build this piecewise affine approximation by using the derivative of the elastic displacement with respect to
the height of the intermediate structure (this is another peculiar application of the concept of shape derivative).
Eventually, some concrete numerical examples are discussed.



4. Shape optimization problem

A shape is a bounded, regular domain Q C Re, d = 2,3, filled with a linear elastic material with Hooke’s law
A. In the context of its final utilization, Q is clamped on a subset I'p C dQ, and it is submitted to surface loads
f € L*(T'y)? applied on a region I'y of dQ disjoint from I'p. The elastic displacement ug, is the unique solution in
H}D(Q)d ={ueH'(Q)?,u=0o0nTp} to the mechanical system:

—div(Ae(ug)) =0 inQ,

ug =0 onIp, )
Ae(ug)n=0 onT,
Ae(ug)n = f onTy.
For simplicity, the objective J(Q) driving the optimization problem is the compliance:
J(Q)= / Ae(ug) : e(upy)dx = / frugds. (2)
Q JTy
Our optimization problem then reads:
min J(Q), such that P(Q) < «, 3)

QEWaq

in which %, is a set of (smooth) admissible shapes Q, whose boundaries enclose the non optimizable regions
I'p, I'y and Ty (see the next section for its definition), P(Q) is a manufacturing constraint, whose definition and
properties are discussed in the next sections, and ¢ is a tolerance threshold.

In the context of geometry optimization or of topology optimization by the level set method, the numerical reso-
lution of (3) relies on the shape derivatives of J(Q) and P(Q), which are defined in the framework of Hadamard’s
method (see e.g. [3, 10]). A function F(Q) of the domain is shape differentiable if the underlying mapping
0 — F((Id+ 0)(Q)), from Wh=(R? R?) into R, is Fréchet differentiable at & = 0; the corresponding deriva-
tive is denoted by F'(Q)(0). Often, the deformations 0 featured in this definition are restrained to a subset
0,g C WI=(R? R?) of admissible displacements, so that deformations (Id+ 0)(Q) of admissible shapes Q stay
admissible. For example, the shape derivative of (2) reads (see e.g. [3])

VO € 0w, J(Q)(6)= —/rAe(u’ﬁ) : e(ul) 6 -nds.

5. Layer by layer mechanical constraint

The constraint P(Q) does not apply directly to the final shape Q but rather to the sequence of intermediate shapes
Q, corresponding to different heights 4 during the additive manufacturing process. More precisely, the shape Q is
enclosed in a cylinder D = S x (0, H), with cross-section § C R?~, representing the build chamber with a vertical
built direction e4. For any height & € (0,H), Q;, := {x = (x1,...,x4) € Q, 0 < x4 < h} is the intermediate shape
describing the stage where Q is assembled up to height 4. The boundary d€2;, is decomposed in a different fashion
from that of dQ in (1): dQ;, =ToUI} UTY with

o I'y ={x€dQ, x4 =0} is the contact region between Q and the build table,
o I'l = {x € dQy, x4 = h} is the upper side of the intermediate structure,
° Fﬁl = dQ;, \I'h UT is the lateral surface.

Eventually, we define ¢;, := {x € dQ, x4 = h}, the part of the boundary dQ that lies at height & (see Figure 1).
Each intermediate shape Q, is clamped on I'¢, and is only subjected to gravity effects, accounted for by a body
force g € L*(R)?. Tts elastic displacement ug, € H 15 (Qp)? satisfies:

—div(Ae(uq, ) =g in &y,
ug, =0 on g, 4
Ae(ug )n=0  onT} UTY,

The compliance cq, of €, then reads:

ca, = | Ae(ug, ) : e(ug, ) dx = /Q g ug, dx. (5)
Jo, JQ,



Figure 1: Intermediate shape Q,

Our constraint P(Q) of the final structure Q aggregates the compliances of all the intermediate shapes:
H
P(Q) = / Jj(cq,)dh, where j: R — R is smooth. (6)
0

It is only incidental that similar mechanical models (that is, linear elasticity systems) are used for describing the
mechanical and manufacturing stages. One could very well imagine modelling cooling effects with a constraint
involving the temperature of the intermediate shapes €2, via the heat equation [2].

Computing the shape derivative of the constraint P(€) is not standard since, when the final shape Q is varying,
only the lateral boundaries Fi of the intermediate shapes €, are allowed to move. This induces some technical
difficulties (see [1] for details) and requires a geometric assumption on the shape Q: we assume that the normal
vector n(x) is parallel to the built direction e4 at most on a finite number of points x € I'y;. In other words, the
final lateral boundary I, does not contain any ‘horizontal flat region’. Under this assumption, and with a specific
definition of the set ®,4 of admissible deformation fields 6, we proved in [1] that the shape derivative of P(Q),
defined by (6), is

V0 € O, P’(Q)(G):/l D00 -nds, 7
1—‘H

where the integrand factor Z, is defined for any x € Fﬁ, by:

To(x) = / :1 J(ca,) (2g ufy, —Ae(uhy,) - e(ufy, )) (x) dh. ®)

The structure of the shape derivative (7)-(8) has an intuitive interpretation: a point x on the lateral boundary Fﬁ_,
contributes only to the intermediate shapes ;, which have height / larger than x,.

The numerical evaluation of the constraint P(€) and its derivative P'(Q)(8) rely on a discretization of the height
interval (0, H) with a sequence 0 = hy < hy < ... < hy = H. The intuitive, 0th-order method to calculate approx-
imations PI(\), and .@;3, of P(Q) and Zq consists in replacing cq, and ufzh by their respective values at 4 = h;;1 on

guarantee the accuracy of this approximation process and at each height /; one has to solve the elasticity system
(4) for the “?z,,.- In [1] we suggested an alternative idea which amounts to compute a 15 order approximation Py,

and @,{, of P(Q) and Zqo. The main idea is to compute the first order derivatives of the mappings & — cq, and
h— ”f),, (which are a special type of shape derivative for the flat upper boundary I';). We can then reconsruct

on each interval [; a continuous piecewise affine approximation of P(Q) and Zg, which allows us to decrease the
number N of intermediate heights.

Figure 2: Optimized design Q* for the shape optimization problem (9) without constraint.

6. Numerical examples
Two numerical test cases are presented here. Let us first consider the 2d MBB Beam test case: the considered



shapes Q are contained in a rectangular domain D of size 6 x 1. Due to symmetry, only half of D is meshed by
300 x 100 Q; elements. In the context of its final utilization (described by the system (1)), the vertical displacement
is fixed on a small part of the lower corners, and a unit vertical load f = (0,—1) is applied at the middle of its
upper side. When it comes to their construction (modelled by (4)), shapes are built vertically from bottom to top,
so that I'j coincides with the lower-side of D.

We first study the simple compliance minimization problem:

min J(Q), such that Vol(Q) < 0.2 Vol(D), )

Qe

where J(Q) is the compliance (2). We solve (9), starting from an initial design with many periodically distributed
holes, by using an SLP-type algorithm, and the level set method on a fixed Cartesian mesh [3]. The optimized
design Q* is shown in Figure 2, where several overhanging parts appear.

Figure 3: Optimized design Q* for the constrained shape optimization problem (10).

We now add our mechanical constraint P(Q) to this problem, and now solve:

min J(Q) such that

Vol(Q) < 0.2 Vol(D), (10)
QEUyy

P(Q) < 0.5 P(QF).

The resulting optimized shape, obtained by using the oth_order approximation of P(Q) and Zq, with a uniform
subdivision of (0,H) in N = 100 layers, is displayed on Figure 3. The values of the corresponding quantities of
interest are collected in Table 1. Notice that several overhangs placed at the lower part of the optimal shape Q*
without manufacturing constraint have vanished. It is also remarkable that the value of the objective function is
lower for the constrained problem, meaning that the constraint has the (surprising) effect of driving the algorithm
in a lower local minimum (this may be due to the larger number of iterations in the latter case).

Shape Q | J(Q) | Vol(Q) | P(Q) | Iterations | Evaluations
Figure 2 | 104.165 | 0.600 | 0.730 25 38
Figure 3 | 98.484 | 0.599 | 0.343 127 143

Table 1: Values of the shape functionals and iteration numbers for the MBB Beam example

@ @YD

Figure 4: Optimized design Q* for the variant (11) of the constrained shape optimization problem (10).

For a better efficiency of our constraint P(Q) in order to reduce further overhangs, we propose to replace the
elasticity sytem (4) (which has a self-weight gravity force everywhere in the bulk of the shape) by the new system
below where only the upper surface is loaded by a constant gravity pressure load

—div(Ae(ug, )) =0 in Qy,
”E),, =0 on I,
Ae(ug )n=0  onT},
Ae(ug, )n=g on T

(1D

and the constraint is still the integral of the compliances over the varying height

H
P(Q):/O jlcq,)dh with cq, :/l_ugwfzhds.
h



N

Figure 5: Boundary conditions for the 3d bridge.

This has the effect of penalizing more the horizontal bars in the intermediate shapes and, indeed, it yields designs,
as in Figure 4, which have less horizontal bars and the few ones that remain are supported by vertical ones.

Let us consider now a 3d bridge problem with loading conditions given in Figure 5. There is a layer of elements
at the top boundary which is not subject to optimization. We first solve (9), without constraint, and the optimized
design Q* is shown in Figure 6. Since the upper layer is a non-optimizable part, a good strategy is to build this 3d
bridge “upside down”, that is in the opposite direction —e;. We then solve (10) with our variant (11) of surface

Figure 6: Optimized shape for the 3d bridge without manufacturing constraints.

loadings and with the built direction —e,. The resulting optimized design Q* is displayed on Figure 7. One clearly
sees that more vertical bars or walls are supporting the lower bar of the bridge.

Figure 7: Optimized shape for the 3d bridge with manufacturing constraints.
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