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Abstract. We present here some results provided by a multiscale resolution

method using both Finite Volumes and Finite Elements. This method is aimed

at solving very large diffusion problems with highly oscillating coefficients.
As an illustrative example, we simulate models of cement media, where very

strong variations of diffusivity occur. As a by-product of our simulations, we

compute the effective diffusivities of these media.After a short introduction,
we present a theorical description of our method. Numerical experiments on

a two dimensional cement paste are presented subsequently. The third section

describes the implementation of our method in the calculus code MPCube
and its application to a sample of mortar. Finally, we discuss strengths and

weaknesses of our method, and present our future works on this topic.

1. Introduction.

1.1. Heterogeneities in cement media. Cement media are spatially very het-
erogeneous with a large variety of physical scales. Furthermore the diffusivity of the
cement components varies with a very large contrast of several orders of magnitude.

For example, when working on the concrete scale, where the representative el-
ementary volume (REV) is roughly a few centimeters wide, we consider that the
cement paste is homogeneous and that aggregates (sand, gravel) are scattered in it,
thus creating millimiters wide heterogeneities.

On the other hand, if we choose to work at the cement paste scale (REV width
not exceeding 100µm), we have to take into account mineral microstructures, which
sizes range from 1 to 30µm. This is therefore a multiscale problem.
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1.2. Determination of the effective diffusivity. Our goal is to compute the
effective diffusivity at the concrete or cement paste scale. This topic has previously
been addressed by various laboratories at the CEA, the French Atomic Energy
Commission, both from physical and mathematical points of view. Strict analyti-
cal homogeneization [6] can be, in this case, very complex to use, chiefly because
of the continuous variation and the random spatial distribution of the inclusions
(depending of the scale: aggregates or mineral stages).

A direct numerical simulation in three dimensions is almost impossible because
of the huge computational resources (memory, CPU time) required by fine meshes.
Therefore, in order to achieve our goal, we have developed a specific multiscale
resolution method using both Finite Volumes (FV) and Finite Elements (FE) and
we present here its preliminary results.

Many multiscale numerical methods have recently been developed and it is almost
impossible to quote all the relevant works, be it Finite Elements methods [12], [14],
[18], [20], [22] or Finite Volumes methods [17], [19].

1.3. A FV/FE Multiscale method. Our method relies on the coupling of two
grids: a coarse one and a fine one. The main idea is to build a Finite Element basis
on the coarse grid from solutions computed on the fine one. In previous works on
this subject [5],[18], the Finite Element method was used on both the fine and coarse
grids, whereas, in our approach, the fine scale simulations are made using Finite
Volumes. Thus we expect to increase the stability of the method in view of strong
discontinuities and anisotropy of the studied media, and to keep the advantages
of the multiscale Finite Element method (no geometric assumptions on the media,
easy parallelization of the computation).

We solve a stationary diffusion equation to determine the concentration C of a
single chemical species:  −∇ · (D ∇C) = α in Ω,

C = f on ΓD,
D ∇C · n = g on ΓN ,

(1)

where (ΓD,ΓN ) is a partition of the boundary Γ of Ω.

2. Description of the multiscale method. In the sequel, Ω is either a rectan-
gular domain (two dimensions) or a parallelepipedic one (three dimensions).

Algorithm 1 presents the various steps of our multiscale method we use for solving
problem (1).

Algorithm 1 Main steps

1: Partition the domain into sub-domains with oversampling
2: Solve cell problems
3: Build the Finite Element basis
4: Solve the coarse problem
5: Compute the fine-scale solution
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Figure 1. The domain Ω (bold line) is divided into rectangular
macroelements K (solid line). The cell K̂ (dotted line), built from
K and a fraction ρ of its neighbours, is meshed finely (in thin grey).

2.1. Decomposition into sub-domains with oversampling. Assuming we
know the diffusivity D on the fine scale, we divide the domain Ω into rectangu-
lar, respectively parallelepiped, macroelements K, thus creating a two-dimensional,
respectively three-dimensional, regular coarse mesh. As shown in Figure 1, at the
local scale, we define the cell K̂ by enlarging the macroelement K with a frac-
tion ρ ≥ 0 of its neighbours. We call ρ the oversampling rate. Oversampling was
introduced in [18] to improve the efficiency of multiscale finite element methods.

In order to save computing resources, the domain Ω is not globally meshed at
the fine scale. The cells K̂ are meshed individually, while ensuring that the meshes
of two adjacent cells K̂1 and K̂2 are conforming on ∂K1 ∩ ∂K2. Building smaller
meshes for all cells than a large global mesh for the entire domain is of course much
easier and efficient in terms of memory and CPU requirements. The fine scale
meshes of K̂ can be either structured or not.

2.2. Solving cell problems. With n = 4 (dimension 2) or n = 8 (dimension 3),
let (Si)1≤i≤n be the vertices of the macroelement K, and (Ŝi)1≤i≤n the vertices of
the cell K̂.

On each cell K̂ we have to solve a cell problem for each 1 ≤ i ≤ n:{
−∇ · (D ∇Ψi

K̂
) = 0 in K̂ ,

Ψi
K̂

= βi on ∂K̂,
(2)

where βi is a continuous linear function on each edge of ∂K̂, with βi(Ŝj) = δi,j ,
where δ stands for the Kronecker symbol.

For two-dimensional structured meshes it is possible to solve the cell problems
by the VF9 finite volume method [16]. In most cases, as D is diagonal, this method
is equivalent to the classical five points Finite Volume method. However, for more
general cases we switched to the Diamond Finite Volume Method (VFDiam) for
solving cell problems. First described in [11], VFDiam has been used by the CEA
to work on media, like the cement ones, where strong anisotropies or/and contrasts
of diffusivity occur. We now briefly recall the principles of VFDiam.

As shown in Figure 2 (left part), in the 2D case, we consider two adjacent cells
where the unknowns, C- and C+ respectively, are located at their barycenter, and
call F = T0T1 their common edge. We suppose D to be constant on each cell, equal
to D- and D+ respectively.
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Figure 2. Left: a VFDiam element (in grey surrounded by a
dashed line) is defined around the common face of two adjacent
elements. Right: the set T0 (in grey) is defined as the collection of
all cells which contain the node T0.

We define the VFDiam volume as the union of the two half-diamond cells T0T1C
-

and T0T1C
+, respectively of volumes V - and V +. We then introduce G, the barycen-

ter of F , and the intermediate unknowns CTi
localised on Ti.

As a Finite Volume Method, the VFDiam method relies on the following approx-
imation of the flux across F :

∫
F

D∇C.n =
n.κ-nn.κ+n

n.κ-n + n.κ+n
(C+ − C-) +

1∑
k=0

[
n.κ+r+

k n.κ-n + n.κ-r-
kn.κ+n

n.κ-n + n.κ+n

]
CTk

(3)
where:
• n is the normal vector of F , oriented from C- to C+ and of norm ‖F‖.
• κ- = D-

2V - , respectively κ+ = D+

2V +

• r-
k = nC-Tk

+ n-
GTk

et r+
k = nC+Tk

+ n+
GTk

• n-
GTk

is the normal vector of [GTk], oriented outward T0T1C
-, of norm ‖GTk‖

As we have introduced the intermediate unknown CTi
, we need an additionnal

relation to keep the problem well-posed. It is provided by a least squares interpo-
lation method on Ti, the set of cells incident to the node Ti (cf. Figure 2, right
part). For all nodes, CTi

is computed as a linear combination of the unknowns Cj

associated with cells in Ti.
A similar formula exists for the three-dimensional case. It can be found in [2],

as well as the detailed calculation of (3).

2.3. Definition of the finite element basis. On each macroelement K, we con-
struct (Φi

K)1≤i≤n by linear combination of the functions (Ψ̂i
K̂

)1≤i≤n, solutions of
(2). To find the coefficients ai,l, we impose, for any 1 ≤ i ≤ n, that

∀ 1 ≤ j ≤ n Φi
K(Sj) =

∑
1≤l≤n

ai,lΨl
K̂

(Sj) = δi,j .

Let I be the set of nodes of the coarse grid, and NI the cardinal of I. The finite
element function ΦI , associated to I ∈ I, is defined piecewise on each macroelement
K 3 I. Provided I coincides with a vertex of K, i.e. Sj = I, we have:
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ΦI
|K = Φj

K .

Due to the oversampling of cells K̂, the Finite Element basis (ΦI)I∈I is non-
conforming, namely each ΦI is discontinuous through the boundary ∂K of the
macroelement K.

A strict oversampling of macroelements is not mandatory to properly define the
multiscale method. We can choose ρ = 0 and then have K̂ = K. In such a case, this
step of the method becomes trivial as we have Φi

K = Ψi
K̂

. However, when ρ = 0,
the multiscale method is less efficient because of a boundary layer resonance, due to
the use of linear boundary conditions to solve the cell problems (§2.2). Quantitative
and qualitative effects of the oversampling rate ρ are detailed in [14].

2.4. Solving the coarse problem. We solve the coarse problem by a Finite El-
ement Method relying on the basis (ΦI)I∈I . It amounts to solve the linear system

KCH = S,

with K a square matrix of size NI , defined by

K(I, J) =
∫

Ω

D∇ΦI · ∇ΦJ ∀(I, J) ∈ I,

and S a column vector deduced from the data f , g and α in (1) with matrices similar
to K. We build those matrices by assembling their local counterparts, which allows
us to distribute calculus on various processors:

KK(i, j) =
∫

K

D∇Φi
K · ∇Φj

K ∀ 1 ≤ i, j ≤ n.

We compute these terms, at the fine scale, from the VFDiam approximation of
fluxes (3), applied to (Φi

K)1≤i≤n.

2.5. Computing the fine-scale solution. Last but not least, we reconstruct, at
the fine scale, the solution C, by weighting the function (ΦI)I∈I with the values of
the coarse solution

C =
∑
I∈I

CH(I)ΦI .

As the pratical interest of this method is to solve very large problems, where
a classical resolution is technically impossible, we usually can not store the recon-
structed solution C (or its gradient or its flux density ‖D∇C‖) on the whole domain
in a single array. Rather, we reconstruct the solution on subdomains of interest,
thus handling arrays of smaller size, fitting in the available computer memory.

This is achieved by gluing solutions of adjacent macroelements, and this is the
reason why we need to ensure that meshes are conforming across the boundaries of
macroelements (cf. §2.1). However, as the Finite Element method is not conforming,
this does not impose any kind of continuity on the solution.
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2.6. Estimate of the computational cost. We assume that the domain Ω is
divided into M macroelements and that each macroelement K is meshed with N
microscopic elements. Taking into account the oversampling area, each cell K̂ con-
tains about (1 + 2ρ)dN elements, with d the space dimension. We note F(N ) a
function estimating the cost of solving a linear problem of size N .

The total cost, in computational time, of our multiscale method can be estimated
by:

Ctot = M ×F((1 + 2ρ)dN)︸ ︷︷ ︸
Solving cell problems

+ F(M)︸ ︷︷ ︸
Coarse problem

+ M ×O(N), (4)

where we use the Landau notation O(N) for a function of order N at infinity. It
is only an approximation of the computational cost of our method, as the costs of
some minor operations have been neglected. The rightmost term of (4) represents
the cost of assembling Finite Element matrices (§2.4) and of reconstructing the
fine-scale solution from the coarse one (§2.5).

Estimate (4) can be compared, for example, to a direct resolution by the Finite
Element or Finite Volume method, the cost of which would be F(MN). Considering
that usually F(MN) = O(M3N3) for a direct solver on a full matrix, or F(MN) =
O(M2N2) for an iterative solver on a sparse matrix, we can see that the multiscale
method is far less expensive than the direct ones. Of course, this low computational
cost has a counterpart: results obtained by the multiscale method are, by principle,
less accurate.

We would like to emphasize that every step of the multiscale method can be done
in parallel but one: solving the coarse problem (§2.4). Therefore, provided we have
enough processors, of the order of M , we can expect a very low computational cost
on parallel computers:

Ctot = F((1 + 2ρ)dN) + F(M) + O(N). (5)

3. Application to a cement paste model.

3.1. Description of the cement paste. We consider a cement paste as described
by previous CEA works [7]. In this section, lengths are expressed in micrometers
(µm). The square domain Ω = [0, 100]2 is composed of a porous phase, of diffu-
sivity D0 = 2.2× 10−9m2 · s−1, filled with thousands of inclusions representing the
various minerals existing in concrete. Depending on their caracteristics (average
size, number of layers and diffusivity), inclusions are dispatched into four groups:

• 3500 homogeneous spheres (diffusivity d1 = 1 × 10−20m2 · s−1, radius r1 ∈
[0.1, 1.3]) for the portlandite, aluminates and anhydrides.

• 1700 homogeneous spheres (diffusivity d2 = 1 × 10−12m2 · s−1, radius r2 ∈
[0.1, 1.3]) of HD C-S-H (High Density C-S-H).

• 1900 homogeneous spheres (diffusivity d3 = 9 × 10−12m2 · s−1, radius r3 ∈
[0.1, 1.3]) of LD C-S-H (Low Density C-S-H).

• 200 multi-layer spheres (radius r4 ∈ [1.3, 2.8]) composed of a core of port-
landite (stretching on the first 40% of the radius) and two shells: one of HD
C-S-H (from 0.4r4 to 0.9r4) and one of LD C-S-H (from 0.9r4).

The random spatial distribution of the inclusions is computed by a program
developped by Erwan Adam [3]. Figure 3 presents a close-up of the domain.
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Figure 3. Close-up of the cement media: pore phase (white), LD
C-S-H (light grey), HD C-S-H (dark grey), portlandite, aluminates
and anhydrides (black).

3.2. Two-dimensional simulation . We present here our first numerical exper-
iments. They used the VF9 Finite Volume method, and both the coarse and fine
scale meshes are rectangular and structured.

We solved the following problem:
−∇ · (D ∇C) = 0 on Ω = [0, 100]2,

C(0, y) = 1 for y ∈ [0, 100],
C(1, y) = 0 for y ∈ [0, 100],

D ∇C · n = 0 if y ∈ {0, 100}.

(6)

With these specific conditions, we can compute a physical value of the homoge-
nized coefficient from the ingoing and outgoing fluxes, themselves computed from
the fine scale solution:

D? =
1
L

∫
{x=100}

D∇C · n, (7)

where L = 100 is the length of the domain. We emphasize that the homogenized
coefficient computed by (7) is not the theorical homogenized coefficient as defined
by homogenization theory [4]. This formula for D? has been chosen in order to
mimic the experimental measurements of equivalent diffusivity.

The homogenized coefficient D? computed by our method is displayed on Figure
4. The number of macroelements K is fixed to 100 as we increase the number of fine
scale elements. The coefficient follows a similar evolution for the four values of ρ
we tried, matching the figures computed from the direct resolution (solid line) from
less that 10%. However, we can not really consider that our homogenized coefficient
converges.

This gap is linked to the flux density error, presented on Figure 5. We note that
the error is up to 5 times stronger near the boundaries of macroelements K. This
boundary layer resonance, described in [14], is usually limited by the oversampling
method. However this is not the case here. At best, for ρ = 0.05, we decrease the
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Figure 4. Evolution of the homogenized coefficient, with a fixed
number M of macroelements, when the precision of the fine-scale
mesh increases. The reference solution is computed from a direct
resolution of problem (1).
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Figure 5. Cut across the domain Ω of the flux density: difference
between the multiscale method (M = 10 × 10) and the reference
solution.

maximal error values by 30%, but we also increase the minimal error value. In the
end, the mean error value increases.

4. Application to a sample of mortar .

4.1. A 3D implementation in a parallel environment. As shown in section
§3, the results computed with our first implementation highlighted some weaknesses
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[1]. To improve the method, an important work of implementation has been made,
and is presented in this section. Indeed, to increase its performances, the method
has been integrated into the parallel numerical code MPCube [9], itself relying upon
the calculus kernel Trio-U [23].

It allows us to easily solve 2D and 3D diffusion problems by the VFDiam method,
both in sequential and parallel contexts. Our method can now use two levels of
parallelism. The outer-cell parallelism (see §2.6) allows us to process the work on
each cell independently from each other. The inner-cell parallelism, using a parallel
solver for the computations on each cell, increases our computational capacities to
manipulate and solve even larger problems. Applied to the expensive steps of the
method, namely meshing the cells and solving the cell problems, these two levels of
parallelism broaden significantly our choice of parameters for the multiscale method.
For example, we are now able to mesh very accurately each oversampling area and,
by extension, to choose the oversampling rate ρ with more precision.

4.2. Description of the mortar. We want to conduct simulations on a sample of
mortar. In mortars, grains of sand are not directly contiguous to the paste, they are
wrapped with highly diffusive transition layers. These layers play a prominent part
in the transport of chemical species. Indeed, whereas grains of sand are necessarly
distinct, the various transition layers can merge with each other. When the density
of sand increases, highly diffusive pathes appear through the media, a phenomenon
called percolation [8].

Experimental processes have estimated the thickness of the transition layers to
30µm, whereas the diameter of grains of sand stretches from 0.16 to 4mm. In order
to deal with this wide range in the characteristic lengths, we usually need to work
with very fine discretizations, which leads to huge meshes. This is exactly a case
where a multiscale method is useful: we can mesh very accurately each part of the
domain, with their sand grains and the corresponding layers, but as the domain has
been subdivided, each mesh remains of acceptable size.

We consider here a 125mm3 cubic domain. Like the cement media described in
§3, it is modelised as a background media, of adimensionate diffusivity Db = 5,
filled with homogeneous spheres, the grains of sand, of diffusivity Ds = 1. Each
sphere is then wrapped in a 30µm layer of diffusivity Dt = 15 acting as a transition
zone. We suppose that the transition zones remain distinct from each other, even
if it is physically unlikely as we chose the sand volume fraction to be quite high
(35%). Diffusivity values come from measures by mercury intrusion porosimetry [8],
while the size distribution of sand grains, shown in Figure 6, comes from industrial
granulometric measurements [13].

4.3. Numerical experiments. The domain is meshed by 125 cubic macroele-
ments (5 in each space direction) with no oversampling (ρ = 0). Each cell is then
meshed by the tools GHS3D and BLSURF via the SALOME platform [21]. The
number of mesh elements in each cell varies from 1 × 105 to 5 × 105, depending
on the local geometry of the cell. For example, tangent points between spherical
inclusions and the cell boundaries lead to an important increase of the number of
tetrahedrons needed to mesh the cell appropriately. This adds up to approximately
2 × 107 elements in the whole domain. Figure 7 presents the mesh for one cell,
composed of approximatively 2.5× 105 elements.

We solve problems which are 3D transcriptions of problem (6) used in §3.2. We
impose as boundary conditions C = 1 when x = 0, C = 0 when x = 5 and a null
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Figure 6. Size distribution of sand grains in the mortar, computed
from the sand granulometric curves. The biggest sizes of sand
grains, from 1.2mm to 4mm, are here dismissed, as the domain is
only 5mm wide.

Figure 7. Geometry and mesh of one cell. Cement paste (bottom)
has been clipped in order to show the spherical sand grains and the
matching transition layers (highlighted, clipped on the top).

flux on the other sides. Finally, we choose a null source term. Figure 8 displays the
evolution of the concentration C with x, whereas the other coordinates (y; z) are
constant. Both global and local phenomena are observed. From a global point of
view, the solution C appears almost linear. However, strong variations can occur on
very short distances when the chemical species crosses a highly diffusive transition
layer.
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Figure 8. Concentration C and longitudinal gradient ∇xC across
the domain, from x = 1 to 3, whereas the remaining coordinates
(y; z) are constant. The transition layers are easily recognized by
the small jumps they induce in the concentration profiles.

In a future analysis of those results, we will compute the homogenized coefficient
D?

x from the ingoing and outgoing fluxes using (7). By switching the boundary
conditions from face to face, we will compute 3 homogenized coefficients D?

x, D?
y
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and D?
z . We work here on a representative element of the mortar, which is expected

to be isotropic. Consequently, the coefficients should be roughly the same.

5. Conclusions and future works. We have presented some numerical experi-
ments using our coupled FV/FE multiscale method. They were first computed with
our standalone 2D implementation, then with the parallel numerical code MPCube.

In the 2D case, our method has shown promising results, but also some weak-
nesses [1]. Actually, the method converges smoothly for academic benchmarks, but
the error tends to stall in the cement media cases because of a boundary layer effect.
Our first attempt to solve this problem, by oversampling the coarse elements, has
not been successful yet because of the large contrast of diffusivity. To circumvent
this difficulty we have emphasized two directions of work.

We have first focused on the oversampling method. It requires a very accurate
mesh on each oversampling area and a well-chosen oversampling rate ρ [14]. Using
such precision would exceed the computational capacities of our first implemen-
tation. Consequently our method was integrated into the parallel numerical code
MPCube. This new implementation has been tested on a realistic 3D case of mortar.
More numerical experiments will be conducted, especially comparisons with large
size direct resolutions as part of the EHPOC project [15].

Second, it has been made clear that the non-conformity of the Finite Element
basis at the coarse scale is the main obstacle for convergence when the oversampling
rate ρ is not small. To overcome this problem we plan to use Discontinuous Galerkin
methods [10] to solve the coarse problem, instead of a classical Finite Element
method.
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