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1. Abstract
A novel strategy for handling the molding constraint for cast parts is presented. In a first step, a simple
projection method for the velocity field is applied. If the optimized shape violates thickness constraints,
this projection method is no longer sufficient and a general molding constraint is applied at the same
time with thickness control. We apply an augmented Lagrangian method to impose the constraints and
compute a shape derivative for the objective function. We show examples in 3-d.
2. Keywords: Shape and topology optimization, level-set method, casting constraints.

3. Introduction
Shape and topology optimization via a level-set method [2], [7] has started attracting the interest of an
increasing number of researchers and industrial designers over the last years. Beyond its flexibility to
perform changes in the topology of the shape, its independence on the objective function to be minimized
expands significantly its range of applicability.
Industrial applications frequently impose strong constraints on the geometry of the optimized structure.
A significant category of such structures is cast parts, i.e. parts intended to be constructed by casting.
In this case, liquid metal is pourred into a cavity formed by molds and the final structure is obtained
after the cooling of the metal and removing the molds. Thus, the shape of the cast part should allow the
removal of the molds (molding constraint) [6].
In this work, we propose a general method for handling the molding constraint. Based on the signed-
distance function, we formulate a constraint that guarantees the feasibility of the optimized structure.
A simple projection method for the velocity field [6] is applied in a first step. Once the optimized shape
violates thickness constraints [1] imposed on the cast part, this projection method is no longer sufficient
and the molding constraint is applied at the same time with thickness control. We apply an augmented
Lagrangian method to impose the constraints and compute a shape derivative [3], [5] for the objective
function. We illustrate our method with examples in 3-d.

4. Setting of the problem
Our goal is to optimize a shape Ω ⊂ Rd (d = 2 or 3), a bounded domain occupied by a linear isotropic
elastic material with Hooke’s law A (a positive definite fourth-order tensor). Typically, the boundary of
Ω is comprised of two disjoint parts, such that ∂Ω = ΓN ∪ ΓD, with Dirichlet boundary conditions on
ΓD, and Neumann boundary conditions on ΓN . We introduce a working domain D (a bounded domain
of Rd) which contains all admissible shapes, that is Ω ⊂ D. The volume and surface loads are given as
two vector-valued functions defined on D, f ∈ L2(D)d and g ∈ H1(D)d. The displacement field u is the
unique solution in H1(Ω)d of the linearized elasticity system −div (Ae(u)) = f in Ω,

u = 0 on ΓD,(
Ae(u)

)
n = g on ΓN ,

(1)
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where e(u) is the strain tensor, equal to the symmetrized gradient of u. A classical choice for the objective
function J (Ω) to be minimized is the compliance (the work done by the loads). It reads

J(Ω) =

∫
Ω

f · u dx+

∫
ΓN

g · u dx =

∫
Ω

Ae(u) · e(u) dx. (2)

In order to find a descent direction for advecting the shape, we follow the approach of Murat and Simon
for shape derivation [3]. Starting from a smooth reference open set Ω, we consider domains of the type

Ωθ =
(
Id+ θ

)
(Ω),

with θ ∈W 1,∞(Rd,Rd). It is well known that, for sufficiently small θ, (Id+ θ) is a diffeomorphism in Rd.

Definition 0.1 The shape derivative of J(Ω) at Ω is defined as the Fréchet derivative in W 1,∞(Rd,Rd)
at 0 of the application θ → J

(
(Id+ θ)(Ω)

)
, i.e.

J
(
(Id+ θ)(Ω)

)
= J(Ω) + J ′(Ω)(θ) + o(θ) with lim

θ→0

|o(θ)|
‖θ‖

= 0 ,

where J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).

Hadamard’s structure theorem asserts that the shape derivative of a functional can be written in the
form

J ′(Ω)(θ) =

∫
∂Ω

V (x)θ(x) · n(x)dx, (3)

where V is the integrand of the shape derivative that depends on the specific objective function. Then,
a descent direction can be found by advecting the shape in the direction θ(x) = −tV (x)n(x) for a small
enough descent step t > 0. For the new shape Ωt = ( Id + tθ) Ω, we can formally write

J (Ωt) = J (Ω)− t
∫
∂Ω

V 2dx+O(t2), (4)

which guarantees a descent direction.

Remark 0.1 A weaker notion of differentiability is that of the directional derivative of a functional
J(Ω) at Ω in the direction θ ∈W 1,∞(Rd,Rd) which is defined as the limit in R (if it exists)

J ′(Ω)(θ) = lim
δ→0

J((Id+ δθ)(Ω))− J(Ω)

δ
.

5. Level-set framework

5.1. Shape representation
We favor an Eulerian approach and use the level-set method [4] to capture the shape Ω on a fixed mesh.
Then, the boundary of Ω is defined by means of a level set function ψ such that

ψ(x) = 0 ⇔ x ∈ ∂Ω ∩D,
ψ(x) < 0 ⇔ x ∈ Ω,
ψ(x) > 0 ⇔ x ∈

(
D \ Ω

)
.

During the optimization process the shape is being advected with a velocity V (x) derived from shape
differentiation, as we will see in the sequel. The advection is described in the level-set framework by
introducing a pseudo-time t ∈ R+ and solving the well-known Hamilton-Jacobi equation

∂ψ

∂t
+ V |∇ψ| = 0. (5)
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Figure 1: Level-set representation of a shape.

5.2. Signed distance function
We remind that if Ω ⊂ Rd is a bounded domain, then the signed distance function to Ω is the function
Rd 3 x 7→ dΩ(x) defined by :

dΩ(x) =


−d(x, ∂Ω) if x ∈ Ω
0 if x ∈ ∂Ω
d(x, ∂Ω) if x ∈ cΩ

,

where d(·, ∂Ω) is the usual Euclidean distance.

5.3. Ersatz material
Using the so-called ”ersatz material” approach, we extend the state equations tot he whole domain D.
To do this, we fill the holes D\Ω by a weak phase that mimicks the void, but at the same time avoids the
singularity of the rigidity matrix. More precisely, we define an elasticity tensor A∗(x) which is a mixture
of A in Ω and of the weak material mimicking holes in D \ Ω

A∗(x) = ρ(x)A with ρ =

{
1 inΩ,
10−3 inD \ Ω.

(6)

6. Casting process
A simplified sequence of steps for the construction of a cast part is the following:

1. Molds are used in order to create a cavity with the shape of the structure that we intend to construct.

2. The cavity is filled with molten liquid.

3. The liquid solidifies.

4. The molds are removed and the cast part is revealed.

In this work we are interested to assure the feasibility of the last step, i.e. that the shape of the cast
part does not oppose to the removal of the molds. In Fig.2 we see that, depending on the casting system
considered, a shape can be moldable or not. In this work, we do not consider the optimization of the
casting process, but the casting system is considered a priori defined.
We call parting direction the direction along which the mold is removed and parting surface, the
surface on which different molds come in contact. The parting surface between two molds can be prede-
fined or it can be constructed after the optimization using suitable methods. In most of the industrial
applications, planar parting surfaces are prefered because of reasons of cost and simplicity.

7. Formulation of the molding and the minimum thickness constraint

7.1. Molding condition on design velocity
A molding condition on the desgin velocity was proposed by Xia et al. in [6]. According to the authors,
if a shape is castable for its corresponding casting system, then the border of the structure ∂Ω can be
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Figure 2: Left: moldable shape; right: non-moldable shape.

divided into n disjoint parts Γi such that Γi∩Γj = �,∪ni=1Γi = ∂Ω and Γi can be parted in the direction
di. Thus, a moldability condition for this shape is:

di · n(x) ≥ 0, ∀x ∈ Γi. (7)

Based on the the molding condition of Eq.(7), Xia et al. have proposed the following method : starting
from a shape that satisfies the constraint (moldable), consider an advection velocity of the form

θi(x) = λ(x)di, ∀x ∈ Γi. (8)

In this way, the shape remains always moldable [6].
This method, despite its simplicity and its effectiveness, presents a major drawback. Since there is no
component of the advection velocity normal to the parting directions, the shape can shrink by extinction
of some part, but it cannot expand in this direction. Thus, in case that a minimum thickness constraint
is applied in a second step [1], the structure will be able to move only parallel to its parting directions and
in all probability the constraint will not be respected. Therefore, it is neccessary to formulate a general
molding constraint.

7.2. Generalized molding constraint
A generalised way to treat the molding constraint can be applied by using the signed-distance function
to the boundary of the domain to derive all neccessary information. The constraint reads:

dΩ (x+ ξdi) ≥ 0 ∀x ∈ Γi,∀ξ ∈ [0, diam(D)] , (9)

where we denote diam(D) = supx,y {dist(x, y), x, y ∈ D} the diameter of the fixed domain D. Intuitively,
this formulations says that, starting from a point of the boundary, which will be casted in the direction
di and travelling along this direction, we should not meet again some part of the body (see Fig.3). In
case that the parting surface is not defined a priori, for a system of two molds (see Fig.2, right image)
the constraint (9) reads:

dΩ (x+ ξsign(n · d)d) ≥ 0 ∀x ∈ ∂Ω,∀ξ ∈ [0, diam(D)] . (10)

Figure 3: Checking castability along the parting direction d at the point x ∈ Ω.
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7.2. Minimum thickness constraint
For the sake of completeness, we also present here a proposed minimum thickness constraint. We adress
the interested reader to [1] and to the references therein for further details.
Denoting with doff a positive scalar, the set ∂Ωdoff

= {x− doffn (x) : x ∈ ∂Ω} is the offset set of ∂Ω
in the direction −n (x) at a distance doff (see Fig.4). A formulation of the constraint which guarantees

Figure 4: Offset set of the lower part of the boundary (shape in grey).

that any offset set in the direction −n (x) up to a distance dmin stays in the shape Ω is the following:

dΩ (x− doffn (x)) ≤ 0 ∀x ∈ ∂Ω,∀doff ∈ [0, dmin] . (11)

8. Shape derivative

8.1. Molding condition on design velocity
Xia et al. have proposed in [6] a modification of the advection velocity according to Eq.(8), that guarantees
a descent direction. Starting from the general form of the shape derivative for a functional J(Ω)

J ′(Ω)(θ) =

∫
∂Ω

θ(x) · n(x)V (x)dx =

n∑
i=1

∫
Γi

θi(x) · n(x)Vi(x)dx

and considering admissible advection fields of the type of Eq.(8), we get

J ′(Ω)(θ) =

n∑
i=1

∫
Γi

λi(x)di(x) · n(x)Vi(x)dx.

Choosing
λi(x) = −Vi(x)di(x) · n(x)

for each part Γi of the boundary ∂Ω, the shape derivative becomes

J ′(Ω)(θ) = −
n∑
i=1

∫
Γi

(di(x) · n(x))2(Vi(x))2dx ≤ 0,

which shows that the chosen advection velocity

θi(x) = −Vi(x)(di(x) · n(x))di(x), ∀x ∈ Γi,

is indeed a descent direction.

8.2. Generalised molding and minimum thickness constraint
The generalised molding and the minimum thickness constraints that we have proposed in the previous
section are pointwise constraints of the same type. We will give here, for the sake of completeness, a short
description of the steps we have followed in [1] to calculate a shape derivative for this type of constraints.
In a first step, a penalty functional is used to formulate a global equality constraint. Then, an augmented
Lagrangian method is used to solve the constrained optimization problem.
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For the generalised molding constraint of Eq.(9) the global constraint takes the form

P1 (Ω) =

n∑
i=1

∫
Γi

∫ diam(D)

0

[
(dΩ (x+ ξdi))

−
]2
dξdx = 0,

and similarly for the constraint of Eq.(10) it reads

P1 (Ω) =

∫
∂Ω

∫ diam(D)

0

[
(dΩ (x+ ξsign(n(x) · d)d))

−
]2
dξdx = 0,

where we have denoted (f)
−

= min (f, 0).
Similarly, for the minimum thickness constraint we take

P2 (Ω) =

∫
∂Ω

∫ dmin

0

[
(dΩ (x− ξn (x)))

+
]2
dξdx = 0,

where (f)
+

= max (f, 0).
The two functionals P1 and P2 are of the same type and the constraints above can be writen in compact
notation (see Fig.5)

P (Ω) =

∫
∂Ω

∫ ξf

0

[
(d (xm))

±
]2
dξdx = 0,

where ξf is a scalar and xm denotes an offset point of the boundary.
The derivation of the above integral has been done in [1] and it reads

∂P (Ω)

∂Ω
(θ) =

∫
∂Ω

∫ ξf

0

θ (x) · n (x))

[
H
(

(dΩ (xm))
±
)2

+ 2
(

(dΩ (xm))
±
)
∇dΩ (xm)

∇dΩ (x)

‖∇dΩ (x)‖

]
dξdx

−
∫
∂Ω

∫ ξf

0

θ
(
xm|Ω

)
· n
(
xm|Ω

) [
2
(

(dΩ (xm))
±
)]
dξdx.

As we have mentioned in the same article, a descent direction can be found in a second step, after iden-
tifying the linear form (shape derivative) with another scalar product.

Figure 5: Offset point and projection onto the boundary.

9. Numerical results
Our model example is a 2 × 2 × 1 structure, clamped at its four lower corners and with a unitary force
applied at the middle of the lower part (see Fig.6). The domain is discretized by 40×40×20 Q1 elements.
The Young modulus (E) of the material is set to 1 and the Poisson ratio (ν) to 0.3. We minimize the
compliance of the structure under a volume constraint{

min J(Ω) =
∫

ΓN
g · u dx,∫

Ω
dx = 0.2|D|, (12)

where |D| is the volume of the working domain.
An augmented Lagrangian method is applied here to handle the constraints. Following the approach in
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Figure 6: Boundary conditions.

[3], supposing that our problem contains n equality constraints of the type ci(Ω) = 0 (i = 1, ..., n), an
augmented Lagragian function is constructed as

L(Ω, `, µ) = J(Ω)−
n∑
i=1

`ici(Ω) +
µi
2

n∑
i=1

c2i (Ω),

where ` = (`i)i=1,...,n and µ = (µi)i=1,...,n are lagrange multipliers and penalty parameters for the
constraints. The lagrange multipliers are updated at each iteration n according to the optimality condition
`n+1
i = `ni − µici(Ωn). The penalty parameters are augmented every 5 iterations.

First, we optimize the structure without considering a molding constraint. The final shape is shown in
Fig.7. As we have expected, the optimized shape has a quite complex topology and therefore it is hopeless
that it is castable for an a priori defined casting system.

Figure 7: Initialization and optimized shape for the problem of Eq.(12) without a molding constraint.

We consider now the case of a casting system with a parting direction d = (0, 0, 1) and with a predefined
parting surface described by the equation z = 0. A full-domain initialization has been chosen and the
initial level-set function is taken as the signed-distance function to the upper part of the domain. The
left figure in Fig.8 shows an optimized shape for the problem of Eq.(12) when the molding condition on
the design velocity is applied and no constraint on the minimum thickness is imposed. In the convergence
diagrams of Fig.9 we see that the compliance is higher when the molding constraint is applied, as expected
(see Table 1).
In a second step, we impose a minimum thickness constraint with dmin = 0.4. The previously optimized
shape is taken as an initial guess to solve the problem

min J(Ω) =
∫

ΓN
g · u dx,∫

Ω
dx = 0.2|D|,

P1 = 0,
P2 = 0,

(13)

without any condition on the advection velocity. An optimized shape for the problem of Eq.(13) is shown
on the right of Fig.8. The convergence diagrams for the penalty functionals P1 and P2 are shown in
Fig.10.

In the final example, the same parting direction d = (0, 0, 1) has been considered, but no a priori
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Figure 8: Optimized shapes under a molding constraint (left) and under a molding and minimum thickness
constraint (right), with a predefined parting surface.

Figure 9: Compliance and volume convergence diagrams for the results in Fig.7 and Fig.8 (left).

Figure 10: Convergence diagrams for the penalty functionals P1 (left) and P2 (right).

imposed parting surface has been defined. Again, a full-domain initialization has been chosen, but the
initial level-set function is taken now as the signed-distance function to the upper and lower part of the
domain.
Applying the molding condition on the design velocity and no constraint on the minimum thickness, we
get the optimized shape on the left of Fig.11. In the convergence diagrams of Fig.12 we see agian that
the compliance is higher when the molding constraint is applied.
When a minimum thickness constraint of dmin = 0.3 is applied, we get the optimized shape on the right

of Fig.11. The convergence diagrams for the penalty functionals P1 and P2 are shown in Fig.13.
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Figure 11: Optimized shapes under a molding constraint (left) and under a molding and minimum
thickness constraint (right), without a predefined parting surface.

Figure 12: Compliance and volume convergence diagrams for the results in Fig.7 and Fig.11 (left).

Figure 13: Convergence diagrams for the penalty functionals P1 (left) and P2 (right).

Table 1: Compliance of the optimized structures.

Compliance
Without molding constraint 90.14

With molding constraint 102.07
and no parting surface

With molding constraint,
no parting surface

and minimum thickness constraint 105.87
With molding constraint 123.68

and parting surface
With molding, parting surface 134.68

and minimum thickness constraint
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