
Numer. Math. (1997) 76: 27–68 Numerische
Mathematik
c© Springer-Verlag 1997

Electronic Edition

Shape optimization by the homogenization method
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Summary. In the context of shape optimization, we seek minimizers of the sum
of the elastic compliance and of the weight of a solid structure under specified
loading. This problem is known not to be well-posed, and a relaxed formulation
is introduced. Its effect is to allow for microperforated composites as admissi-
ble designs. In a two-dimensional setting the relaxed formulation was obtained
in [6] with the help of the theory of homogenization and optimal bounds for
composite materials. We generalize the result to the three dimensional case. Our
contribution is twofold; first, we prove a relaxation theorem, valid in any dimen-
sions; secondly, we introduce a new numerical algorithm for computing optimal
designs, complemented with a penalization technique which permits to remove
composite designs in the final shape. Since it places no assumption on the num-
ber of holes cut within the domain, it can be seen as a topology optimization
algorithm. Numerical results are presented for various two and three dimensional
problems.

Mathematics Subject Classification (1991):65K10

1. Introduction

Shape optimization is a major issue in structural design. One of the most chal-
lenging aspects of shape optimization is what structural engineers refer to as the
layout, or topology, optimization. Classical methods of shape optimization, based
on boundary motion, are ill equiped to capture the possible topological complex-
ity of the shape because the required smoothness assumptions on the boundary of
the material domain do not permit hole punching, although it is widely acknowl-
edged that creating holes (i.e., changing the topology) may drastically improve
the performance of a candidate optimal shape.
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In theory the remedy is straightforward: allow for holes of any shape and any
size within the design region. The recipe is deceptive because the issue at stake
is truly of a mathematical nature. The collection of admissible holes should be
such that meaningful optimality criteria can be proposed. If, as will be the case in
the remainder of the paper, the announced goal is to minimize the compliance of
an elastic structure under a weight constraint, the optimization process is really a
bang-bang problem (material or void) in an infinite dimensional space, say that
of characteristic functions of the shape: a well known difficulty since the work
of Pontryaguin. The resulting formulation is generically ill-posed. The reader is
refered to the typical counter-examples presented in [31] for model problems
of control through the coefficients of an objective functional depending on the
solution of a linear partial differential equation.

It is well known since the pioneering work of Murat and Tartar [33] that a
larger class of admissible designs must be introduced. The adequate class to be
considered is precisely the concern of the theory of homogenization. Here again
the seminal idea is straightforward: allow for fine mixtures of void and material
on a scale which is much smaller than the mesh used for the actual computation.
In physical terms admissible designs should now include arbitrary microperfora-
tions of the elastic material within the design domain. Of course there are many
microstructures that correspond to the same volume fraction of void in a porous
medium and the generalized designs are characterized not only by the volume
fraction of void but also by the resulting effective tensor (or Hooke’s law) which
depends in turn on the specific microgeometry. Unfortunately, the set of effec-
tive tensors resulting from the mixture in fixed volume fraction of two elastic
materials is unknown, although its conductivity analogue is known [33]. This
obstacle is alleviated in the particular case where the objective functional is the
elastic compliance because its minimum can be computed among a well-known
subset of the full set of effective tensors, namely that of sequential laminates.

This process of enlarging the space of admissible designs in order to get a well
posed problem is called relaxation. The intimate connection between relaxation
and homogenization is demonstrated in [33] for a scalar setting. In a context
closer to that of shape optimization, it is explored at length in [26]. Bona fide
shape optimization imposes an additional hurdle: one of the phases in the mixing
process is actually degenerate. Homogenization theory is crippled by the presence
of material voids and, although formal computations suggest as a placebo the
filling of holes with a very compliant material, a full mathematical justification
is still pending.

The present paper should be approached within such a background. On the
one hand we carefully map the passage from the original shape optimization
problem to its assumed relaxed formulation. This permits to prove satisfactory,
albeit partial, relaxation results in two, as well as three, dimensions. On the other
hand we squeeze the relaxed formulation for every drop of available information
and propose a new computational algorithm for two and three dimensional shape
optimization that takes full advantage of the thorough knowledge of the optimal
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microstructures. In some sense, this paper can be seen as a continuation and a
generalization of [6] which was a purely two dimensional work.

The importance of the homogenization method for shape optimization goes
far beyond proving existence theorems for relaxed optimal designs and establish-
ing necessary conditions of optimality. Since the work of Bendsoe and Kikuchi
[11], a new class of numerical algorithms based on the homogenization method
has appeared. They are frequently viewed as “topology optimization” algorithms
since they are able to capture very fine patterns of the optimal shape on a fixed
numerical grid. Our algorithm belongs to this class and is the first one to use
optimal microstructures in three dimensional computations. Other numerical ap-
plications of the homogenization method for shape optimization may be found
in [2], [4], [9], [10], [13], [24], [25], [36], and [40].

In Sect. 2 we carefully state the original shape optimization problem as well as
the relaxed problem investigated thereafter. Section 3 is a step by step exploration
of the relaxation process; we demonstrate that the hole filling process results in
a formulation which is indeed a likely candidate although a complete relaxation
result is wanting (see Theorem 3.1 and Proposition 3.2). Section 4 details the
intimate properties of the relaxed energy and in particular the type of optimal
microstructure (multiple layers) and the values of the associated parameters (the
directions and volume fractions in each layering process). The ensuing algorithm
is presented in Sect. 5: it is an alternate direction algorithm which successively
computes the stress field through the solving of a problem of linear elasticity
and the optimal microstructure for that stress field. Section 6 is devoted to some
ad hoc penalization techniques that will extract sound classical designs out of
unfeasible generalized designs. Section 7 is a discussion of the merits of the
fictitious material approach broadly used in shape optimization. It is shown on a
typical example to yield a worse design than the homogenization method. Section
8 presents our numerical results: 2-D and 3-D computations are displayed.

As a final note, the reader may find the paper somewhat unsettling to the
extent that it addresses issues ranging from mathematical proofs of existence
of relaxed solutions all the way to numerical treatments of various parameters
in our 2-D and 3-D finite element code. Our decision to tackle such a broad
spectrum of issues is anchored in our belief that only a detailed knowledge of
shape optimization will permit further progress in theory as well as in numerical
practice.

2. The original optimal design problem and its relaxed formulation

Consider a bounded domainΩ in RN subject to “smooth enough” surface load-
ings f (e.g.f ∈ H−1/2(∂Ω)N satisfying a compatibility condition of equilibrium)
on its boundary∂Ω. Part of the domain is occupied by an isotropic linearly elastic
material with elasticity

A = (κ− 2µ
N

)I2 ⊗ I2 + 2µI4, 0 < κ, µ < +∞,(1)
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while the remaining part ofΩ is void. Letχ denote the characteristic function
of the partΩχ of Ω occupied by the elastic material. WheneverΩχ is a smooth
enough open subdomain ofΩ such that∂Ωχ contains the part of∂Ω where f
is non zero, the elasticity problem inΩχ is well-posed,i.e., the following set of
equations 

σ = Ae(u) e(u) = 1/2
(∇u +∇tu

)
,

div σ = 0 in Ωχ,
σ · n = f on ∂Ωχ ∩ ∂Ω,
σ · n = 0 on ∂Ωχ \ ∂Ω.

(2)

has a unique solutionu ∈ H 1(Ωχ)N (up to a rigid displacement field). Here,u
is the displacement vector andσ is the associated Cauchy stress field uniquely
defined inL2(Ωχ;RN 2

s ).

As suchσ can be extended to an element ofL2(Ω;RN 2

s ) which further realizes
the minimum of the complementary energy over all statically admissible stress
fields, i.e.,

c(χ) :=
∫
Ω

A−1σ · σ dx = min
τ∈Σ(χ)

∫
Ω

A−1τ · τ dx(3)

where the setΣ(χ) is defined by

Σ(χ) =
{
τ ∈ L2(Ω;RN 2

s ) | div τ = 0 in Ω;

τ · n = f on ∂Ω; τ (x) = 0 a.e. whereχ(x) = 0
}
.(4)

The quantityc(χ), defined by (3), is called the compliance of the body and a
straightforward integration by parts demonstrates that

c(χ) =
∫
∂Ω

f · u dx,

whereu is the solution of (2).
Whenχ(x) is the characteristic function of an arbitrary measurable subset of

Ω (not necessarily open) the existence ofσ is no longer guaranteed. A generalized
compliance may however be defined as

c(χ) := inf
τ∈Σ(χ)

∫
Ω

A−1τ · τ dx(5)

with Σ(χ) defined by (4) (note that the infimum is not necessarily attained).
The goal of optimal design is to devise the least compliant structure com-

patible with the loads for a given weight of the structure. Thus, the range of
compliancesc(χ) for all characteristic functionsχ such that∫

Ω

χ(x) dx = Θ, 0 < Θ ≤ |Ω|,

is investigated and the optimal design problem reads as
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I := inf

{
c(χ) | χ ∈ L∞(Ω; {0, 1});

∫
Ω

χ(x) dx = Θ

}
.(6)

The optimal design problem defined in (6) is difficult to handle since it is con-
strained by ∫

Ω

χ(x) dx = Θ.(7)

Such a constraint is routinely handled in elementary calculus of variations through
the introduction of a positive Lagrange multiplier. Thus, (6) is replaced by

I (`) := inf
χ∈L∞(Ω;{0,1})

{
c(χ) + `

∫
Ω

χ(x) dx

}
,(8)

in the hope that there exists a positive value of` for which the volume constraint
(7) is met. That it is so is not obvious in the case at hand, and as such it
should be justified. We are unfortunately helpless in the matter as will be further
pointed out at the end of Sect. 3 below. Thus, we content ourselves with the
above unconstrained version of the original optimization problem.

Remark 2.1For the sake of simplicity we consider only the case where surface
loads are applied. A straightforward modification of the model would however
permit the consideration of volume forces or the clamping of part of the boundary
∂Ω (i.e., the enforcement of a Dirichlet boundary conditionu = 0). The reader is
referred to the numerical examples presented in Sect. 8 which include different
types of boundary conditions.

Remark 2.2The above optimization problem is usually referred to as a “single
load” problem. This means that the elastic structure is optimized for a single con-
figuration of loading forces and may well be totally inadequate for other loads.
In practice it is an undesirable feature and it is quite often more realistic to inves-
tigate the so-called “multiple loads” problem which amounts to an optimization
of the structure for several configurations. Specifically, various surface loadings
f1, · · · , fp are given and we consider the minimization problem

Ip(`) := inf
χ∈L∞(Ω;{0,1})

{
p∑

i =1

ci (χ) + `

∫
Ω

χ(x) dx

}
(9)

whereci (χ) is the generalized compliance defined by (5) for the boundary con-
dition fi . Most of the obtained theoretical results hold true for the multiple loads
problem. For the sake of brevity, the article is structured around the single load
case; the multiple loads case is only mentioned when it departs from its sin-
gle load analog. Remark, however, that the numerical algorithm for the multiple
loads problem is more complex than that of the single load case since an explicit
formulation of the relaxed problem (in other words an explicit formula for the
optimal microstructure) is not available.
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It is well-known since the seminal counter-examples of Murat [31] that prob-
lems of the type (6) or (8) are generically ill-posed to the extent that minimizers
need not exist among characteristic functions. The problem must be relaxed, and
the optimum is achieved by a generalized design which involves infinitely fine
micro-perforations of the material. A simple and concise description of the re-
laxation process in the present setting may be found in [6]; it is briefly recalled
below.

In a first step, a convenient rewriting ofI (`) is achieved as follows. Choose
an arbitrary characteristic functionχ in L∞(Ω; {0, 1}). If τ is an admissible test
stress field in the definition (5) of the compliancec(χ), the set{x ∈ Ω | τ (x) = 0}
is measurable and it contains the set{x ∈ Ω | χ(x) = 0}. But clearly, if χ̃ is the
characteristic function of the complement inΩ of {x ∈ Ω | τ (x) = 0}, then∫

Ω

(
A−1τ · τ + `χ̃

)
dx ≤

∫
Ω

(
A−1τ · τ + `χ

)
dx,

so thatI (`) is equivalently defined by

I (`) = inf
χ,τ

{
c(χ) + `

∫
Ω

χ(x) dx

}
,(10)

whereχ ∈ L∞(Ω; {0, 1}) andτ ∈ L2(Ω;RN 2

s ) are now constrained by
div τ = 0 in Ω
τ · n = f on ∂Ω
τ (x) = 0 if and only if χ(x) = 0 a.e. inΩ.

(11)

After minimization inχ,

I (`) = inf
τ∈Σ(Ω)

∫
Ω

f`(τ ) dx,(12)

where

Σ(Ω) :=
{
τ ∈ L2(Ω;RN 2

s ) | div τ = 0 in Ω; τ · n = f on ∂Ω
}
,(13)

and

f`(τ ) :=

{
0 if τ = 0
A−1τ · τ + ` if τ /= 0.

(14)

The functionf` defined in (14) combines two pathologies: lack of convexity and
lack of continuity at the origin. The lack of convexity (or even quasi-convexity)
is by now a usual feature of vector-valued minimization problems and it calls
for a relaxation off`. The lack of continuity off` at τ = 0 is the mathematical
manifestation of the presence of holes inΩ. It is physically reasonable and, as
will be seen later, mathematically sound to fill the holes with a very compliant
materialη. In other words, for smallη, f` is approximated by

f η` (τ ) := min
{

A−1τ · τ + `, η−1τ · τ} .(15)
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Note that, asη (the stiffness of the ersatz material) tends to zero, the sequence
of functionsf η` monotonically converges tof`.

In a second step, the relaxation process is performed at fixedη. Thus, (12)
is replaced by

I (`, η) = inf
τ∈Σ(Ω)

∫
Ω

f η` (τ ) dx.(16)

The relaxation of (16) is well understood. The reader is referred to [6] for a
detailed exposition of the method (see also [5] for many technical details). The
result is

I (`, η) = I ∗(`, η) := min
τ∈Σ(Ω)

∫
Ω

Fη
` (τ ) dx,(17)

where
Fη
` (τ ) := min

0≤θ≤1
{Fη(τ, θ) + `θ} ,(18)

and Fη(τ, θ) is defined as the so-called optimal lower bound on the effective
complementary energy. More precisely, we introduce the subsetGη

θ of all possible
anisotropic Hooke’s laws of composite materials obtained by mixingA andη in
proportionsθ and 1− θ (see Sect. 4 for details). Then

Fη(τ, θ) := min
A∗∈Gη

θ

A∗−1τ · τ.(19)

Finally in a third step, the weak materialη is allowed to tend to zero. Asη
decreases to zero, we define the monotone limit

F (τ, θ) := lim
η↘0

Fη(τ, θ).(20)

Similarly, we define the monotone limit

F`(τ ) := lim
η↘0

Fη
` (τ ) = min

0≤θ≤1
{F (τ, θ) + `θ} .(21)

The functionF` turns out to be continuous inτ , but not convex. We shall prove
in Sect. 3 that the relaxation of the optimization problem (8) is precisely

I (`) = I ∗(`) := min
τ∈Σ(Ω)

∫
Ω

F`(τ ) dx.(22)

In [6] a proof of (22) is proposed in a 2-D setting at the expense of a non-
trivial homogenization result pertaining to composite material obtained by rank-
2 layering of the original material with void. Our purpose is to give a proof of
the relaxation result which is valid for any spatial dimension as well as for any
number of loading configurations.

Remark 2.3We have not said much so far about the functionF (τ, θ) defined
as a monotone limit by (20). Loosely speaking, it is the optimal lower bound
on the complementary energy for a perforated composite material obtained by
mixing the materialA with holes in proportionsθ and 1− θ. Its properties will
be examined in greater details in Sect. 4 below (see Corollary 4.4). Let us simply
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point out at this time the properties ofF that will be of use in Sect. 3. The
function F (τ, θ) is given by the following formula

F (τ, θ) = A−1τ · τ +
1− θ

θ
g∗(τ ),(23)

where g∗(τ ) is a continuous and convex function ofτ only, homogeneous of
degree 2, and strictly positive for anyτ /= 0. Therefore,F is continuous in (τ, θ)
with values inR+ ∪ {+∞} and strictly convex separately inτ and inθ. For any
τ ∈ RN 2

s , there exists a unique minimizerθ in (21) given by

θ = min

{
1,

√
g∗(τ )
`

}
.(24)

Consequently, for any minimizerτ` of the relaxed formulation (22), we associate
through (24) a unique density functionθ` that we call a relaxed, or generalized,
optimal shape.

Remark 2.4In the case ofp different loadings, rewriting the optimization prob-
lem (9) in terms of stresses yields

Ip(`) = inf
{τi }∈Σp(Ω)

∫
Ω

f p
`

({τi }
)

dx,(25)

where

Σp(Ω) :=
{
{τi }1≤i≤p ∈ L2(Ω;RN 2

s )p | div τi = 0 in Ω; τi · n = fi on ∂Ω
}
,

and

f p
`

({τi }
)

:=

{
0 if all τi = 0,∑p

i =1 A−1τi · τi + ` if at least oneτi /= 0.
(26)

Then, as in the case of a single load, we introduce a weak materialη and
approximatef p

` defined in (26) by

f p,η
`

({τi }
)

:= min

{
p∑

i =1

A−1τi · τi + `,

p∑
i =1

η−1τi · τi

}
.

Once again, asη tends to zero, the sequence of functionsf p,η
` monotonically

converges tof p
` . The relaxation of the functionalIp(`, η), with integrandf p,η

` , is
also classical [5], [6], and the result is similar to the single load case, namely

Ip(`, η) = I ∗p (`, η) := min
{τi }∈Σp(Ω)

∫
Ω

F p,η
`

({τi }
)

dx,

where
F p,η
`

({τi }
)

:= min
0≤θ≤1

{
F p,η

({τi }, θ
)

+ `θ
}
,(27)

andF p,η is defined as the so-called optimal lower bound on the sum ofp effective
complementary energies
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F p,η
({τi }, θ

)
:= min

A∗∈Gη
θ

p∑
i =1

A∗−1τi · τi .(28)

Then, as before, we defineF p as the monotone limit ofF p,η when η tends to
zero. Introducing

F p
`

({τi }
)

:= lim
η↘0

F p,η
`

({τi }
)

= min
0≤θ≤1

{
F p
({τi }, θ

)
+ `θ

}
,(29)

the relaxation of the original problem (25) is given by

Ip(`) = I ∗p (`) := min
τ∈Σp(Ω)

∫
Ω

F p
`

({τi }
)

dx.(30)

The proof is very similar to that of the single load case (see Remark 3.7), because
the functionsF p

({τi }, θ
)

andF (τ, θ) enjoy similar properties. In particular, the
analogue of (23) holds,i.e., there exists a continuous, convex, positive, and
homogeneous of degree 2 functiong∗p ({τi }) such that (see Theorem 4.14)

F p
({τi }, θ

)
=

p∑
i =1

A∗−1τi · τi +
1− θ

θ
g∗p
({τi }

)
.

It implies thatF p is strictly convex inθ and that there exists a unique minimizer
θ in (29) given by

θ = min

1,

√
g∗p
({τi }

)
`

 .(31)

Consequently, a unique optimal density is associated through (31) to any mini-
mizer of the relaxed formulation (30).

We conclude this section with a brief recall of the notion of quasi-convexifi-
cation of a real-valued functionalW defined onRN 2

s . Let W be continuous and
satisfy

0≤ W(τ ) ≤ β(1 + |τ |2), τ ∈ RN 2

s ,

and define, for any bounded open domainΩ of RN ,

Σ0(Ω) =
{
τ ∈ L2(Ω;RN 2

s ) | div τ = 0 in Ω
}
.

The lower semi-continuous envelope inΣ0(Ω) of

I (τ ) :=
∫
Ω

W(τ ) dx

for the sequential weak topology ofL2(Ω;RN 2

s ), i.e., the functional

RI (τ ) := inf
τn∈Σ0(Ω),τn⇀τ weakly in L2(Ω;RN2

s )
lim inf I (τn)

is given by
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RI (τ ) =
∫
Ω

QW(τ ) dx.(32)

The integrandQW is the quasi-convexification ofW defined for everyτ in RN 2

s

as

QW(τ ) := inf
s∈Σ0(C),

∫
C

s(x) dx=τ

∫
C

W(s) dx,

whereC is the unit cube ofRN .
The integrandQW is a locally Lipschitz function as easily seen upon noting

that QW is rank-(N −1) convex and satisfies the same growth assumption asW
(see e.g. [28]). In the present setting (18) may be restated as

Fη
` (τ ) = Qf η` (τ ),(33)

with f η` defined by (15). In other wordsFη
` is the quasi-convexification off η` .

Remark 2.5Until very recently, a proof of (32) was hard to locate in the literature
because attention had been focussed primarily on functionals that depend on the
gradient of a vector-valued field. In the latter setting the reader is referred to
[15], Theorems 1.1 and 2.1 in Sect. 5, and to [1], Statement 3.7. A general study
of quasiconvexity for functionals of vector fields that satisfy some first order
differential constraints in the spirit of compensated compactness may now be
found in [17] and it fills the existing gap.

3. The relaxation process revisited

This section revisits the derivation of the relaxed formulation for the uncon-
strained problem of least compliance and weight optimization introduced in
Sect. 2. As already said, the relaxed formulation was already derived in [6],
but a rigorous proof was only proposed in the two-dimensional setting. We saw
in Sect. 2 that the shape optimization problem under consideration admits two
equivalent formulations: that as a minimization over characteristic functions, and
that as a problem of nonlinear elasticity in terms of stresses. We first give a
complete relaxation theorem for the stress formulation, then deduce a partial
relaxation result for the original formulation in terms of characteristic functions.

Theorem 3.1 The stress formulation (12), (13) of the optimal shape problem ad-
mits (22) as a relaxed formulation. In other words, for any fixed value of the
Lagrange multiplier̀ ∈ [0; +∞),

1. there exists at least one solution inΣ(Ω) of the relaxed minimization problem
(22) and

I (`) := inf
τ∈Σ(Ω)

∫
Ω

f`(τ ) dx = I ∗(`) := min
τ∈Σ(Ω)

∫
Ω

F`(τ ) dx,(34)

2. up to a subsequence, any minimizing sequence of (12) converges weakly in
L2(Ω;RN 2

s ) to a minimizer of (22),
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3. for any minimizerτ of (22) there exists a minimizing sequence of (12) which
converges toτ weakly in L2(Ω;RN 2

s ).

The above result does not say anything about the link between the minimizing
sequences of characteristic functions and the optimal densities in the relaxed
formulation. Let us firstly recall that the integrand in the relaxed formulation is
given by

F`(τ ) = F (τ, θτ ) + `θτ ,(35)

where, by virtue of Remark 2.3, the volume fractionθτ is uniquely and un-
ambiguously determined, onceτ is known. Such a density function defines a
so-called relaxed, or generalized, shape. It remains to understand in which sense
the minimizing sequences of characteristic functions are related to this (possibly
non-unique) optimal density. This is the object of the following

Proposition 3.2 For any fixed Lagrange multiplier̀ ∈ [0; +∞), there exists at
least one relaxed optimal shape,i.e., a densityθ`. Furthermore, for any minimiz-
ing sequence of characteristic functionsχn ∈ L∞(Ω; {0, 1}), there exists a subse-
quence and a limit densityθ` such that this subsequence converges toθ` weak-∗
in L∞(Ω; {0, 1}) andθ` is a relaxed optimal shape,i.e., it is associated through
(35) to a minimizer of the relaxed formulation (22).

Remark 3.3Proposition 3.2 is a weak version of the desired result of relaxation.
In truth we aimed at proving that any minimizerτ` of (22) and its associated den-
sity θ` are attained as weak limits of a sequence (τn, χn) ∈ Σ(Ω)×L∞(Ω; {0, 1})
satisfying (11),i.e., such that

τn(x) = 0 iff χn(x) = 0 a.e. inΩ,
χn ⇀ θ` weak-∗ in L∞(Ω; [0, 1]),
τn ⇀ τ` weakly in L2(Ω;RN 2

s ),∫
Ω

A−1τn · τn dx →
∫
Ω

F (τ`, θ`) dx,

(36)

and conversely that any minimizing sequence (τn, χn) of the original problem
converges, up to a subsequence, to a limit (τ`, θ`) which minimizes the relaxed
problem. Unfortunately, we are unable to keep track of the fieldsτn which are
such that (τn, χn) “minimizes” (10). In particular we do not know how to relate
the weak limit ofτn to τ`.

Remark 3.4Since by Theorem 3.1 we have proved the existence of at least one
minimizerτ for the relaxed formulationI ∗(`), and consequently of one associated
optimal densityθ, the next obvious question concerns the uniqueness of such
minimizers. Remark first that uniqueness inτ implies uniqueness inθ, but the
converse is a priori false (there may well be different minimum stress fieldsτ
that yield the same optimal densityθ). It turns out that there is, in general, no
uniqueness of either the minimizerτ or the optimal densityθ. In Proposition
4.13 we shall construct a specific example for which there is an infinite number
of minimizersτ and optimal densitiesθ. Furthermore, these optimal densities are
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actually “classical” shapes, namely they take only the values 0 or 1 (i.e., they are
characteristic functions). Let us briefly describe this example: take any smooth
domainΩ and impose a constant hydrostatic load on its boundary. In other words,
select a boundary conditionσ.n = σ0.n on ∂Ω, whereσ0 is hydrostatic,i.e.,
σ0 = p0I2, with p0 a constant scalar (the pressure) andI2 the identity matrix. In
this case, it is well known that the “concentric spheres construction” of Hashin
achieves optimality in the original optimization problemI (`), and thus in its
relaxed formulationI ∗(`) (see (34)). There exist an infinite number of such
constructions, depending on the chosen Vitali covering ofΩ by spheres. Further
details are given in Proposition 4.13.

This example is also interesting since it shows that “classical” optimal shapes
may exists for the original problemI (`). However, even in this “lucky” case, the
relaxed formulationI ∗(`) is not useless from a numerical standpoint. Indeed, it
is a desperate task to try to compute numerically an optimal design built from
an assemblage of concentric spheres which usually features an infinite number
of holes (or connected components of the boundary). Furthermore, the mesh size
would act as a threshold for the size of the smallest spheres, thus preventing
optimality in a discrete computation.

Remark 3.5Coming back to the constrained formulation (5) of the optimal shape
design problem, a complete relaxation process would amount to a rigorous proof
of the existence, for each 0< Θ < |Ω|, of a multiplier ` for which the relaxed
problem

I ∗(`) = min
τ∈Σ(Ω)

∫
Ω

F`(τ ) dx

admits a solutionτ` ∈ Σ(Ω) such that the total volume fraction of material
coincides withΘ, i.e.

Θ =
∫
Ω

θ` dx.

We are unable to prove the existence of such a value of` ; indeed, we are in
want of a proof that the function

Θ(`) :=
∫
Ω

θ` dx

is continuous iǹ . In fact,Θ(`) may well be a multi-valued function since the
optimal densityθ` is not necessarily unique. We will merely establish in Lemma
3.6 below that it is a decreasing function of` and that it goes to zero as` goes to
infinity, provided that the surface loadings are “smooth enough”. The continuity
of Θ(`) is at present an open question.

Proof of Theorem 3.1.It is a straightforward consequence of the fact thatF`
defined in (21) is the quasi-convexification off` defined in (14) in the sense of
(32). We prove this statement.

Sincef η` monotonically increases tof` asη tends to zero, we have

Fη
` (τ ) = Qf η` (τ ) ≤ Qf̀ (τ ), τ ∈ RN 2

s .
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But Fη
` monotonically increases toF` asη tends to zero. Thus

F`(τ ) ≤ Qf̀ (τ ), τ ∈ RN 2

s .

The integrandQf̀ is quasi-convex and it has at most quadratic growth. Thus it
is easily seen in the spirit of Part 3 of the proof of Theorem 1.1 in Sect. 4.1 of
[15] that Qf̀ is rank-(N − 1) convex, hence continuous. Define

gη` (τ ) := min{f η` (τ ),Qf̀ (τ )} .
It is a monotone sequence of continuous functions that converges, asη tends
to zero, to a continuous function, namelyQf̀ , and Dini’s theorem implies the
uniform convergence ofgη` to Qf̀ over any compact subset ofRN 2

s . Further

Qgη` (τ ) ≤ Qf η` (τ ) = Fη
` (τ ),

becausegη` ≤ f η` . Thus

lim
η↘0

Qgη` (τ ) ≤ F`(τ ) ≤ Qf̀ (τ ).

We now prove that
Qf̀ (τ ) ≤ lim

η↘0
Qgη` (τ ),(37)

which, in view of the previous inequality, establishes thatF` is the quasi-
convexification off`, i.e., F` = Qf̀ . For anyτ in RN 2

s and any positive fourth
order tensorη, there exists a test functionsη in Σ0(C) with

∫
C sη(x) dx = τ such

that

Qgη` (τ ) ≥
∫

C
gη` (sη) dx− |η|

≥
∫

C
Qf̀ (sη) dx− |η| −

∫
C
|gη` −Qf̀ |(sη) dx.

But gη` (τ ) = Qf̀ (τ ) as soon as|τ | is large enough (say|τ | ≥ M where M is
independent ofη). Thus, for any positiveε,∫

C
|gη` −Qf̀ |(sη) dx =

∫
C∩{|sη(x)|≤M}

|gη` −Qf̀ |(sη) dx ≤ ε,

wheneverη is small enough, because of the uniform character of the convergence
of gη` to Qf̀ over the compact set{s ∈ RN 2

s |s| ≤ M }. Thus, for any positiveε
and forη small enough, we have

Qgη` (τ ) ≥
∫

C
Qf̀ (sη) dx− |η| − ε ≥ Qf̀ (τ )− |η| − ε,

by virtue of the quasi-convex character ofQf̀ . This proves (37). To complete the
proof of Theorem 3.1 it remains to check thatF` is coercive, and is sequentially
weakly lower semi-continuous overΣ(Ω). This is obvious since

F`(τ ) ≥ A−1τ · τ, τ ∈ RN 2

s ,
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and
∫
Ω

Fη
` dx is sequentially weakly lower semi-continuous, a property which

carries over asη tends to zero. Thus the minimization problem

min
τ∈Σ(Ω)

∫
Ω

F`(τ ) dx

admits a solutionτ` in Σ(Ω) and (34) is indeed a relaxed formulation of (12).

Proof of Proposition 3.2:Let us consider a minimizing sequence
χn ∈ L∞(Ω; {0, 1}) of the original problemI (`) defined by (5) and (8) which
converges weak-∗ to some limit θ` in L∞(Ω; [0, 1]). For any admissible test
function τ ∈ Σ(χn) , we have∫

Ω

A−1τ · τ dx =
∫
Ω

(
χnA−1 + (1− χn)η−1

)
τ · τ dx

≥ min
σ∈Σ(Ω)

∫
Ω

(
χnA−1 + (1− χn)η−1

)
σ · σ dx.(38)

As soon asη is positive, the minimum in the right hand side of (38) is attained
by a uniqueτηn . Thus, minimizing inτ , and recalling thatχn is a minimizing
sequence ofI (`), yield

I (`) ≥ lim supn

{∫
Ω

(
χnA−1 + (1− χn)η−1

)
τηn · τηn dx + `

∫
Ω

χn dx

}
.(39)

According to the theory ofH -convergence (see e.g. [32], [37]), a subsequence
of An

η := χnA + (1− χn)η H -converges to a tensorA∗η as n goes to infinity.

Thus, the correspondingτηn weakly converges inL2(Ω;RN 2

s ) to an elementτη ∈
L2(Ω;RN 2

s ), and, for that subsequence,∫
Ω

(
χnA−1 + (1− χn)η−1

)
τηn · τηn dx →

∫
Ω

(A∗η)−1τη · τη dx.(40)

Consequently (39) and (40) imply that

I (`) ≥
∫
Ω

(A∗η)−1τη · τη dx + `

∫
Ω

θ` dx.(41)

Since I (`) is finite (F` has quadratic growth at infinity), the sequenceτη is
bounded inL2(Ω;RN 2

s ) independently ofη. A subsequence, still indexed byη,
is such that, asη goes to zero,τη converges weakly to someτ` in L2(Ω;RN 2

s ).
Furthermore, since

‖An
η − An

η′‖L∞(Ω) ≤ |η − η′|,
the same holds true for theH -limits asn tends to infinity,i.e.,

‖A∗η − A∗η′‖L∞(Ω) ≤ |η − η′|.
HenceA∗η converges uniformly toA∗ asη goes to zero. The convex character of
the mapping
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(A, τ ) → A−1τ · τ
yields

lim infη

∫
Ω

(A∗η)−1τη · τη dx ≥
∫
Ω

(A∗)−1τ` · τ` dx,

for which it is deduced, upon recalling (41), that

I (`) ≥
∫
Ω

(A∗)−1τ` · τ` dx + `

∫
Ω

θ` dx.(42)

Introduce the subsetG η
θ of L∞

(
Ω; Ls(RN 2

s )
)

defined as

G η
θ := {H -limits of An = χnA + (1− χn)η | χn ⇀ θ} .

According to [16], for all 0≤ θ ≤ 1, there exists a fixed subsetGη
θ of Ls(RN 2

s )
such that

G η
θ = {A(x) measurable| A(x) ∈ Gη

θ(x) a.e. inΩ}.

ConsequentlyA∗(x) ∈ G0
θ`(x) a.e. inΩ, whereG0

θ is the algebraic limit ofGη
θ as

η goes to zero.
Recall thatFη(τ, θ) is defined as (see (19))

Fη(τ, θ) := min
B∈Gη

θ

B−1τ · τ.

Therefore its monotone limitF (τ, θ), asη tends to zero, is given by

F (τ, θ) = inf
B∈G0

θ

B−1τ · τ.(43)

SinceA∗(x) ∈ G0
θ`(x) a.e. inΩ, we deduce from (42) and (43) that

I (`) ≥
∫
Ω

F (τ`, θ`) dx + `

∫
Ω

θ` dx

≥
∫
Ω

min
0≤θ≤1

(F (τ`, θ) + `θ) dx

≥
∫
Ω

F`(τ`) dx.

By Theorem 3.1τ` is a minimizer ofI ∗(`), and the above inequalities become
equalities. Furthermore, by virtue of the strict convexity inθ of F (τ, θ), θ` is
the unique density associated toτ` through minimization inθ, a.e. inΩ. This
concludes the proof of Proposition 3.2.ut

We next prove the result announced in Remark 3.5.
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Lemma 3.6 Define the multi-valued function

Θ(`) :=
∫
Ω

θ` dx,

whereθ` is the optimal density associated to any (possibly non-unique) minimizer
τ` of the relaxed problem I∗(`). It is a decreasing function of̀. Furthermore,
Θ(`) goes to zero as̀ goes to infinity, provided that the surface load f is such
that there exists at least one admissible test fieldσ ∈ Σ(Ω) which is uniformly
bounded inΩ.

Proof. Assume that̀ > `′ ≥ 0, and take any minimizerτ` (resp.τ`′ ) of I ∗(`)
(resp.I ∗(`′)) and its associated optimal densityθ` (resp.θ`′ ). We start from

I ∗(`′) =
∫
Ω

F (τ`′ , θ`′ ) dx + `′Θ(`′) ≤
∫
Ω

F (τ`, θ`) dx + `′Θ(`),

which is equivalent to∫
Ω

F (τ`′ , θ`′ ) dx + `Θ(`′)

≤
∫
Ω

F (τ`, θ`) dx + `Θ(`) + (`− `′)
(
Θ(`′)−Θ(`)

)
.(44)

Since the sum of the two first terms in the right hand side of (44) is precisely
I ∗(`), the minimum value of∫

Ω

F (τ, θ) dx + `

∫
Ω

θ dx,

the last term of (44) must be positive. This yields

Θ(`) ≤ Θ(`′).

Now, assume that the surface loadf is such that there exists at least one admis-
sible test fieldσ0 ∈ Σ(Ω) which is uniformly bounded inΩ. Then, the density
θ0, associated through formula (24), satisfies

θ0 ≤ C√
`
,

for ` large enough. Consequently,

F`(σ0) ≤ C(1 +
√
`) a.e. in Ω.

Thus any minimizing pair (τ`, θ`) satisfies

I ∗(`) =
∫
Ω

F (τ`, θ`) dx + `Θ(`) ≤ C(1 +
√
`),

which proves thatΘ(`) goes to zero wheǹ goes to infinity at least as fast as
`−1/2. ut
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Remark 3.7The relaxation results, Theorem 3.1 and Proposition 3.2, still hold
true for a problem with multiple loads, as introduced in Remarks 2.2 and 2.4.
Indeed, it is not difficult to check the main ingredient of the proof of Theorem
3.1, namely that the integrandF p

` ({τi }) of the relaxed formulation (30) is the
quasi-convexification of the integrandf p

` ({τi }) of the original formulation (25).
Similarly, the proof of Proposition 3.2 goes through in the multiple loads case.

Remark 3.8The proofs of Theorem 3.1 and Proposition 3.2 rest on the choice of
the compliance (or sum of compliances in the multiple loads case) as the objective
function because we use various properties of the relaxed functional (such as the
strict convexity ofF (τ, θ) with respect toθ) specific to the case under investiga-
tion. When other objective functionals, such as the maximum value for the stress
or the displacement, are considered, the results of Theorem 3.1 and Proposition
3.2 are not obvious. Furthermore the relaxation process involves a minimization
over all fourth order tensorA∗η in the so-calledG-closure setGη

θ , i.e., in the set
of effective Hooke’s law of composite materials obtained by mixingA and η
in proportionsθ and (1− θ). Unfortunately, an algebraic characterization of the
setGη

θ (and of its limit whenη tends to zero) is lacking. Therefore, the relaxed
formulation for a general objective functional is useless because of the absence
of a characterization of the precise class of generalized admissible designs! In a
compliance optimization problem, the relaxed formulation can be further simpli-
fied: as a consequence of the results of Sect. 4 below , the setGη

θ of admissible
designs can be restricted to the set of sequentially laminated composites which is
better understood. In this case, the relaxed formulation is explicit and becomes
amenable to numerical computations (see Sect. 5 to 8 below).

4. Explicit formula for the relaxed energy

This section is devoted to the computation of the integrand

F`(τ ) = min
0≤θ≤1

(F (τ, θ) + `θ)

of the relaxed functionalI ∗(`). This computation is as explicit as possible since it
is at the root of the numerical algorithm proposed in Sect. 5 below. It begins with
a review of known results that permit to viewF (τ, θ) as the effective energy, at
the stressτ , of the most rigid composite of densityθ, which turns out to be a
sequential laminate of rankN .

It is a known result (see e.g. Sect. 3 in [6]) on the homogenization of mixtures
of two materialsA andη, whereη is the weak material that occupies the holes,
A andη being positive definite, symmetric, fourth order tensors, that

Fη(τ, θ) = min
A∗∈Gη

θ

A∗−1τ · τ,(45)

whereGη
θ is the set of all possible anisotropic Hooke’s laws of composite mate-

rials obtained by mixingA andη in volume fractionsθ and 1− θ. Formula (45)
is called an optimal lower bound on the effective complementary energy.
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To compute the minimum in the right hand side of (45), it would be helpful to
have an algebraic definition of theG-closure setGη

θ . Unfortunately, the theory is
helpless in the matter. For the special case of elastic energies as in (45), however,
it is proved in [7] that the minimum is actually attained within a well-known
subset ofGη

θ , that of finite rank sequential laminates, denoted byLηθ .
Let us first recall appropriate layering formulae [18]. Throughout this section,

we assume that the materialA is isotropic; for any symmetric matrixξ,

Aξ = 2µξ + λ(tr ξ)I2,

where I2 is the identity matrix, and (µ, λ) are the Laḿe coefficients of the ma-
terial. The shear modulusµ is always positive so as to ensure coerciveness of
the Hooke’s law; the bulk modulusκ = λ + 2µ/N is also required to be posi-
tive if strong ellipticity is to hold. It turns out that most materials have a non
negative Poisson ratio,i.e., thatλ ≥ 0. Since this last hypothesis greatly simpli-
fies the computations (at least in the three dimensional setting), we shall assume
henceforth that

µ > 0, λ ≥ 0.

Proposition 4.1 Let A∗ be a rank-p sequential laminate of material A around
a core of materialη, in proportion θ and (1− θ) respectively, with lamination
directions(ei )1≤i≤p and lamination parameters(mi )1≤i≤p satisfying0≤ mi ≤ 1
and

∑p
i =1 mi = 1 (these parameters are related to the volume fractions of material

A at each step of the lamination process). Then

(1− θ)
(

A∗−1 − A−1
)−1

=
(
η−1 − A−1

)−1
+ θ

p∑
i =1

mi f
c

A (ei )(46)

where fcA (ei ) is a fourth order tensor defined, for any symmetric matrixξ, by the
quadratic form

f c
A (ei )ξ · ξ = Aξ · ξ − 1

µ
|Aξei |2 +

µ + λ

µ(2µ + λ)
((Aξ)ei · ei )

2,

where(µ, λ) are the Laḿe coefficients of A.

A proof of the lamination formula (46) would parallel that of Proposition 4.2
in [18] using complementary energy instead of primal energy. Note thatf c

A (ei )
is a degenerate Hooke’s law in the sense that it is a non negative, semi-definite,
fourth order tensor.

Theorem 4.2 Wheneverη is a weaker material than A (i.e., A−η is a non negative
fourth order tensor), the optimal bound (45) is given by

Fη(τ, θ) = min
A∗∈Lη

θ

A∗−1τ · τ,(47)

where Lηθ is the set of all effective Hooke’s law of finite rank sequential laminates
defined through (46). Furthermore, optimality in the right hand side of (47) is
achieved by a rank-N sequential laminate (in space dimension N ) with lamination
directions cöınciding with the eigendirections of the symmetric matrixτ .
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As already mentioned, the first part of Theorem 4.2 may be found [7], while
the second part is to be found in [5]. For details, the reader is referred to e.g.
formulae (6.11), (6.18), and (7.6) and Remark 3.7 in [5].

Remark 4.3In Theorem 4.2 the optimal microstructure is not always unique.
In the first place, the optimal sequential laminate may not be uniquely defined.
For example, in the case of an hydrostatic stress (i.e., τ proportional to the
identity I2), any orthonormal basis ofRN is a set of eigenvectors ofτ and
thus a set of lamination directions. It can be checked not to lead to the same
homogenized Hooke’s law. There is another type of non-uniqueness: sequential
laminates are not the only known class of optimal microstructures (although
probably the easiest to work with). For example, the so-called concentric spheres
construction [22] (generalized in [38] to confocal ellipsoids), or the periodic
arrangement of adequately shaped inclusions in [39] (see also [21]) are also
optimal in specific situations.

In truth, we are interested inF (τ, θ), i.e., in the limit of (47) asη tends to
zero, but it is not difficult to pass to the limit in the lamination formula (46) and,
thus, to define a limit setL0

θ. Furthermore, whenη = 0 the degenerate lamination
formula can be rewritten as

A∗−1 = A−1 +
1− θ

θ

(
p∑

i =1

mi f
c

A (ei )

)−1

,(48)

at least when restricted to the subspace of symmetric matrices where the sum
of degenerate Hooke’s law

∑p
i =1 mi f c

A (ei ) is invertible. Therefore, asη goes to
zero, Theorem 4.2 yields the following corollary.

Corollary 4.4 The function F(τ, θ), defined as the monotone limit of Fη(τ, θ)
whenη tends to zero, is given by

F (τ, θ) = min
A∗∈L0

θ

A∗−1τ · τ,(49)

where L0θ is the set of all tensors A∗ defined by formula (48).
Furthermore, since optimality is achieved for a rank-N sequential laminate

with lamination directions given by the eigendirections ofτ , (49) becomes

F (τ, θ) = A−1τ · τ +
1− θ

θ
g∗(τ ),(50)

whereg∗(τ ) is a continuous and convex function ofτ , homogeneous of degree 2,
strictly positive forτ /= 0, defined by

g∗(τ ) = min
mi≥0,

∑N

i =1
mi =1

(
N∑

i =1

mi f
c

A (ei )

)−1

τ · τ,(51)

where the vectors(ei )1≤i≤N are the normalized eigenvectors ofτ .
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The only non-obvious statement of Corollary 4.4 is that concerning the prop-
erties ofg∗. To check them, one can use the Legendre transform to rewrite(

N∑
i =1

mi f
c

A (ei )

)−1

τ · τ = max
ξ

{
2ξ · τ −

N∑
i =1

mi f
c

A (ei )ξ · ξ
}
.

Then,g∗ is easily seen to be defined as a saddle point: the min and the max can
be exchanged, which yields the desired properties.

In view of Corollary 4.4 the computation ofF (τ, θ) amounts to a simple
optimization of the lamination parametersmi of a rank-N sequential laminate,
while the lamination directionsei are kept fixed and equal to the eigendirections
of τ . However, the lamination formula (48) yieldsA∗−1 at the price of a non
trivial inversion of a sum of degenerate Hooke’s law. Inverting this sum in full
generality is a difficult task. In any case we need only address the class of so-
called orthogonal rank-N sequential laminates which, by definition, admit an
orthonormal basis ofRN as lamination directions (ei )1≤i≤N . We now recall a
result concerning Hooke’s laws for orthogonal rank-N sequential laminates [3].

Lemma 4.5 The inverse Hooke’s law A∗−1 of an orthogonal rank-N sequential
laminate is given by the following quadratic form

A∗−1τ · τ = A−1τ · τ +
1− θ

2µθ
G(αi , τ )(52)

with

G(αi , τ ) =
N∑

i ,j =1,i/=j

τ2
ij

(1−mi −mj )
+

N∑
i =1

αi τ
2
ii

− λ

2µ + Nλ

(
N∑

i =1

τii

)2

+
λ

2µ + Nλ

(
N∑

i =1

(αi − 1)τii

)2

(1− λ

2µ + Nλ

N∑
i =1

αi )

,

whereτij denotes the entries of a symmetric matrixτ in the orthonormal basis of
lamination directions, and the parameters(αi )1≤i≤N are defined by

αi =

(
1− 2µmi

2µ + λ

)−1

.

Remark 4.6The quadratic form (52) defines a coercive Hooke’s lawA∗ in di-
mensionN ≥ 3 as soon as none of the parametersmi are zero, that is whenever
all lamination directions have been put to use. (Indeed,mi > 0 for 1≤ i ≤ N
implies that 1− mi − mj > 0 for 1 ≤ i , j ≤ N and i /= j .) Thus, in three di-
mensions, an orthogonal rank-3 laminate is a realistic composite material. On the
contrary, in two dimensions, we always have 1−mi −mj = 0! Thus, formula (52)
only holds for stressesτ which are diagonal in the basis of lamination directions
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(i.e., such thatτij = 0). In other words, in 2-D, an orthogonal rank-2 laminate
cannot support a stress whose eigendirections are not aligned with the lamination
directions. This fact has been previously emphasized by several authors [4], [24],
and it bears important consequences for the numerical algorithm to be discussed
in Sect. 5. Remark also that an orthogonal rank-N laminate is not isotropic even
if all lamination parametersmi are set equal to 1/N . It is shown in [19] that three
laminations in 2-D, and six in 3-D, are required to obtain an isotropic effective
Hooke’s law.

Thanks to the above lemma we now optimize inmi the right hand side of
(51) and compute the precise value ofg∗,

g∗(τ ) =
1

2µ
min

mi≥0,
∑N

i =1
mi =1

G(αi , τ ).

In two dimensions, this computation has been performed in [6]; it yields the
following

Proposition 4.7 In two dimensions,

g∗(τ ) =
λ

4µ(µ + λ)

(|τ1| + |τ2|
)2

(53)

where τ1 and τ2 are the eigenvalues of the stressτ (a two by two symmetric
matrix in 2-D). Furthermore, the associated optimal rank-2 sequential laminate
is characterized by its parameters

m1 =
|τ2|

|τ1| + |τ2| , m2 =
|τ1|

|τ1| + |τ2| .(54)

In three dimensions, the computation is more involved (cf. [3] or [20]). It
yields the following

Proposition 4.8 In three dimensions, ifτ1 ≤ τ2 ≤ τ3 are the eigenvalues ofτ ,
then

1. in the case where0≤ τ1 ≤ τ2 ≤ τ3

g∗(τ ) =
2µ + λ

4µ(2µ + 3λ)
(τ1 + τ2 + τ3)2

if τ3 ≤ τ1 + τ2(55)

g∗(τ ) =
1

2µ

(
(τ1 + τ2)2 + τ2

3

)− λ

2µ(2µ + 3λ)
(τ1 + τ2 + τ3)2

if τ3 ≥ τ1 + τ2(56)
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2. in the case whereτ1 ≤ 0≤ τ2 ≤ τ3

g∗(τ ) =
2µ + λ

4µ(2µ + 3λ)

(
τ3 + τ2 − µ + 2λ

µ + λ
τ1

)2

if

 τ3 + τ2 ≥ − µ

µ + λ
τ1

τ3 − τ2 ≤ − µ

µ + λ
τ1

(57)

g∗(τ ) =
1

2µ

(
(τ3 + τ2)2 + τ2

1

)− λ

2µ(2µ + 3λ)
(τ1 + τ2 + τ3)2

if τ3 + τ2 ≤ − µ

µ + λ
τ1(58)

g∗(τ ) =
1

2µ

(
τ2

1 + τ2
2 + τ2

3

)− 2µ
2µ(µ + λ)

τ1τ2 − λ

2µ(2µ + 3λ)
(τ1 + τ2 + τ3)2

if τ3 − τ2 ≥ − µ

µ + λ
τ1(59)

3. the remaining cases are obtained from (1) and (2) by symmetry, changingτ
into −τ .

Furthermore, optimality in the regime (55) is achieved by a rank-3 sequential
laminate with parameters

m1 =
τ3 + τ2 − τ1

τ1 + τ2 + τ3
, m2 =

τ1 − τ2 + τ3

τ1 + τ2 + τ3
, m3 =

τ1 + τ2 − τ3

τ1 + τ2 + τ3
;(60)

in the regime (56) it is achieved by a rank-2 sequential laminate with parameters

m1 =
τ2

τ1 + τ2
, m2 =

τ1

τ1 + τ2
, m3 = 0;(61)

in the regime (57) it is achieved by a rank-3 sequential laminate with parameters

m1 =
τ3 + τ2 +

µ

µ + λ
τ1

τ3 + τ2 − µ + 2λ
µ + λ

τ1

, m2 =
µ + λ

µ

τ3 − τ2 − µ

µ + λ
τ1

τ3 + τ2 − µ + 2λ
µ + λ

τ1

,(62)

m3 = −µ + λ

µ

τ3 − τ2 +
µ

µ + λ
τ1

τ3 + τ2 − µ + 2λ
µ + λ

τ1

;(63)

in the regime (58) it is achieved by a rank-2 sequential laminate with parameters

m1 = 0, m2 =
τ3

τ2 + τ3
, m3 =

τ2

τ2 + τ3
,(64)

in the regime (59) it is achieved by a rank-2 sequential laminate with parameters

m1 =
τ2

τ2 − τ1
, m2 =

−τ1

τ2 − τ1
, m3 = 0.(65)
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When the material has zero Poisson’s ratio the above result greatly simplifies;
we state it for the reader’s convenience.

Corollary 4.9 In three dimensions, assume that the material A satisfiesλ = 0.
Then, under the non-restrictive ordering assumption,|τ1| ≤ |τ2| ≤ |τ3|,

g∗(τ ) =
1

4µ

(|τ1| + |τ2| + |τ3|
)2

if |τ3| ≤ |τ1| + |τ2|,(66)

and

g∗(τ ) =
1

2µ

(
(|τ1| + |τ2|)2 + |τ3|2

)
if |τ3| ≥ |τ1| + |τ2|.(67)

Furthermore, optimality in the first regime (66) is achieved by a rank-3 se-
quential laminate with parameters

m1 =
|τ3| + |τ2| − |τ1|
|τ1| + |τ2| + |τ3| , m2 =

|τ1| − |τ2| + |τ3|
|τ1| + |τ2| + |τ3| , m3 =

|τ1| + |τ2| − |τ3|
|τ1| + |τ2| + |τ3| ,

while optimality in the second regime (67) is achieved by a rank-2 sequential
laminate with parameters

m1 =
|τ2|

|τ1| + |τ2| , m2 =
|τ1|

|τ1| + |τ2| , m3 = 0.

The above results which yield an explicit formula for the functiong∗(τ ) are at
the root of the numerical algorithm proposed in Sect. 5. To compute the integrand
F`(τ ) of the relaxed functionalI ∗(`), it simply remains to optimize with respect
to θ, which yields

F`(τ ) =

{
A−1τ · τ + ` if g∗(τ ) ≥ `,
A−1τ · τ + 2

√
`g∗(τ )− g∗(τ ) if g∗(τ ) < `.

(68)

The optimal density is given by

θ = min

{
1,

√
g∗(τ )
`

}
.(69)

Note that, by virtue of Corollary 4.4,θ = 0 if and only if τ = 0, which means
that holes are created only where the stress vanishes.

A common feature of the above formulae is that they involve the eigenvalues
of the stressτ . The optimal microstructure (namely the rank-N laminate) adapts
itself to the stress that it should sustain, by aligning its lamination directions with
the principal directions of the stress and adopting in each layer a volume frac-
tion which is controlled by the values of the principal stresses. This correlation
between microstructure and stress is a rigorous consequence of the homogeniza-
tion theory and not a postulate. In particular in 2-D we recover the well-known
principle of material economy in frame-structures due to Michell [29].

Numerische Mathematik Electronic Edition
page 49 of Numer. Math. (1997) 76: 27–68



50 G. Allaire et al.

Remark 4.10In two dimensions, when the Lagrange multiplier` goes to infinity,
it is formally shown in [6] that the relaxed problem is asymptotically equivalent
to the so-calledMichell trussesproblem

min
τ∈Σ(Ω)

∫
Ω

(|τ1| + |τ2|
)

dx,

where τ1, τ2 are the eigenvalues of the stressτ . Note that this result is also
immediately recovered from (53) and (68). There is a rich literature on this
problem (see e.g. [34], [35]), and we refer the interested reader to Sect. 6 of [6]
for a brief discussion of Michell trusses in our context. Note that this limiting
case of the relaxed formulation may explain the success of our computations, and
more precisely the fact that many of our optimal structures look like a network
of trusses, or bars, in 2-D.

In 2-D only one type of optimal laminates, namely rank-2 laminates, are used
(although they can degenerate to rank-1 when one of the eigenvalues vanishes).
On the contrary, in 3-D there are two distinct regimes of optimal laminates:
rank-3 or rank-2 (which in turn can degenerate to rank-1). This can be easily
explained as follows. The conditions defining regimes (55) or (57), where a
rank-3 laminate is optimal, imply that the three principal stresses are of the same
order of magnitude. This means that the material can be optimally layered in
the three principal directions, creating a microstructure made of plate-like holes
in a matrix of material. On the other hand, the remaining regimes (56), (58), or
(59), where a rank-2 laminate is optimal, correspond to a setting where one of
the principal stresses is large compared to the other two. In this case, it is more
economical not to layer in the direction of the largest principal stress, and simply
to translate, in this direction, a planar optimal microstructure which allows the
available material to sustain the largest stress in the direction of translation. The
corresponding microstructure looks like an array of tubes or channels of holes
aligned in the direction of the largest principal stress.

It would be tempting to assume that the 3-D result of Proposition 4.8 degen-
erates into the 2-D result of Proposition 4.7 in a plane stress situation,i.e., when
one of the principal stresses is equal to zero. That it is not so is the object of the
following

Lemma 4.11 In three dimensions, a plane stressτ with eigenvalues denoted by
τ1, τ2, τ3, such that

τ1 = 0, τ2 /= 0, andτ3 /= 0,

is considered. Then,

g∗(τ ) =
1

2µ

(
τ2

2 + τ2
3

)− λ

2µ(2µ + 3λ)
(τ2 + τ3)2 = A−1τ · τ,(70)

and optimality is achieved by a rank-1 sequential laminate in the direction e1, i.e.

m1 = 1, m2 = 0, m3 = 0.
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In this case the function F(τ, θ) is simply

F (τ, θ) =
1
θ

A−1τ · τ,

and the integrand F̀coincides with the convex envelope of the original integrand
f` when evaluated atτ .

The proof of Lemma 4.11 is immediate through inspection of the formulae
in Proposition 4.8. From a practical standpoint, it has the consequence that, if
we can use 3-D microstructures for solving a 2-D problem, then it is preferable
to use a “varying thickness plate” approach (corresponding to the optimal rank-
1 laminate) than a “plane Michell trusses” approach (corresponding the rank-2
laminates, optimal only in 2-D). Mathematically speaking, it means that, in a
2-D problem of shape optimization, the convexified formulation (obtained by
laminating in the single direction orthogonal to the plane) lies below the quasi-
convexified formulation (obtained by using only “in plane” rank-2 laminates);
hence the qualitative differences that will be evidenced between 2-D and 3-D
pictures: in 2-D the optimal microstructures look like a network of trusses or
bars, while in 3-D they will appeal to either trusses or plates.

An other interesting limit case of Proposition 4.8 is that of a uni-axial stress.
This is the purpose of the next lemma.

Lemma 4.12 In three dimensions, a uni-axial stressτ with eigenvalues denoted
by τ1, τ2, τ3, such that

τ1 = 0, τ2 = 0, andτ3 /= 0,

is considered. Then,

g∗(τ ) =
µ + λ

µ(2µ + 3λ)
τ2

3 = A−1τ · τ,(71)

and optimality is achieved by any rank-2 sequential laminate in the directions
e1, e2, i.e., any triplet m1,m2,m3 with

m3 = 0, m1 ≥ 0, m2 ≥ 0, m1 + m2 = 1.

In this case again, F(τ, θ) = 1
θA−1τ · τ , and the integrand F̀coincides with the

convex envelope of the original integrand f` when evaluated atτ .

The proof of Lemma 4.12 is also immediate by inspection of the formulae
in Proposition 4.8. In a uni-axial stress setting, the optimal microstructure looks
like an array of fibers aligned with the stress and any type of cross-sectional
arrangement is admissible.

Another special case of Propositions 4.7 and 4.8 is that of hydrostatic stresses.
A hydrostatic stress is of the form

τ = pI2,
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where p is the pressure field. In such a case, concentric spheres assemblages
provide another class of optimal microstructures for the lower bound in Theorem
4.2 or Corollary 4.4 (see [22]). The main interest of these assemblages is that no
homogenization process is required when computing their effective properties.
They are an example of “classical” optimal shapes in the original formulation
whenever the boundary condition is a constant hydrostatic load. Furthermore,
they are also an example of non-uniqueness of the optimal design.

A brief description of these concentric spheres constructions is given below,
while we refer the reader to the classical treatise [14] for further details. Any
smooth domainΩ can be covered by a so-called Vitali covering of spheres,i.e.,
it can be completely filled by an infinite number of non-overlapping balls of all
sizes. Of course, there is also an infinite number of such coverings. Then, in
each sphere, a concentric spherical hole is cut, and its radius is determined in
a manner such that the volume fraction of material is preciselyθ. This yields a
perforated domainΩ with infinitely many disjoint spherical holes of all sizes.
It is a classical result that, for such a perforated domain under an hydrostatic
boundary conditionf = pI2, the average stress is exactly equal topI2 and the

average compliance isNp2

κ∗ whereκ∗ is the so-called Hashin-Shtrikman upper
bound on the bulk modulus [23]. In our context the following proposition is
easily derived from Propositions 4.7 and 4.8.

Proposition 4.13 For a hydrostatic stressτ = pI2 the optimal bound F(τ, θ),
defined by Corollary 4.4, reduces to

F (pI2, θ) =
Np2

κ∗
, N = 2, 3,

whereκ∗ is the Hashin-Shtrikman upper bound on the bulk modulus defined by

1
Nκ∗ + 2(N − 1)µ

=
θ

2(N − 1)µ
+

1− θ

Nκ + 2(N − 1)µ
.

Proposition 4.13 shows thatF (pI2, θ) coincides with the average compliance
of the concentric spheres assemblage. In particular, it proves, first, that the con-
centric spheres construction is also optimal for the lower bound in Theorem 4.2,
and second, that it is a solution of the optimal shape design (6) for the volume
fraction θ. Remark that this type of “classical” optimal shapes would be very
difficult to compute numerically. Indeed its boundary is very complex since it
involves an infinite number of connected components on various length scales.
Therefore, even in this case, the relaxed formulation is more practical from a
numerical standpoint.

Our focus so far has been the case of a single energy or loading configuration.
We investigate below the case of several energies. As before, we start from the
classical result on the relaxation ofIp(`, η) (see [5], [6], and Remark 2.4 for
notation) which states that

F p,η
({τi }, θ

)
= min

A∗∈Gη
θ

p∑
i =1

A∗−1τi · τi ,(72)
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whereGη
θ is again the set of all possible anisotropic Hooke’s laws of composite

materials obtained by mixingA andη in proportionsθ and 1− θ. Formula (72)
is refered to as an optimal lower bound on sum ofp effective complementary
energies. Once again (see [7]), the fullG-closure setGη

θ can be replaced by that
of sequential laminates.

Theorem 4.14 The optimal bound (72) is

F p,η
({τi }, θ

)
= min

A∗∈Lη
θ

p∑
i =1

A∗−1τi · τi ,(73)

where Lηθ is the set of all effective Hooke’s laws of finite rank sequential lami-
nates defined through (46). Furthermore, optimality in the right hand side of (73)
is achieved, at most, by a rank-3 sequential laminate in 2-D, and by a rank-6
sequential laminate in 3-D.

Remark 4.15While the first part of Theorem 4.14 is nearly identical to the single
load case explicited in Theorem 4.2, the second part is completely different (in
2-D the result is derived in [8], and in 3-D in [19]). The number of laminations
does not depend on the number of energiesp, but it is higher than for a single
load. Furthermore, the lamination directions are not necessary aligned with the
principal stress directions. This is a serious obstacle, and no explicit formulae
are available as of yet for the computation of the optimal laminate in (73). In
other words, the optimal microstructure has to be determined numerically rather
than through an explicit formula.

To deduce an expression forF p from Theorem 4.14, we can now letη tend
to zero in the lamination formula (46) to obtain the limit setL0

θ of sequential
laminates defined by formula (48). We thus obtain

Corollary 4.16 The function Fp, defined as the monotone limit of Fp,η whenη
tends to zero, is given by

F p
({τi }, θ

)
= min

A∗∈L0
θ

p∑
i =1

A∗−1τi · τi .(74)

Furthermore, since optimality is achieved for a finite rank sequential laminate,
(74) becomes

F p
({τi }, θ

)
=

p∑
i =1

A∗−1τi · τi +
1− θ

θ
g∗p
({τi }

)
,(75)

whereg∗p is a continuous and convex function of{τi }, homogeneous of degree 2,
strictly positive when at least oneτi /= 0.

The above result is very similar to Corollary 4.4 and their proofs are parallel.
The major difference is that we do not have an explicit formula forg∗p . Indeed
in view of the lamination formula (48) and Theorem 4.14,g∗p is obtained as the
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result of an optimizationnot onlyon the parametersmi , but alsoon the lamination
directions. We have been unable to perform this optimization by hand, and in
future numerical computations we will rely on a numerical procedure for the
optimization of the laminate microstructure.

5. A numerical algorithm for 2 and 3-dimensional shape optimization

5.1. description of the algorithm

This section presents the proposed numerical algorithm for shape optimization,
which is based on the homogenization method as already announced in [4]. The
key idea is to compute “generalized” optimal shapes for the relaxed formula-
tion, rather than “classical” shapes which are merely approximately optimal for
the original formulation. We thus begin by recalling the relaxed formulation as
computed in Sects. 3 and 4 above. The objective function is

I ∗(`) := min
τ∈Σ(Ω)

∫
Ω

F`(τ ) dx,(76)

where

F`(τ ) = min
0≤θ≤1

{
min

A∗∈L0
θ

A∗−1τ · τ + `θ

}
,(77)

andΣ(Ω) is the set of statically admissible stresses defined by

Σ(Ω) =
{
τ ∈ L2(Ω;RN 2

s ) | div τ = 0 in Ω; τ · n = f on ∂Ω
}
.(78)

Furthermore, in Sect. 4 we performed an explicit computation of the minimizer
A∗ in the right hand side of (77), in two or three dimensions.

The relaxed formulation (76)–(78) evokes a problem of nonlinear elasticity.
The optimal density (a “generalized” shape) is recovered by the optimality con-
dition on θ in Eq. (77). A simple algorithm solves, in a first step, this nonlinear
minimization problem in the stressτ , by using, e.g., a conjugate gradient method.
In a second step an optimal densityθ is recovered through the optimality con-
dition. Such an approach has been implemented in [6] for the 2-D case, but it
is not completely satisfactory for the following reasons. As in all computations
involving complementary energies, high degree finite elements have to be used
for stress accuracy. The resulting computations are very costly and limited, in
practice, to a two dimensional setting. Furthermore, the highly non-trivial energy
F` is not smooth atτ = 0 which calls for special care in the gradient method.
Convergence to the minimum is usually fairly slow.

Therefore, we prefer another algorithm, the so-called “alternate directions
method”, that we now describe. It is based on two key ideas. The first one is to
consider the relaxed problemI ∗(`) as a minimization problem not only for the
stress, but also for the structural parameters, the densityθ, and the microstruc-
ture A∗. The second key idea is not to try to minimize directly in the triplet of
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variables (τ, θ,A∗), but rather to adopt an iterative approach and minimize sep-
arately and successively in the design variables (θ,A∗) and in the field variable
τ . The minimization inτ for fixed design variables amounts to the resolution
of a problem of linear elasticity for the structure defined by the previous design
variables. The minimization in (θ,A∗) for a fixed stress field is explicit in view
of the formulae obtained in the previous section. Consequently, the algorithm is
structured as follows:

1. Initialization of the design parameters (θ0,A∗0) (for example, takingθ0 = 1
andA∗0 = A everywhere in the domain).

2. Iteration until convergence:
a) Computation ofτn through a problem of linear elasticity with (θn−1,A∗n−1)

as design variables.
b) Updating of the design variables (θn,A∗n) by using the stressτn in the

explicit optimality formulae of Sect. 4.

Convergence of this iterative algorithm is detected when the objective func-
tion becomes stationary, or when the change in the design variables becomes
smaller than some preset threshold. Notice that the above iterative process al-
ways decreases the value of the objective function at each iteration. Indeed, since
A∗n minimizes the compliance under the stress fieldτn, and sinceτn+1 minimizes
the elastic complementary energy corresponding to the Hooke’s lawA∗n, it follows
that∫

Ω

(A∗n−1)−1τn · τn dx + `

∫
Ω

θn−1 dx ≥
∫
Ω

(A∗n)−1τn · τn dx + `

∫
Ω

θn dx

≥
∫
Ω

(A∗n)−1τn+1 · τn+1 dx + `

∫
Ω

θndx .

Remark 5.1The alternate direction algorithm is apparented to the two previously
known methods: that of [11], [36], and that of [6]. As already mentioned, the
latter considers the relaxed problemI ∗(`) as a problem of nonlinear elasticity.
The former transforms the minimization over statically admissible stresses into
a maximization over displacements, and (76) becomes

I ∗(`) := min
0≤θ≤1

min
A∗∈L0

θ

max
u∈H 1(Ω)N

{
2
∫
∂Ω

f · uds−
∫
Ω

A∗e(u) · e(u) dx + `

∫
Ω

θ dx

}
,

(79)
wheree(u) is the strain tensor (∇u +∇tu)/2. The ensuing numerical scheme is
based on the first order optimality conditions at the saddle point of the functional
(79). This leads to a rather intricate updating process for the design variables
(volume fraction of materialθ and the individual volume fractions and orienta-
tions of each layer). The computation is also performed using alternate directions;
firstly the solutionu of a problem of linear elasticity where all design variables
are fixed is obtained, then the design variables are updated using the optimality
criterion. The existence of a saddle point for the minA∗∈L0

θ
maxu∈H 1(Ω)N problem

79 is established in Theorem 4.1 of [27]; note however that, in the resulting
formulation, the minimization inθ must be performed last.
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Fig. 1. Cantilever: composite design

Fig. 2. Cantilever: penalized design

5.2. A few technical algorithmic issues

Convergence criterion.The successive problems of linear elasticity are solved
by the finite element method. We use quadrangularQ1 elements for the displace-
ments while the stressesτn and their principal directions and principal values, are
computed at the center of each element. The parameters for the optimal laminate
are then computed in each cell using formulae (54) in two dimensions, or (60-65)
in three dimensions. The Hooke’s law for the optimal laminate is computed with
the help of Lemma 4.5.
The procedure is iterated until the quantity

max

max
i

(|θn+1
i − θn

i |), 1−

∫
Ω

(A∗n+1)−1τn+1.τn+1 + `

∫
Ω

θn+1∫
Ω

(A∗n)−1τn.τn + `

∫
Ω

θn


becomes smaller than a preset threshold. About 100 iterations are required to
reach a criterion of 10−5. On Fig. 3, the evolution of the objective function in
a typical calculation is plotted. Other convergence criteria could be used, for
instance theL2 norm of τn+1 − τn.
Volume constraint. In most of the computations presented here, the Lagrange
multiplier ` is held at a fixed value. Ideally, one could perform several calcu-
lations with different values of̀ , then try to adjust this parameter in order to
match a given constraint on the volume. As we explained in Sect. 3, we do not

Numerische Mathematik Electronic Edition
page 56 of Numer. Math. (1997) 76: 27–68



Shape optimization by the homogenization method 57

Iterations

P
er

fo
rm

an
ce

0 10 20 305 15 25

0.4

0.5

0.35

0.45

Fig. 3. Typical convergence history

Fig. 4. Cantilever: checkerboard patterns

know how to determinè beforehand. As an alternative, computations were also
performed, wherè is adjusted at each iteration, so that the corresponding value
of the optimal density satisfies the volume constraint. In other words, once the
stressτn is computed, we determineθn and`n by solving

θn = min{1,

√
g∗(τn)
`n

}
∫
Ω

θn = Θ

through a simple iterative procedure.

Singularities in the composite Hooke’s law.The generalized Hooke’s laws
computed at each iteration turn out to be singular, an undesired feature when
solving problems of linear elasticity. This singular behavior has several sources.

First, we note that the effective tensor is equal to zero when the density
vanishes. Implicitely, the corresponding stress field should vanish simultaneously.
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This problem, which occurs in 2 and 3-D, is easily circumvented by imposing a
positive threshold on the density. In practice, the smallest admissible value ofθ
is fixed at 10−3. Numerical experiments suggest that the choice of 10−3 is not
important.

We also remark that rank-1 and rank-2 laminates produce degenerate Hooke’s
laws (cf. Remark 4.6). In 3-D, the proportionsmi are forced to be greater than
zero. Consequently, the algorithm only uses rank-3 laminates, which are non-
singular.

In 2-D, rank-1 laminates are eliminated like in the 3-D case. However, the
algorithm uses rank-2 laminates as optimal microstructures. The singularity is
avoided by adding a small correction term to the composite Hooke’s law.

We describe three attempted regularizations of rank-2 laminates, in the case
where the principal directions ofτ coincide withOxOy (the other cases follow
by rotation). The elasticity tensor of the corresponding rank-2 laminate only has
the following non-zero coefficients

A∗1111 =
4κµ(κ + µ)θ(1− θm2)m2

4κµ m1m2θ2 − (κ + µ)2(1− θ)

A∗1122 = A∗2211 =
4κµ(κ− µ)θ2m1m2

4κµ m1m2θ2 − (κ + µ)2(1− θ)

A∗2222 =
4κµ(κ + µ)θ(1− θm1)m1

4κµ m1m2θ2 − (κ + µ)2(1− θ)
.

The first method of correction simply amounts to replacingA∗1212 = A∗1221 =
A∗2112 = A∗2121 by 2µδ, whereδ is “small”. The second method consists in replacing
A∗, by the optimal laminate corresponding to a mixture ofA and δA, i.e., by a
configuration that achieves the minimum ofF δA(τ, θ), in the particular case where
the soft material is proportional toA. This simplifies the computations of the
optimal Hooke’s law which is non-singular. The third regularization, corresponds
to the 2-D projection of a rank-3 laminate, with laminations alongOx,Oy,Oz
in proportions (1− δ)m1, (1− δ)m2 and δ respectively. The resulting elasticity
tensors are easily computed with the formulae from Sect. 4.

Numerical experiments suggest that the three corrections give comparable
results although the second one is slightly better and converges faster. Compu-
tational runs suggest that when the coefficientδ is too small, the algorithm may
select a wrong solution, possibly a local minimum. In practice we useδ = 10−2.
Checkerboard instabilities. Our algorithm is subject to checkerboard instabili-
ties for the densityθ similar to those reported in [10],[24],[25]. These instabilities
do not appear if the displacements are computed using higher order elements (Q2
in our case), while the lamination parameters are computed with only piecewise
constant stresses. Note, however, thatQ2 elements are expensive for very fine
meshes and for 3-D calculations.

The numerical onset of checkerboard patterns is still mysterious, although it
is worth noticing that piecewise constant stresses, which are equilibrated with
respect to deformation fields ofQ1-displacements, are checkerboard-like. In prac-
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Fig. 5. Convergence history showing the appearance of checkerboard patterns

tice, such instabilities only appear after a large number of iterations, when the
convergence criterion is very tight (cf. Fig. 5).

In 2-D calculations, we eliminate these instabilities with a method used to
filter the pressure in a Stokes flow computation [12]. Once the piecewise constant
optimal densitiesθn

i are determined, we project them on super-elements, which
are clusters of 4 adjacent elements, so as to eliminate the checkerboard mode and
preserve the overall density. We have not experienced any checkerboard patterns
in 3-D calculations, and all the examples shown below have been computed
without filtering.

6. Penalization of intermediate densities

As explained in Sect. 5, our numerical algorithm for computing optimal design
is based on the relaxed formulation introduced in Sect. 2. The numerical compu-
tations deliver relaxed, or generalized, optimal shapes – a density of material –
rather than classical optimal shapes for the original formulation – a characteristic
function of the material domain. In other words, our method produces a layout of
material, which, as expected, includes large regions of composite materials with
intermediate density. From a practical standpoint, this is an undesirable feature
since the primary goal is to find a real shape – a density taking only the values
0 or 1! This drawback is avoided through a post-processing technique thatpe-
nalizescomposite regions. The goal is to deduce, from the optimal densities, a
quasi-optimal shape. In loose terms, the solution of the relaxed problem is pro-
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jected onto the set of classical solutions of the original problem, in the hope that
the value of the objective functional will not increase too much in the process.

The strategy is as follows. Upon convergence to an optimal density, we
run a few more iterations of our algorithm where weforce the density to take
values close to 0 or 1. This changes the optimal density and produces a quasi-
optimal shape. Of course, the procedure is purely numerical and mesh dependent.
The finer the mesh, the more detailed the resulting structure will appear at the
outset of the penalization process. The method works well, because the relaxed
design is characterized not only by a densityθ but also by a microstructureA∗,
which is hidden at the sub-mesh level. The penalization tends to reproduce the
microstructure at the mesh level.

Two penalization techniques for the intermediate composite densities have
been used. Both amount to a modification of the explicit formula (24) that ex-
presses the optimal density in terms of the stress. Specifically, instead of updating
the density with the true optimal densityθopt, a valueθpen is used. Our first choice
for θpen, already described in [2], [4], is

θpen =
1− cos(πθopt)

2
.

The choice of a cosine function for the penalized density is arbitrary. Ifθpen is
too close toθopt, the scheme is insensitive to the proposed penalization, while if
θpen is forced too close to 0 or 1, the fine patterns of the shape are destroyed.

In the context of plate thickness optimization, another technique has been
proposed [9],[40]. It consists in setting

θpen = (θ2
opt/p)1/(1+p) for somep < 1.

This alternate choice also gives good results. It corresponds to the optimal value
of θ for a modified integrand, namely

Fp,`(τ ) := min
0≤θ≤1

{F (τ, θ) + `θp} ,

which is supposed to take into account “manufacturing costs” of perforated ma-
terials (the “cost” of intermediate densities increases in (80) asp decreases from
1 to 0).

7. Quasiconvexification versus convexification

This section is devoted to a comparison of the relaxed formulation introduced in
Sect. 2 with the convexification of the original problem. Such a comparative study
is motivated by the occasional use of the convexified formulation for the com-
putation of optimal shapes, under the name of “fictitious material approach” (see
e.g. [30], [35]). Let us briefly describe the argument. When combined with the
penalization procedure, the numerical algorithms for computing optimal shapes
– based on the relaxed formulation – may seem self-defeating. Homogenization
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theory is introduced, proper optimal microstructures, and complicated formulae
for updating the design variables are laboriously derived, and yet, in the end, this
wealth of information is seemingly wasted through the penalization process! A
natural idea is thus to propose a simpler approach based on theconvexification
of the original problem (which is easily computed, see below), coupled with the
same penalization procedure, as described in Sect. 6. The advantages of the ap-
proach are the following: the layout optimization problem still becomes a sizing
optimization problem,i.e., shapes are replaced by densities. Implementation is
straightforward since the convexified formulation is very simple, no knowledge
of homogenization or composite materials is required and, in 2-D, the method
relies on the physical notion of “varying thickness” plates. Although comparable
results are produced in a few test cases, the method is much more sensitive to the
penalization and it usually yields worse results than those of the homogenization
(or relaxed) method.

The “fictitious material” approach considers the following state equation
σ = θ(x)Ae(u) e(u) =

(∇u +∇tu
)
/2

div σ = 0 in Ω
σ · n = f on ∂Ω,

whereθ(x) is a density function with values between 0 and 1. The goal is to
minimize, over all the possible densities, the weighted sum of the compliance
and of the weight. Thus we set

CI (`) := inf
θ(x)∈L∞(Ω;[0,1])

(
c(θ) + `

∫
Ω

θ(x)

)
,

where the compliance is defined by

c(θ) =
∫
∂Ω

f · u =
∫
Ω

< (θ(x)A)−1σ, σ > .

Upon using the principle of complementary energy and switching the two mini-
mizations, the following equivalent formulation is derived:

CI (`) = inf
σ∈Σ(Ω)

∫
Ω

Cf̀ (τ ) dx,(80)

whereCf̀ is the convex envelope of the functionf`, cf. (14),

Cf̀ (τ ) =

{
A−1τ · τ + ` if A−1τ · τ ≥ `,

2
√
`A−1τ · τ if A−1τ · τ ≤ `,

andΣ(Ω) is defined in (13).
Formulation (80) is called the convexification of the original problem (8) or

(12). Since it is a convex minimization problem, the existence of minimizers is
straightforward and the infimum in (80) is a minimum. Recall that the original
formulation is

I (`) = inf
σ∈Σ(Ω)

∫
Ω

f`(τ ) dx,
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while the relaxed (or homogenized) formulation is

I ∗(`) = inf
σ∈Σ(Ω)

∫
Ω

Qf̀ (τ ) dx,

whereQf̀ is the quasi-convex envelope off` (see (33)). Furthermore,

f`(τ ) ≥ Qf̀ (τ ) ≥ Cf̀ (τ ),

where the inequalities are strict for most choices of the stressτ . Notice, however,
that

I (`) = I ∗(`) ≥ CI (`) .

We have numerically implemented the convex formulation with the “alternate
directions” strategy described in Sect. 5. For a given densityθ, we compute the
stressτ solution to the linear elasticity state equation, then update the design
variableθ using the optimality relation

θ(x) =

{
1 if A−1τ · τ ≥ `,√
`−1A−1τ · τ if A−1τ · τ ≤ `.

The algorithm converges quickly and smoothly and we supplement it with the pe-
nalization procedure of Sect. 6. A few numerical results are displayed in Sect. 8.2
and compared with those of the homogenization method. The fictitious penalized
designs are qualitatively comparable to their homogenized counterparts, but they
lack the complexity and pattern details.

The absence of implicit sub-mesh microstructures explains the lower perfor-
mance of the fictitious material approach. Loosely speaking, the convex formula-
tion has a single free design parameter – the densityθ – while the homogenized,
or relaxed, formulation has more parameters –θ and the microstructureA∗ –
allowing for greater flexibility in the design of optimal shapes.

Remark 7.1As already pointed out, in a 2-D setting the convexified formula-
tion (80) can be viewed as a variable thickness approach for a plate. This is
formalized in Lemma 4.11, which claims that, in a plane stress problem, the
three-dimensional relaxed formulation coincides with the two-dimensional con-
vexified formulation. In other words, the optimal microstructure is everywhere a
rank-1 layering in thex1 direction – a varying thickness plate – if the boundary
conditions are such that the solution of the 3-D relaxed formulation does not
depend on the first space variablex1. Also, in this case, the 3-D relaxed energy
Qf̀ (0, τ2, τ3) is exactly equal to the 2-D convex energyCf̀ (τ2, τ3). When depart-
ing from a plane stress setting, the convexified formulation (80) has no physical
meaning.
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Fig. 6. Bridge arch: composite design for different mesh sizes

Fig. 7. Bridge arch: design for different mesh sizes after penalization

8. Numerical results

In this section, we present several numerical examples which illustrate various
aspects of the method. The workspaceΩ is discretized with quadrangular ele-
ments in 2-D and hexaedral elements in 3-D. The displacement is approximated
by Q1 interpolation and the resulting stress field is averaged on each cell.

All the computations are performed with the bulk modulusκ and the shear
modulus 2µ equal to 1. The smallest admissible value ofθ and of the proportions
mi is 10−3, in order to avoid very low proportions. In practice, the value of this
parameter is insignificant; any small number produces similar results. The density
θ is represented with a gray scale: areas whereθ = 1 (pure material) are black,
whereas white zones correspond to voids. The calculations are initialized with
the most rigid shape,i.e., θ0 = 1, A∗0 = A everywhere inΩ. We attempted several
computations with other initial shapes and obtained very similar designs. The
method seems stable with respect to the choice of initial configuration, although
the number of iterations required for convergence may be greatly affected. This
stability might be an indication of uniqueness of the optimal composite solution,
at least within the class of rank-2 laminates, for the tested problems (workspace,
boundary conditions and loading). Further tests are in progress for problems
where non-uniqueness of the optimal generalized shape is known.

8.1. The cantilever 1.6

This example has already been investigated by several authors, and it has become
a sort of benchmark for layout optimization algorithms. The workspaceΩ is a
rectangle of dimensions 1.6×1 discretized with a 4000 element mesh. The object
to be found is submitted to a vertical point load applied at the middle of the right
vertical side, while the left side is clamped. Similar designs would have been
obtained under a uniform traction on a small part of the side instead of a point
load.

Figure 1 shows the output of the algorithm after 30 iterations. Although
one can guess a “shape” on the edges of the structure, its center contains a
large composite zone. Figure 3 represents the objective function history for this
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calculation. The corresponding penalized shape is shown in Fig. 2. Most of the
gray material has been removed, while the difference in the objective function is
only three to four percent. In particular, the fuzzy center has been replaced by a
bar structure reminiscent of a Michell truss.

If the previous non-penalized computation is continued, checkerboard patterns
are produced (cf. Fig. 3). Their appearance can be detected on the plot of the
objective function, Fig. 5. Indeed, one remarks a sharp decrease after the first
iteration, and stabilization around a specific value after 5–10 iterations. After
sufficiently many iterations, the objective function decreases again, with the onset
of checkerboard instabilities. On Fig. 5, the objective function is also plotted for
a computation with filtering.

Fig. 8. Bridge arch resulting from optimizing the convexified functional; fictitious composite solution
(left) and penalized (right)

Fig. 9. Bridge arch resulting from penalizing the composites from the start of the algorithm

8.2. The bridge arch

In this example, the workspace is a 2× 1.2 rectangle. The structure is simply
supported at the edges of its base, on a zone of width 1/16. A vertical point load
is applied at the middle of the lower side. Since the applied forces, the initial
configuration and the boundary conditions are symmetric, a symmetric solution
is expected and the computations are performed on half of the domain only.
Figures 6a–c show the resulting composite design, for different mesh sizes (1080,
4320 and 17280 elements). Figures 7a–c display the corresponding penalized
designs. The composite designs are stable with respect to refinement of the mesh,
whereas, as expected, the number of fine structures appearing after penalization
strongly depends on the discretization.

We also compared the relaxed formulation to the convexified one (cf. Sect. 7).
Figure 8a–b show the output of the alternate directions algorithm for the con-
vexified functional and the corresponding penalized design (the mesh is that of
Fig. 6b). The objective function histories of Fig. 10 demonstrate that the perfor-
mance of the latter design is worse than that of the penalized design obtained
through relaxation. Similarly, Fig. 9 shows the design resulting from a penaliza-
tion of composites from the beginning of the computation. The resulting objective
function is significantly higher, as evidenced in Fig. 10.
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Fig. 10. Convergence history: relaxation vs. convexification

8.3. The 3-D cantilever 1.6

This is the 3-D analog of the first example. The workspace is a 1.6× 0.8× 1
box, clamped at the right vertical side. A point load is applied in the middle
of the opposite face. We used a mesh of 19200 elements and started from an
initial configuration withθ0 = 1 throughout. The algorithm produces a symmetric
layout, which permits to compute a half domain only.

The 3-D pictures are harder to visualize. Figure 11a represents the iso-surface
θ ≥ 0.3 of composite density. In this example, the iso-surfaces are smooth and
embedded into each other asθ increases. The next picture (Fig. 11b) shows the
design after penalization, the effect of which is to cluster the available material
in plate-like or bar-like components: here, a thin vertical plate (with a width of
only one element) increases the rigidity of the center-part, whereas 3-D trusses
reproduce patterns similar to the 2-D design (cf. Fig. 2).

8.4. The 3-D electric masts

This example is an attempt to compute a more realistic structure. The workspace
is a T-like box. Two symmetric vertical loads are applied in the middle of the
lower edges of the horizontal part of theT and represent the force exerted by
the wires on the mast. Simply supported boundary conditions are imposed at the
corners of the base of theT. In the calculations, the computed shapes are forced
to occupy 15% of the total volume.
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Fig. 11. 3-D cantilever: composite solution (left) and penalized (right)

Fig. 12. Electric masts: composite solution (left) and penalized (right)

Only a quarter of the object is computed, by virtue of the symmetries. The
first calculation (Fig. 12a–b) represents the composite, resp. penalized designs,
produced by our algorithm for aT-box with a 80×40×46 bar and a 40×40×80
foot, using a mesh with 14976 hexaedral elements. As in the case of the 2-D
bridge, the algorithm builds a quasi-circular arch to connect both edges of theT.
The horizontal bars that link the feet of the mast in the penalized design do not
appear in the composite picture. Remark that the penalization produces a bar-like
design that evokes the shape of existing electric masts. As explained above, the
number of such bars depends of the mesh, but also on the size of the workspace.
An “industrial” computation would require a finer mesh, and a larger workspace
in the z-direction.

Figures 13a–b, show the resulting designs for aT-box with a 80×20×20 bar
and a 40× 20× 80 base, meshed with 24000 hexaedral elements. The algorithm
could no longer build an arch as before, and it creates a plate-like dome. The
computation took about one day on a HP9000/755.
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Fig. 13. Electric masts: composite solution (left) and penalized (right)

References

1. Acerbi F., Fusco N. (1984): Semicontinuity Problems in the Calculus of Variations. Arch. Rat.
Mech. Anal.86, 125–145

2. Allaire G. (1993): Structural optimization using optimal microstructures, In “MECAMAT 93
International Seminar on Micromechanics of Materials”. Collection de la Direction des Etudes
et Recherches d’Electricité de France, Eyrolles, Paris
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