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Abstract

We maximize the first eigenfrequency, or a sum of the first ones, of a bounded domain occupied by two elastic materials with a
volume constraint for the most rigid one. A relaxed formulation of this problem is introduced, which allows for composite materials as
admissible designs. These composites are obtained by homogenization of fine mixtures of the two original materials. We prove a
saddle-point theorem that permits to reduce the full (unknown) set of admissible composite designs to the smaller set of sequential
laminates which is explicitly known. Although our relaxation theorem is valid only for two non-degenerate materials, we deduce from
it a numerical algorithm for eigenfrequency optimization in the context of optimal shape design (i.e. when one of the two materials is
void). As is the case with all homogenization methods, our algorithm can be seen as a topology optimizer. Numerical results are
presented for various two- and three-dimensional problems. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is devoted to a problem of eigenfrequency maximization for a mixture of two elastic materials
in a bounded domain, under a resource constraint for the most rigid material. Let Q be a bounded open set
in RY. Let 4, and 4, be two fourth-order tensors (or Hooke’s laws) of two isotropic materials that are
assumed to be ordered in the sense of quadratic forms, i.e., 4; is the most compliant and 4, the most rigid
one. More precisely, we have

Ai = 2,“,-14 + )\.112 ®12 for i = 1, 2,

where 1 is the fourth-order identity, I, the second-order identity, and 4; = x; — 2u;/N and «;, ; are the bulk
and shear moduli, respectively, satisfying

0<K <Ky O0<p <py

The two materials 4; and 4, are distributed throughout Q. Let y(x) denote the characteristic function of the
most rigid material 4, i.e., y(x) = 1 if 4, is present at point x, while y(x) = 0 otherwise. The heterogeneous
Hooke’s law in € is therefore

A, = (1= x(x)41 + x(x)4.
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Both materials have also a positive density p,, p, > 0 (their ordering is irrelevant). The heterogeneous
density in Q is

p, = (1= 2(x)pi + 1(x)p,-

The boundary 0€Q is divided in two disjoint parts I'p and I'y supporting respectively Dirichlet boundary
condition (zero displacement) and Neumann boundary condition (zero traction). We assume that the
surface measure of I'p is non-zero.

The vibration frequencies w of the heterogeneous domain €, filled by 4, and 4,, are the square roots of
the eigenvalues of the following problem:

—divd,e(u) = ?*p,u in Q,
Aje(u)-i=0 on Iy, (1)
u=0 on Ip.

where u(x) € H'(Q)" is the displacement vector, and e(u) = 1/2(Vu + V'u) is the strain tensor. As is well-
known, problem (1) admits a countable family of positive eigenvalues

0<a)f<a)§< gwiﬂ+oo,
characterized by the min—max principle

JoAye(u) - e(u) dx

w; = min max - , (2)
Uy kg €A, uespan(uy,...,uy] fQ P, |u| dx
dimuy ,...,ux|=k

where # is the subspace of H'! (Q)N made of functions satisfying u = 0 on I'p.

An important problem in structural design is to find out the best arrangement of 4, and 4, in Q that
would maximize the first eigenvalue, or a linear combination of the first ones. However, without further
restriction on the proportion of 4; and 4,, this problem is often trivial. For example, if p, = p,, then the
optimal solution is to fill Q with the most rigid material 4, only. Therefore, we add a constraint on the
volume of 4, (which may be interpreted as the additional price to pay for 4, instead of 4,). Introducing a
Lagrange multiplier £ € R, our objective functional is

sop ot [ s arf. ()

2€L>(2;{0,1})

or more generally, denoting by o > 0, 1 <k < p, non-negative coeflicients,

sup {iakwim ¢ [ 1t dx}. 4)

reL>(2:{0,1}) | %=1

Remark 1.1. More complicated problems fit into our framework. In particular, all our results hold if part
of Q is not subject to any optimization (such a situation is usually called a reinforcement problem). It is
even possible that Q contains a third material which is fixed and not subject to optimization. We could also
consider more complex objective functionals involving non-linear expressions of the eigenfrequencies like,
for example, any positive power of the eigenfrequency. Or we could mix an eigenfrequency optimization
with a usual compliance optimization problem.

To simplify the exposition we focus on problem (3), but our approach works equally well for (4). For
such problems we are interested in the so-called topology or layout optimization, i.e., we seek an optimal
distribution of the two materials without any explicit or implicit restriction on the topology of their geo-
metrical arrangement. Topology optimization is a major issue in structural design since classical methods of
shape optimization, based on interface motion, are ill equipped to capture the possible topological com-
plexity of the optimal mixture. This is due to the required smoothness assumptions on the interface between
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the two materials that do not permit very fine mixtures, although it is widely acknowledged that they may
drastically improve the performance of a candidate optimal distribution.

This practical difficulty of topology optimization has its theoretical counterpart in the fact that problems
(3) and (4) are known to be generically ill-posed, i.e., they usually admit no optimal solutions (cf. the
seminal counter-examples in [29,31]). Rather, one needs to enlarge the class of admissible designs by al-
lowing for fine mixtures of the two materials on a scale which is much smaller than the mesh used for the
actual computation. It is precisely the concern of the theory of homogenization to determine the effective
properties of these microstructures and to select the optimal ones. Unfortunately, the set of effective
Hooke’s laws resulting from the mixture in fixed volume fraction of two elastic materials is unknown. This
obstacle is alleviated in the particular cases where the objective functional is the elastic compliance or is an
eigenfrequency because its extrema can be computed among the well-known subset of sequential laminates
instead of the full set of effective tensors. This process of enlarging the space of admissible designs in order
to get a well posed problem is called relaxation. The intimate connection between relaxation and ho-
mogenization is demonstrated in [31] for a scalar setting, and in [16,20-22] for elasticity.

The homogenization method for structural optimization has proved to be crucial not only for proving
existence theorems of relaxed optimal designs but also for establishing necessary conditions of optimality.
Since the work of Bendsoe and Kikuchi [8], a new class of numerical algorithms based on the homoge-
nization method has appeared. They are frequently viewed as “‘topology optimization™ algorithms since
they are able to capture very fine patterns of the optimal structure on a fixed numerical grid. A few ref-
erences of numerical applications of such a method include, among others, [1,2,4,6,9,10,18,35-37].

The purpose of the present paper is to extend the homogenization method, originally developed for
compliance optimization, to frequency optimization problems. In the next section, a relaxed or homoge-
nized formulation of (3) is established. Our main result is a saddle point theorem which allows to rigorously
prove that the so-called sequential laminates are optimal microstructures for this problem (as they were for
compliance problems, see Theorem 2.3). The spirit of this saddle point theorem is very similar to results of
Lipton [25] and Cox and Lipton [11], although technically different. This theorem gives a firm theoretical
basis for a numerical algorithm based on alternate directions optimization (similar to that proposed in [2]
for compliance problems). In Section 3, numerical experiments demonstrate the efficiency of such an al-
gorithm, and several technical issues are discussed at length. The homogenization method has already been
applied to frequency optimization problems by several authors [7,13,14,24,28,32] (see also [6, Chapter 8]).
We see at least two main differences between their works and ours: first, we prove that optimal micro-
structures may be chosen in the class of sequential laminates; second, we discuss a phenomenon of “‘spectral
pollution” which arises when one of the two phases is almost degenerate.

Remark 1.2. In truth, we are interested in shape optimization, namely in the case when the most compliant
material 4; is void (all its material parameters are zero). Unfortunately, our theoretical results do not hold
true in the limit when 4, goes to zero. So we content ourselves of stating them in the case of two non-
degenerate materials. From a practical point of view, this is not a too serious drawback since any numerical
procedure used in topology optimization replaces void or holes by a very compliant material. Therefore,
our approach agrees with the numerical common practice although it is clearly not completely satisfactory
in view of the “spectral pollution” phenomenon discussed in Section 3.

2. The relaxed or homogenized formulation

This section is concerned with the relaxed formulation which is obtained from the original problem (3)
by enlarging the space of admissible designs. The new generalized designs are actually composite materials
obtained by homogenization of very fine microstructures of the two original materials 4, and A,. The
importance of this relaxed or homogenized formulation is twofold. First, it makes the problem well-posed,
1.e., there exist optimal generalized designs (see Proposition 2.1). Second, thanks to a saddle point theorem
(see Theorem 2.3), it yields a new numerical algorithm for frequency optimization.

The derivation of the relaxed formulation is by now a standard process since the pioneering work of
Murat and Tartar [31] (see also [2,4,16,20-22,26,27]). Thus, we briefly sketch it for the reader’s convenience.
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The starting point is to try to apply the direct method of the calculus of variations. In other words, let
1, € L*(2;{0,1}) be a maximizing sequence for (3). We want to pass to the limit in the objective functional
and compute its maximal value. Let us explain how this is possible thanks to the homogenization theory.

The sequence y,(x) is bounded in L*(Q), and therefore one can extract a subsequence, still denoted by
7,(x), such that it converges weakly-* in L>(Q) to a limit 6(x). As is well-known, the limit 6(x) has no
reason to be a characteristic function, but is rather a density, i.e., it belongs to L*(Q; [0, 1]). According to
the theory of H- or G-convergence (see e.g., [15,17,30]), a subsequence of 4, = (1 —y,(x))4; + y,(x)4>
H- or G-converges to a homogenized tensor 4* as n goes to infinity. As a consequence (see e.g., [33]), the
eigenvalues 0 < (7)< (02)* < --- < () and the corresponding normalized eigenvectors (4) = ,> with
[f][ 2 = 1, solutions of

—divd, e(u}) = (wz)szuuﬁ in Q

A, e(u})-n=0 on I, (5

u; =0 on Ip,

satisfy

lim o] = o, (6)

n— 400

and the sequence of eigenvectors u converges, as n goes to infinity (up to a subsequence), weakly in ' (Q)N
and strongly in L2(2)" to a limit eigenvector u; such that

—divAe(u) = (o) pue  in Q,
A*e(u)-i=0 on Iy, (7)

U = 0 on FD,
with p(x), the weak limit of the sequence p, , i.e.,
7(x) = (1 0(x))py + ().

Furthermore, all the eigenvalues of (7) are precisely given by the limits 0 < (w1)2 < (w2)2 <
- < (oy)* — +00. Of course there is a relationship between the limit density2 0 and the homogenized
Hooke’s law 4*. Actually 4* belongs to %,, which is the subset of L= (2; Z,(R)")) defined as

g() = {H—limits of AZ” = (1 — Xn)Al —+ XnAQ | In — 0}

According to [12], for all 0 <0< 1, there exists a fixed subset Gy of Z(RY 2) (the set of elasticity fourth-
order tensor) such that

9y = {A(x) measurable | A(x) € Gy a.e. in Q}. (8)
Furthermore, Gy is the closure (in ES(R;VZ)) of the set of effective Hooke’s law obtained by periodic ho-

mogenization of a mixture of 4, and 4, in proportions 1 — 0 and 0. Convergence (6) allows to pass to the
limit in the objective functional (3)

i (o= ¢ [ g acg =y - [ow arf. o)

Thus, we define a relaxed functional by

max  max {wf(e,A*)—z/Qe(x) dx}, (10)

0L (Q;[0,1]) A*€%,
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where »?(0, 4*) is the first eigenvalue of (7). Since, by definition, any couple (0,4*) € L*(2;[0,1]) X %, is
attained as a H- or G-limit, and because y, was a maximizing sequence for (3), the relaxed formulation (10)
satisfies the following.

Proposition 2.1. The homogenized formulation (10) is a true relaxation of the original problem (3) in the sense
that

L. there exists at least one maximizer (0,4*) of (10),

2. any maximizing sequence y, of (3) converges, in the sense of homogenization, to a maximizer (0, 4*) of (10),
3. any maximizer (0,4*) of (10) is attained by a maximizing sequence y, of (3).

The outcome of Proposition 2.1 is that enlarging the space of admissible designs by allowing for
composite materials (made of the two phases 4, and 4,) makes the problem well-posed without changing its
physical signification (a composite is just a fine mixture of 4; and 4,). This has the effect of dividing the
optimization process on two different lengthscales: locally at each point the microstructure has to be op-
timized, while globally in the domain the density distribution is also optimized.

So far, the relaxed formulation (10) is not very useful if we do not specify the set Gy of all effective
Hooke’s law obtained by homogenization of 4; and 4, in proportion (1 — @) and 0. Unfortunately, an
explicit characterization of Gy is still pending ! Therefore, the relaxed formulation for a general objective
functional is useless because of the precise class of generalized admissible designs is unknown. For com-
pliance optimization problems the miracle is that the set Gy can be restricted to the set Ly of sequentially
laminated composites which is better understood. In this case, the relaxed formulation is explicit and be-
comes amenable to numerical computations (see [2,4]). We recall the definition of the so-called finite-rank
sequential laminates obtained by laminating 4, around a core of 4;. It is based on the lamination formula
of [15].

Definition 2.2. The subset Ly C Gy of the sequential laminates obtained by laminating 4, around a core of
Ay in proportion 6 and (1 — ) respectively, is made of all Hooke’s law 4*, defined by

(1= 0)(d2 = A) " = (A2 = A1) =0 _mif (er), (1)

where the integer p > 1 is the rank of the laminate, the unit vectors (e;), <i<pare the lamination directions,
and the real numbers (m;), ;. » satisfying 0 <m; <1 and Y 7, m; = 1, are the lamination parameters, and
where f(e;) is a positive non-definite fourth-order tensor defined by the quadratic form (¢ being a sym-
metric matrix)

1

2
+ %t (e-e). (12)

Fle) - = Jeef = (Ge )

It turns out that the same miracle of replacing G, by Ly happens also for eigenfrequency optimization,
thanks to the variational characterization (2) of the eigenvalues and to the saddle-point Theorem 2.3 below.
Recall that the first eigenvalue of (7) is defined by

A . dx
i Jat"e00) )
e fg p\u| dx

)

where # is the subspace of H' (Q)N made of functions satisfying u = 0 on I'p. As is well-known, in full
generality it is not possible to interchange a minimization and a maximization. The purpose of the next
result is to prove that, in the relaxed formulation (10), it is perfectly legitimate to interchange the mini-
mization with respect to u and the maximization with respect to 4*. As an important consequence of this
saddle-point theorem, the full set G, of admissible designs can again be restricted to the set Ly of sequential
laminates.
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Theorem 2.3. The relaxed formulation (10) is equivalently given by

max  max { min JoA'ew) - e(u) dx - Z/ 0(x) dx}

ver=(@lo) 4°€%y | wex [ pluf® dx

= max {min Jo (maxs-cq, A"e(u) - e(u)) dx - é/ 0(x) dx}. (13)

ver(@i01)) | uen Jo plul* dx

Furthermore, in the right-hand side of (13) the set Gy can be replaced by its subset Ly of sequential laminates.

Theorem 2.3 is similar to another saddle-point theorem proved by Lipton in [25]. Remark however that
Theorem 2.3 is not a completely standard result since the Rayleigh quotient which gives the first eigenvalue
is not a convex function of u. In the conductivity setting, Cox and Lipton [11] proved, as in Theorem 2.3,
that the full set Gy can be restricted to the set Lj. Let us emphasize that Proposition 2.1 and Theorem 2.3
hold true also for the objective functional (4), involving several eigenvalues.

Remark 2.4. When the objective functional involves a first eigenvalue (as is the case with (3) and (10)),
which is simple, Theorem 2.3 can be slightly improved by using a further property of the optimal sequential
laminate in (13). It is well known that, for a single energy, the optimal laminate is, at most, of rank N (the
space dimension), and that the lamination directions are aligned with the principal strains and stresses (see
e.g., [3,23]). Therefore, in the right-hand side of (13), one can further restrict L, to its subspace of rank-N
sequential laminate with lamination directions given by the eigenvectors of the strain tensor e(u) (for ex-
plicit formulae, see [2,16,18]). However, for a multiple first eigenvalue or for an objective functional in-
volving several eigenvalues, like (4), there is no explicit formula for the optimal laminate which may be of
rank higher than N.

Remark 2.5. In the relaxed formulation (10)—(13), it is not possible to exchange the maximization with
respect to 6 and the minimization with respect to u since, for fixed u, the right-hand side of (13) has no
concavity properties. Even more, for 4* € L, defined by (11), the energy 4*e(u) - e(u) is a convex function of
0, and thus max g, A*e(u) - e(u) is also convex in 0.

The remainder of this section is devoted to the proof of Theorem 2.3. Those readers who are willing to
accept it may skip the rest of this section in a first pass.

Proof of Theorem 2.3. Let 6(x) be a fixed function in L*(Q; [0, 1]). Recall that %, is defined by (8). Similarly
we define

Ly = {A(x) measurable | A(x) € Ly a.e. in Q},
which satisfies ¥y C %, since for any 6, € [0, 1], Ly, C Gy,. Thus, we have

A* . dx A* . dx
max min JoAew) 2e(u) > sup min JoAe(w) Ze(u) .
A €Yy ueA fQ p|u| dx Are gy UEH fgﬁ|u| dx

(14)

(For a given function 6, the existence of a maximizer A* € %, for the left-hand side of (14) is guaranteed by
the homogenization theory.) By a result of Avellaneda [5], for each tensor 4] € Gy, there exists another
tensor By € Ly, such that 4¢ < B; in the sense of quadratic forms on the space of symmetric matrices. This
result easily extends to a tensor-valued function 4* € 4, for which there exists another tensor-valued
function B* € %, such that

A*(x) <B*(x) a.e. x € Q.

(This is obvious for piecewise constant function 4*, and since such tensors are dense in %, for the strong L7 (Q)
topology with 1 < p < +00, a density argument yields the desired result upon noticing the closed character of
Gy and Ly.) Clearly, it implies the converse inequality of (14) and the supremum in % is attained, i.e.,
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A* . dx A* . dx
max min JoAe(v) Ze(u) = max min Jo A e(w) Ze(u) . (15)
A* €Yy ueH fg ﬁ|u| dx A €Ly ueH fQ ﬁ|u| dx

On the other hand, another application of Avellaneda’s result [5] shows that locally the set Gy can also be
replaced by the set Ly of sequential laminates, i.e.,

Er*leagiA e(u) -e(u) = Er}g)((,A e(u) - e(u).

Remarking that, in view of definition (8) of ¥y, the constraint 4* € ¥, is local, for a given function u € #
we deduce

max JoA e(u) - e(u) dx _ Jo (maxycq, A"e(u) - e(u)) dx _ Jo (max ey, A%e(u) - e(u)) dx

F<h [y plul® dx Jopluf” dx Joplul* dx
JoAe(u) - e(u) dx

e K

Therefore, the min—max equality (13) is proved if we can show that

A . dx A* ) dx
max min fQ e(u) 23(”) o fg e(u) 2e(u) ’ 16
ATE€Ly ueH fgﬁ|u| dx ueA A€ fQ ﬁ|u| dx

where # is the subspace of H'(Q)" made of functions vanishing on I'p.
The proof of equality (16) is based on the following remark of [5]. Denoting by S¥~! the unit sphere in
RY, Ly is equivalently defined as the set of all fourth-order tensors 4*(v) given by

(1= 0)(ds =4 () " = (=) =0 [ f(e) dv(e) (17)
ov-
where v(e) is any probability measure on S¥~!, namely v > 0 and [, , dv(e) = 1 (in particular, (17) implies
that L, is closed). We denote by P the convex set of such probability measure on S¥~!. Before going on, we
simplify a little the notations. Let us define % by

@{ue%/mufdxl},
Q

which, by Rellich theorem, is a closed set for the weak topology in #. Let us also define a function g(u, v)
from % x L>*(Q;P) into R" by

g(u,v) = / A" (Ve(u) - eu) dr,

where 4*(v) is given by (17). With these notations (16) is equivalent to

- —mi ) 18
A ) = i g ) (%)

As proved in [25], for a given u € #, the function v — g(u,v) is concave in L*(Q;P) (remark that
u — g(u,v) is also convex in H'(Q)" but unfortunately not in ). Note that, for fixed v, there always exists
a minimizer (possibly non-unique) u € # of g(u,v): it is just a first eigenvector of the Hooke’s law A*(v)
corresponding to the first eigenvalue min,c4 g(u,v) (Which may have a multiplicity larger than one). The
function v — min,c4 g(u,v) is also concave (as the minimum of concave functions) on the convex set
L>*(Q; P), and it admits, at least, one maximizer v* because the maxima in (15) are attained. Of course, for
this measure v*, there exists a non-unique minimizer »* in % of g(u, v*). We shall prove that there exists a
choice of minimizer u* € 4 of g(u,v*) such that (u*,v*) is a saddle point of g(u,v), i.e., for any u € # and
any v € L>(Q; P)
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g, v) <g(',v) <g(u,v"). (19)

Then, it is a classical result in the calculus of variations to show that (19) implies the desired result (18). The
second inequality of (19) is obvious since it is just the definition of * as a minimizer of g(u, v*). To prove the
first inequality of (19), we introduce, for any measure v € L*(Q;P) and for any ¢ € [0, 1], a measure
v(t) = tv+ (1 — #)v* which, by convexity, also belongs to L>(Q; P). Let u(¢) denote a minimizer in % of
g(u, (). Since v* is a maximizer of min,c4 g(u,v), we have

g, v) = g(u(t),v(1)), (20)

which implies that, as ¢ goes to 0, the sequence u(¢) is bounded in H'(Q)". Therefore, there exists a limit i
such that, up to a subsequence u(¢) converges to # weakly in H'(Q)" and strongly in L?(Q)" by Rellich
theorem. Thus, & belongs to % too. Since v(¢) converges strongly to v* in L>(Q; P), as ¢ goes to 0, the
convexity of g(u, v) with respect to u in H'(Q)" (and not in %) implies

limg(u(r), v(1)) > g(a,v"),

which, in view of (20), proves that # is also a minimizer of g(u, v*) in 4. Hence, from now on, our choice of
minimizer «* is u* = #. By concavity of g(u, v) with respect to v, we have

gu(t),v(1)) = tg(u(®),v) + (1 = 1)g(u(t),v") = 1g(u(t),v) + (1 — )g(u’, v"). (21
Combining (20) and (21), for # > 0 we deduce

g, v) = g(u(t),v).
Then, letting ¢ goes to zero, by convexity of g(u,v) with respect to u in H 1(Q)N, we obtain

g, v') = g, v)
which completes the proof of the saddle-point result (19).

Remark 2.6. The key ingredients in the proof of the saddle-point inequality (19) are the convexity of
u— g(u,v) in H'(Q)" (although not in ), and the closeness of % for the weak topology of H'(2)". These
two arguments are still valid for more general objective functionals involving a sum of eigenvalues.
Therefore, Theorem 2.3 holds true also in this latter case.

3. Numerical algorithms for frequency optimization

This section presents the proposed numerical algorithms for eigenfrequency optimization, which are
based on the homogenization method. The first one is an optimality criteria method and is very similar to
those introduced in [2] for compliance optimization and [7,13] for eigenfrequencies optimization. The
second one is a gradient method, which is slower but more stable, at least when the first eigenvalue remains
simple (and thus differentiable). In both cases the key idea is to compute “generalized” optimal designs for
the relaxed formulation, rather than “classical” designs which are merely approximately optimal for the
original formulation. In a final stage classical designs are recovered from generalized ones by an adequate
penalization procedure which removes all the intermediate density regions from the final result.

Our first algorithm is an alternate direction optimization using optimality criteria for the relaxed for-
mulation

max {min Jo (maxecq, Ae(u) - e(u)) dx - 6/ 0(x) dx}. (22)

OcL>([0,1) | uer’ fg ﬁ|u\2 dx

We see (22) as a saddle point problem, and optimize separately and iteratively in 0, 4%, u. This is perfectly
legitimate for 4*, u since (22) is a saddle function with respect to these two variables. However, this strategy
may be discussed concerning 6 since the maximization with respect to 6 cannot be interchanged with the
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other optimizations. Eventually, the computation of a generalized optimal design is followed by a penal-
ization procedure which “projects” this generalized design on the space of classical designs. This procedure
amounts to run a few more iterations where the density 6 is forced to take values close to 0 or 1 (for details,
see [2]). Consequently, the algorithm is structured as follows:
1. Initialization of the design parameters (0, 4;) by taking 0, = 1 and A} = A4, everywhere in the domain.
2. Iteration until convergence:
(a) Computation of u, through a problem of linear elasticity with (0,_i,4;_,) as design variables.
(b) Updating of the design variables (0,,4}) for fixed u,.

Convergence of this iterative algorithm is detected when the objective function becomes stationary, or
when the change in the design variables becomes smaller than some preset threshold. The initialization can
also be done with a uniform composite material of given density 0y # 1, in order to initially satisfy the
volume constraint.

The optimality condition for 4* is simple. Assuming that the first eigenvalue remains simple (which is the
case in all computations below), it can be chosen pointwise in the computational domain as a rank-N
sequential laminate which maximizes the Hashin—Shtrikman bound

/IIpGaGXA*e(u) e(u). (23)

Alternatively, the bound (23) is equivalent (through a Legendre transform) to the following one

min 4" 'o - o, (24)
A*€Gy
namely an optimal 4* in (23) is also optimal in (24) for ¢ = A*e(u). Since we have explicit formula for an
optimal rank-N sequential laminate in (24) (see [2]), we rather use (24) instead of (23) for updating the
tensor A*. More precisely, in step (b) we compute 4 given by formula (11): its lamination directions
(ei), <<y are the principal directions of g, = 4;,_,e(u,), its lamination parameters (m;), ., are optimized
in terms of the eigenvalues of o, = 4*_e(u,) (see [2] for details).

The optimality condition with respect to 0 is troublesome. Indeed as remarked in [18], for fixed u, the
elastic energy [,A4"e(u) -e(u) is convex in 6 when 4* is a sequential laminate given by (11). Similarly,
the function ([, plu)" is also convex in 6. We do not know if the product of the two is convex (except in
the obvious cases where either the phase densities are equal or the phase elastic moduli are equal). Nev-
ertheless, it indicates that this optimality condition will have a tendency to produce 0/1 values of 0, and will
be unable to predict precise intermediate values. On the other hand, in the context of compliance opti-
mization for one loading case, we use a stress formulation which yields an explicit optimality condition for
the density 6 in terms of the stress. This later condition is much more satisfying since it corresponds to
minimizing a convex function of 6. For this reason, by the Legendre transform, we rewrite the elastic energy

Ae(u) - e(u) = max (2e(u) -0 — Ao 0),
where the maximum is attained by the true stress ¢ = A*e(u). For simplicity, we do not take into account
the denominator ( fgﬁ|u|2)71 in the optimality conditions. With all these simplifications, we compute the
density 0, as the unique maximizer of the following function

Jo A7 (0)a, - 6, dx
0) = — — ¢ | O0(x) dx.
70 Joy P(05—1) s> e /a ¥

In other words, 0, is the unique minimizer of —f(0) which is a convex function of 0 (see [2]). The explicit
formulae for updating the effective tensor 4* and the density 0, are therefore the same as those used for
compliance optimization problems (cf. Remark 2.4). These formulae, giving the optimal sequential lami-
nate, can be found in [4] for 2-D, and in [2] for 3-D. We use an additional procedure adjusting at each
iteration the value of the Lagrange multiplier £ to keep constant the total amount of material.

In the following numerical examples, the workspace Q is discretized with quadrangular (resp. hexaedral)
elements in 2-D (resp. 3-D). The displacement is approximated by Q1 interpolation and the resulting stress
field is averaged on each cell. The effective Hooke’s law is constant on each element.
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All the computations are performed with the bulk modulus x and the shear modulus 2u equal to 1. The
density p, is equal to 1 and the density p, of the weak material is equal to 10~2. The smallest admissible
value of 0 and for the proportions m; is 1073, in order to avoid very low proportions. In practice, the value
of this parameter is insignificant; any small number produces similar results. The density 0 is represented
with a gray scale: areas where 0 = 1 (pure material) are black, whereas white zones correspond to voids.
Gray zone represent composite material.

As a first example, we show in Fig. 1 the computed design of a 2-D cantilever. The workspace Q2 is a
1 x 2 rectangle, with a small fixed zone of density 10 in the middle of the upper side. This part is not subject
to optimization and its Lamé coefficient are the same as in the rest of the domain (Fig. 1-left). The first
eigenvalue is maximized with a weight constraint of 35% of the total volume. Fig. 1 shows the composite
(middle) and the penalized solution (right). The lowest eigenvalue of the composite design is multiplied by
a factor 9.04 compared to the first eigenvalue of the domain filled with a uniform isotropic composite
material of density 0.35 (to satisfy the volume constraint). The penalized design has his first eigenvalue
multiplied by 8.10.

For this test-case, the convergence is smooth. A nice property of the algorithm for compliance opti-
mization is the non-dependence of the solution with respect to the initial configuration. Fig. 2 shows dif-
ferent steps of the algorithm for this example, when initialized with a ““bad” configuration (the composite
solution turned upside-down). The stable solution is obtained after a few more iterations than in the
previous case. Fig. 3 is a plot of the first eigenvalue as a function of the algorithm’s iterations in both cases
(the peaks are due to a bad adjustment of the volume constraint at the beginning of the penalization
process).

As pointed out by some authors (see e.g., [7]) such kind of algorithms may show oscillations for some
test-cases, leading sometimes to non-convergence of the numerical method. Indeed, there is no guaranty
that this algorithm always increases the first eigenvalue. More than that, when the most compliant phase 4,
is almost degenerate, mimicking void, the first eigenvalue does not necessarily correspond to an eigenvector
supported mainly in the solid phase 4,. One possible explanation is that spurious eigenvalues appear
which correspond to vibrations of the weak phase only and have nothing to do with the optimized
structure. This phenomenon of “‘spectral pollution” is due to the process of replacing void by a very
compliant phase, which is clearly not correct in such a case. It has been rigorously analyzed in a similar

Fig. 1. Left: computation domain and boundary conditions for the “vertical” cantilever. Middle: composite solution. Right: penalized
solution.
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Fig. 3. History of the first eigenvalue for two different initial configurations

context in Section VII.1 of [34]. Numerically, this process starts as follows: after a number of iterations of
our above optimality criteria algorithm, during which the shape evolves smoothly and the first eigenvalue
increases, the shape breaks down quickly and the first eigenvalue oscillates below its previous value. This
phenomenon has nothing to do with a possible crossing of different modes and the first eigenvalue remains
simple. The algorithm has a tendency to produce zones which oscillate from low to high density between
two successive iterations. There are well-known remedies for stabilizing these types of computations (fil-
tering high strains in void region, following the right mode by orthogonality of successive eigenvectors), but
they are purely numerical tricks with no firm rigorous background. We have to recognize that the onset of
these instabilities is still mysterious for us.

Fig. 4 shows an example of blow-up of the solution in our first algorithm. The configuration of the test-
case is very similar to the previous one, except that the workspace is a rectangle 2 x 1. The solution is drawn
for different iterations.

In order to avoid this breakdown of the optimality criteria method we propose a second algorithm which
is a gradient method. Of course, a gradient method for maximizing the first eigenvalue is valid as long as the
first eigenvalue is simple and thus differentiable with respect to the design parameters (the same holds true
for any combination of the first eigenvalues). It ensures that the first eigenfrequency will always increase
through the iterations (although it can fall into a local maximum). We describe its 2-D implementation
(there is no conceptual difficulty for extending it to 3-D). By a matter of theory (cf. Remark 2.4), the
optimal laminate can always be chosen as a rank-2 laminate with orthogonal directions. Therefore, the
design parameters are the density 6 € [0, 1], the angle of rotation « € [0, nt], and the proportion m € [0, 1]. In
other words, the homogenized Hooke’s law 4*(6, o, m) is now given locally by

(1= 0)(ds = A"(0,,m)) " = (A = A1) = 00(2)" (mf (er) + (1 = m)[ (e2))Q(), (25)
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Fig. 4. Evolution of the design during the algorithm. Left to right: iteration number 1, 3, 7, 11, 12, 15, 25, 75, 100.

where (ej,e,) is a fixed orthonormal basis of R* and Q(«) is the fourth-order tensor corresponding to a
rotation of angle o in the physical space R*. The relaxed optimal design problem (10) is therefore equivalent
to

max max max {w%((%oc,m) —E/ 0(x) dx},
0cL>®(23]0,1]) aeL>®(;[0,1]) meL>(2;0,1]) Q

where w? is the first eigenvalue of (7). As is well-known, the computation of the partial derivatives with

respect to these parameters is easy when the first eigenvalue is simple and is more tricky if it is multiple. To

avoid any difficulties, we assume that the parameters (0,0, m) € L*(; [0, 1] x [0, 7] x [0, 1]) are such that

the first eigenvalue w?(0,a,m) is simple. Then, for a given direction (86, dx,om) € L*(Q)’ we define a

function of ¢ in the neighborhood of 0 by

F(t) = 01 (0 + 180,00 + tSo, m + tm). (26)
By a classical result of spectral perturbation (see e.g. [19], or Theorem 9.10 in [34]), for sufficiently small
non-negative values of 7 the first eigenvalue in (26) is simple and f(¢) is differentiable. The computation of

df/d#(0) is just a matter of algebra and the result is given in the following lemma.

Lemma 3.1. Assume that the first eigenvalue »?(0,0,m) is simple at (0,0, m) € L*(2;[0,1] x [0, 7] x [0, 1]).
Then, it is Gateaux differentiable with partial derivatives given by

(Vod")e(u) - e(u) — o} (p, — py)ul’

VQ Cl)% = 3 é,
(i) [ 7
(T )elt) - o)
Vm 1) = Y 9
) =

Joplul®
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where u is a first eigenvector for (7) associated to the first eigenvalue ?(0, 0, m) and
Vod* =B (0,m,a) + (0 — 1)B(0,m, )T (m,x)B" (0, m, ),
Vud* =000 —1)B ' (0,m,a)(f(e)) — f(er))B~ (0, m, ),
VA" =—0(0 — 1)B~1(0,m,0)(V,T(m,o))B~" (0,m, ),
with
T(m,0) = Q™' (o) (mf (er) + (1 — m)f (e2)) 0" (20),
and
B(0,m, o) = (A4, — A1)~ — 0T (m, o).

Of course, since there are constraints on the parameters m and 6 (that must stay both between 0 and 1),
the formulas of Lemma 3.1 are combined with a projection step in order to satisfy the constraints (including
also the total weight constraint). A line search is performed to compute a good descent step in this projected
gradient algorithm. Because of the high cost of the line search (each evaluation of the objective function is
an eigenvalue problem), the gradient method is more expensive than the optimality criteria. Therefore, in
practice our strategy is to start with the optimality criteria method and to switch to the gradient method
only when the computed first eigenvalue becomes lower than the previous one.

Fig. 5 is a plot of the convergence history of the method for the cantilever 2 x 1 described before. The
algorithm using explicit formulae is compared to the new algorithm using the projected gradient. The new
algorithm switches to the projected gradient after seven iterations. The erratic comportment of the first
algorithm is clearly visible on this plot, while the gradient method is stable and converges smoothly. Fig. 6
shows the resulting composite solution. The first eigenvalue is multiplied by a factor 5.03. We compared
this solution with the “usual” cantilever solution obtained by compliance optimization (two bars meeting at
right angle): the first eigenvalue for this latter shape is about 0.43, to be compared with the obtained value
of 1.43 for the optimal composite shape.

First eigenvalue

gradient method
---------- initial algorithm

1 " L 1 1 1 L 1
0 100 200
Iterations

Fig. 5. Evolution of the first eigenvalue with both algorithms for the cantilever 2 x 1.

Fig. 6. Composite solution for the cantilever 2 x 1.
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Fig. 7. Two optimal bridges for different workspaces.

As a last numerical example, we show in Fig. 7, two tridimensional computations of a bridge. The
roadway is not submitted to optimization. Its density is 3 while the density of the material used for opti-
mization is 1. The Lamé coefficients are the same for both subdomains. The first eigenvalue has been
optimized and the quite different designs have been obtained by changing the workspace (solid lines on the
pictures). In the second case, horizontal links at the top of the structure are allowed. A volume constraint of
30% of the total volume has been imposed in both cases. The penalized solution is drawn, showing the
contour plot of the density 0 for 0 > 0.4.

References

[1] G. Allaire, Z. Belhachmi, F. Jouve, The homogenization method for topology and shape optimization. Single and multiple loads
case, Revue Européenne des Eléments Finis 5 (1996) 649-672.

[2] G. Allaire, E. Bonnetier, G. Francfort, F. Jouve, Shape optimization by the homogenization method, Niimerische Mathematik 76
(1997) 27-68.

[3] G. Allaire, R.V. Kohn, Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials, Quat. Appl.
Math. 51 (1993) 643-674.



G. Allaire et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3565-3579 3579

[4] G. Allaire, R.V. Kohn, Optimal design for minimum weight and compliance in plane stress using extremal microstructures, Eur. J.
Mech. A/Solids 12 (6) (1993) 839-878.

[5] M. Avellaneda, Optimal bounds and microgeometries for elastic two-phase composites, SIAM J. Appl. Math. 47 (6) (1987)
1216-1228.

[6] M. Bendsoe, Methods for Optimization of Structural Topology, Shape and Material, Springer, Berlin, 1995.

[7] M. Bendsoe, A. Diaz, Optimization of material properties for improved frequency response, Struct. Optim. 7 (1994) 138-140.

[8] M. Bendsoe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods
Appl. Mech. Engrg. 71 (1988) 197-224.

[9] M. Bendsoe, C. Mota Soares (Eds.), Topology Optimization of Structures, Nato ASI Series E, Kluwer Academic Publishers,
Dordrecht, 1993.

[10] A. Cherkaev, R. Palais, Optimal design of three-dimensional axisymmetric elastic structures, in: N. Olhoff, G. Rozvany (Eds.),
Proceedings of the First World Congress of Structural and Multidisciplinary Optimization, Pergamon Press, Oxford, 1995,
pp- 201-206.

[11] S. Cox, R. Lipton, Extremal eigenvalue problems for two-phase conductors, Arch. Rat. Mech. Anal. 136 (1996) 101-117.

[12] G. Dal Maso, R. Kohn, The local character of G-closure, unpublished work.

[13] A. Diaz, N. Kikuchi, Solutions to shape and topology eigenvalue optimization problems using a homogenization method, Int. J.
Numer. Methods Engrg. 35 (1992) 1487-1502.

[14] J. Folgado, H. Rodrigues, Structural optimization with a non-smooth buckling load criterion, Control and Cybernetics 27 (1998)
235-253.

[15] G. Francfort, F. Murat, Homogenization and optimal bounds in linear elasticity, Arch. Rat. Mech. Anal. 94 (1986) 307-334.

[16] L. Gibianski, A. Cherkaev, Design of composite plates of extremal rigidity, Preprint, Ioffe Physicotechnical Institute, 1984.
(English translation in: Topics in the mathematical modeling of composite materials, in: A. Cherkaev, R.V. Kohn (Eds.), Progress
in Nonlinear Differential Equations and their Applications, Birkhaiiser, Boston, 1997).

[17] V. Jikov, S. Kozlov, O. Oleinik, Homogenization of Differential Operators, Springer, Berlin, 1995.

[18] C. Jog, R. Haber, M. Bendsoe, Topology design with optimized, self-adaptative materials, Int. J. Numer. Methods Engrg. 37
(1994) 1323-1350.

[19] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.

[20] R. Kohn, G. Strang, Optimal design and relaxation of variational problems I, Commun. Pure Appl. Math. 39 (1986) 113-137.

[21] R. Kohn, G. Strang, Optimal design and relaxation of variational problems II, Commun. Pure Appl. Math. 39 (1986) 139-182.

[22] R. Kohn, G. Strang, Optimal design and relaxation of variational problems III, Commun. Pure Appl. Math. 39 (1986) 353-377.

[23] R. Kohn, R. Lipton, Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials, Arch. Rat.
Mech. Anal. 102 (4) (1988) 331-350.

[24] L. Krog, N. Olhoff, Topology optimization of plate and shell structures with multiple eigenfrequencies, in: N. Olhoff, G. Rozvany
(Eds.), Proceedings of the First World Congress of Structural and Multidisciplinary Optimization, Pergamon Press, Oxford, 1995,
pp. 675-682.

[25] R. Lipton, A saddle-point theorem with application to structural optimization, J. Optim. Th. Appl. 81 (3) (1994) 549-567.

[26] K. Lurie, A. Cherkaev, A. Fedorov, Regularization of optimal design problems for bars and plates I, J. Optim. Th. Appl. 37
(1982) 499-521.

[27] K. Lurie, A. Cherkaev, A. Fedorov, Regularization of optimal design problems for bars and plates II, J. Optim. Th. Appl. 37
(1982) 523-543.

[28] Z. Ma, N. Kikuchi, H. Cheng, 1. Hagiwara, Topology and shape optimization methods for structural dynamic problems, in:
P. Pedersen (Ed.), Optimal Design with Advanced Materials, Elsevier, Amsterdam, 1993, pp. 247-261.

[29] F. Murat, Contre-exemples pour divers problemes ou le controle intervient dans les coefficients, Ann. Mat. Pura Appl. 112 (1977)
49-68.

[30] F. Murat, L. Tartar, H-convergence, in: Topics in the mathematical modeling of composite materials, in: A. Cherkaev, R.V. Kohn
(Eds.), Progress in Nonlinear Differential Equations and their Applications, Birkhaiiser, Boston, 1997. French version:
mimeographed notes, séminaire d’Analyse Fonctionnelle et Numérique de 1'Université d’Alger, 1978.

[31] F. Murat, L. Tartar, Calcul des Variations et Homogénéisation, Les Méthodes de ’'Homogénéisation Théorie et Applications en
Physique, Coll. Dir. Etudes et Recherches EDF, Eyrolles (1985) 319-369. (English translation in: Topics in the mathematical
modeling of composite materials, in: A. Cherkaev, R.V. Kohn (Eds.), Progress in Nonlinear Differential Equations and their
Applications, Birkhatiser, Boston, 1997).

[32] M.M. Neves, H. Rodrigues, J.M. Guedes, Generalized topology design of structures with a buckling load criterion, Struct. Optim.
10 (1995) 71-78.

[33] O. Oleinik, A. Shamaev, G. Yosifian, On the convergence of the energy, stress tensors and eigenvalues in homogenization
problems of elasticity, Z. Angew. Math. Mech. 65 (1985) 13-17 1985.

[34] J. Sanchez-Hubert, E. Sanchez-Palencia, Vibration and Coupling of Continuous systems. Asymptotic Methods, Springer, Berlin,
1989.

[35] O. Sigmund, Design of material structures using topology optimization, Ph.D. Thesis, Report S 69, Department of Solid
Mechanics, Technical University of Denmark, 1994.

[36] K. Suzuki, N. Kikuchi, A homogenization method for shape and topology optimization, Comput. Methods Appl. Mech. Engrg.
93 (1991) 291-318.

[37] M. Zhou, G. Rozvany, The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Comput.
Methods Appl. Mech. Engrg. 89 (1991) 309-336.



