
Homogenization and loalization in loally perioditransportGr�egoire Allaire � Guillaume Bal y Vinent Siess zMarh 7, 2002Dediated to the memory of Jaques-Louis LionsAbstratIn this paper, we study the homogenization and loalization of a spetral transportequation posed in a loally periodi heterogeneous domain. This equation models theequilibrium of partiles interating with an underlying medium in the presene of areation mehanism suh as, for instane, neutrons in nulear reators. The physialoeÆients of the domain are "-periodi funtions modulated by a marosopi variable,where " is a small parameter. The mean free path of the partiles is also of order ".We assume that the leading eigenvalue of the periodiity ell problem admits a uniqueminimum in the domain at a point x0 where its Hessian matrix is positive de�nite.This assumption yields a onentration phenomenon around x0, as " goes to 0, at anew sale of the order of p" whih is superimposed with the usual " osillations of thehomogenized limit. More preisely, we prove that the partile density is asymptotiallythe produt of two terms. The �rst one is the leading eigenvetor of a ell transportequation with periodi boundary onditions. The seond term is the �rst eigenvetor ofa homogenized di�usion equation in the whole spae with quadrati potential, resaledby a fator p", i.e., of the form exp �� 12"M(x� x0) � (x� x0)�, where M is a positivede�nite matrix. Furthermore, the eigenvalue orresponding to this seond term gives a�rst-order orretion to the eigenvalue of the heterogeneous spetral transport problem.IntrodutionThis paper is devoted to the homogenization of a transport equation in a loally periodimedium. We onsider the following eigenvalue problem for the transport equation8>>>><>>>>: "v � r�"(x; v) + �"(x; v)�"(x; v) � ZV �"(x; v0; v)�"(x; v0) dv0= �" ZV f"(x; v0; v)�"(x; v0) dv0 in 
� V�" = 0 on �� = f(x; v) 2 �
� V , v � n(x) < 0g (1)where 
 is a bounded onvex domain, V is the veloity spae, and the oeÆients (or ross-setions) are periodially osillating funtions de�ned by�"(x; v) = ��x; x" ; v� , �"(x; v0; v) = � �x; x" ; v0; v� , f"(x; v0; v) = f �x; x" ; v0; v� : (2)�Centre de Math�ematiques Appliqu�ees, Eole Polytehnique, 91128 Palaiseau Cedex, Frane, and CEASalay, DEN/DM2S, 91191 Gif-sur-Yvette, Frane (gregoire.allaire�polytehnique.fr)yDepartment of Applied Physis and Applied Mathematis, Columbia University, New York, NY 10027,USA (gb2030�olumbia.edu)zCEA Salay, DEN/DM2S, 91191 Gif-sur-Yvette, Frane (siess�soleil.serma.ea.fr)1



The "-saling in front of the advetion term in (1) means that the mean free path is ofthe same order as the period ". In nulear reator physis, (1) is known as the ritialityproblem for neutron transport. It expresses the balane between the prodution of neutronsby �ssion (the right hand side of (1)) and its absorption or sattering in the reator ore andleakage at the boundary (the left hand side of (1)). The unknowns are the neutron density(or ux) �"(x; v) and the eigenvalue �" (the inverse of whih is alled multipliation fator),whih measures the balane between the prodution and removal of neutrons. Sine onlypositive densities have a physial meaning, the only relevant solution turns out to be the �rsteigenvetor (positive and unique up to a multipliative onstant). There are of ourse otherphysial motivations for the study of (1), inluding photon transport, radiative transfer, andsemi-ondutors.Sine the pioneering work of Larsen [19, 20, 21℄ (not to mention the previous physisliterature), many papers have been devoted to the time evolution version of problem (1)(see e.g. [8℄, [12℄, [17℄, [16℄, [27℄). The eigenvalue problem (1) was studied in [2℄, [7℄. Inall these papers, there is always an assumption of pure periodiity, whih means that theoeÆients in (2) depend solely on the fast variable y = x=" and not on the slow variablex. In truth the papers [17℄ and [16℄ do not make preisely suh an assumption but ratherassume that the resulting loal behavior is not osillating, i.e. depends on x but not ony = x=". In any ase, the possibility of a strong oupling of the fast and slow variableshas never been explored in full generality with oeÆients de�ned by (2). We address thisproblem under a suitable strutural assumption and show that the homogenized limit is verydi�erent from that obtained in the purely periodi ase. To explain our results we introduethe ell eigenvalue problem whih is de�ned for eah x 2 
 by8<: v � ry +� = ZV � dv0 + �1(x) ZV f dv0 in Yy 7!  (x; y; v) Y � periodi; (3)where (�1(x);  (x; y; v)) is the �rst or leading eigenouple and Y = (0; 1)N . Our struturalassumption is that the funtion x 7! �1(x) admits a unique minimum at x0 2 
 and that itsHessian matrix is positive de�nite at x0. We also make a no-drift assumption whih amountsto a phase-spae symmetry ondition (this assumption an be removed as was shown in[7℄). Our main result (see (32) for a formal asymptoti result and Theorem 3.2 for a preisestatement) is that, asymptotially as " tends to zero, the �rst eigenfuntion of (1) behavesas �"(x; v) �  �x0; x" ; v� exp��M(x� x0) � (x� x0)2" �; (4)whereM is a positive de�nite matrix depending on some homogenized properties and on theHessian of �1 at x0. It is lear from (4) that �" is loalized near x0 at a length sale of orderp". Furthermore, the �rst eigenvalue an be expanded as�" = �1(x0) + "�1 + o(");where �1 is expliit in terms of M and other homogenized quantities (see (26), (31), andremark 3.1). Even when the oeÆients do not osillate (i.e. are funtions of x but not ofx=") the asymptoti result (4) is non trivial and new to the best of our knowledge. Ourresults extend a previous study made in [4℄ on a similar eigenvalue problem for a di�usionequation. Related results on di�usion equations may be found in [3℄, [18℄, and [24℄.The paper is organized as follows. In the next setion we introdue our notation and de-tailed assumptions, and we reall some basi mathematial properties of transport equations.Setion 2 is devoted to the homogenization of (1) by means of asymptoti expansions. Thismethod is formal but it has the advantage of being easily aessible without any knowledge2



of funtional analysis. Setion 3 is devoted to a detailed presentation of the rigorous onver-gene results onerning the homogenization of (1). The proofs of these results are given insetions 4 and 5. More preisely, setion 4 fouses on a priori estimates for a soure problemassoiated with (1), while setion 5 is onerned with the proof of the homogenization pro-ess, using the two-sale onvergene method. Finally, Setion 6 is devoted to some auxiliaryell problems.1 Assumptions and notationThis setion is devoted to a preise statement of our main assumptions and to a brief presen-tation of our notation and of lassial results in transport theory that are neessary for ouranalysis. We inlude these known results (without proofs) for ompleteness, and we refer to,e.g., [2, 6, 11℄ for details. We �rst give the detailed assumptions on the physial parametersthat are used throughout this paper.(H1) The domain 
 is a onvex bounded open set of RN , and the veloity spae V is aompat subset of RN whih does not ontain 0. Furthermore V is assumed to be thelosure of an open set, and its N -dimensional measure is normalized to have jV j = 1.(H2) The ross-setions �(x; y; v), �(x; y; v0; v), and f(x; y; v0; v) are of lass C2 in x 2 
and measurable in y. They are positive, bounded Y -periodi funtions in y, whereY = (0; 1)N is the unit ube, and there exists a positive onstant C > 0 suh that, fora.e. (x; y; v; v0), f(x; y; v0; v) � C;�(x; y; v)� ZV �(x; y; v0; v) dv0 � C;�(x; y; v)� ZV �(x; y; v; v0) dv0 � C: (5)Remark 1.1 There are possible variants of assumption (H2) whih may be more appropriatefor some appliations. For example, as it stands, (H2) implies that partile reation ourseverywhere, whih is not the ase in neutron transport where �ssion takes plae only in thenulear fuel and not in the moderator. This an easily be orreted by replaing the �rstinequality in (5) by �(x; y; v0; v) + f(x; y; v0; v) � C; a.e. (x; y; v; v0)with f � 0 and f 6� 0. This implies that the sum of �ssion and sattering is positiveeverywhere. Up to some additional tehnialities, all our results also hold in this framework.Introduing the Hilbert spaeW 2(
� V ) = fu 2 L2(
� V ), v � ru 2 L2(
� V )g; (6)assumptions (H1) and (H2) allow to state the following existene result.Theorem 1.2 The spetral problem (1) has at most a ountable number of eigenvalues andof assoiated eigenvetors in W 2(
�V ). Furthermore, there exists a real and positive eigen-value, of smallest modulus, with multipliity one, and suh that its assoiated eigenvetor isthe unique (up to a multipliative onstant) positive eigenvetor of (1).The proof of Theorem 1.2, whih is in the spirit of other results in [11, hapter 21℄, an befound in [6℄. As a onsequene of Theorem 1.2, only the �rst eigenvetor of (1) has a physialmeaning as a partile density. 3



As we shall see in the sequel, the asymptoti behavior of the eigenvetors of (1) is partlygoverned by the �rst eigenvetor of another eigenvalue problem, similar to (1) but posedin the unit periodiity ell Y with periodi boundary onditions. Denoting by �1(x) and (x; y; v) its �rst eigenvalue and eigenvetor, the in�nite medium problem is de�ned for eahparameter x 2 
 by8>>>><>>>>: v � ry (x; y; v) + �(x; y; v) (x; y; v) = ZV �(x; y; v0; v) (x; y; v0) dv0+�1(x) ZV f(x; y; v0; v) (x; y; v0) dv0y 7!  (x; y; v) Y � periodi: (7)We shall also need an adjoint problem to (7), whih has the same �rst eigenvalue �1(x) witha di�erent �rst eigenvetor  �(x; y; v). Introduing the adjoint ross-setionsf�(x; y; v0; v) = f(x; y; v; v0) and ��(x; y; v0; v) = �(x; y; v; v0);this adjoint problem is de�ned by8>>>><>>>>: �v � ry �(x; y; v) + �(x; y; v) �(x; y; v) = ZV ��(x; y; v0; v) �(x; y; v0) dv0+�1(x) ZV f�(x; y; v0; v) �(x; y; v0) dv0y 7!  �(x; y; v) Y � periodi: (8)As a orollary of Theorem 1.2 there exist leading eigenvalues and eigenvetors for the ellproblems (7) and (8), whih an be hosen positive.Theorem 1.3 There exists a ommon eigenvalue �1(x) to both problems (7) and (8), whihis real, positive, of smallest modulus, with multipliity one, and suh that the respetiveeigenvetors  and  � are positive elements of W 2(Y � V ).We are now in a position to give our next assumptions.(H3) We assume that x 7! �1(x) admits a unique minimum at x0 2 
 and that its Hessianmatrix is positive de�nite at x0. Without loss of generality, we suppose that x0 = 0�1(x) = �1(0) + xkxl �2kl + o(jxj2);and (�2kl)1�k;l�N is a positive de�nite matrix.(H4) Finally, we need the additional hypothesis that the drift uxJ(x) = ZY ZV v (x; y; v) �(x; y; v) dydv (9)vanishes at x = 0, i.e. J(0) = 0.Remark 1.4 Assumption (H3) is somehow generi as soon as we are interested in non-onstant eigenvalues �1(x). Let us mention at least one (simple) ase when it holds true:take �(x; y; v) = �0(y; v), �(x; y; v0; v) = �0(y; v0; v) and f(x; y; v0; v) = k(x)f0(y; v0; v) sothat �1(x) = �0=k(x), and (H3) is satis�ed for a properly hosen funtion k(x).Remark 1.5 The assumption (H4), J(0) = 0, an be interpreted as a symmetry onditionin the phase spae (or a no-drift ondition), as explained in [2℄ or [6℄. It is quite usual in thistype of problem (for example, it is imposed in [17℄, [16℄). In most pratial ases, assumption4



(H4) holds true. For example, J(0) = 0 when V = �V (in the sense that v 2 V ) �v 2 V )and the ross setions do not depend on the veloity variable (this is the so-alled one-veloityisotropi ase), or when the ross-setions are symmetri with respet to v, and the ell Yhas ubi symmetry. The paper [7℄ addresses the ase when the drift J(0) is not zero andthe oeÆients are purely periodi funtions. We briey disuss another possible hypothesiswhen J(0) 6= 0 in Setion 6.In the sequel we shall also need the following results. Sine the smallest eigenvalue �1(x)is simple, the lassial Fredholm alternative for ompat operators yields an existene resultfor (7) with a soure term.Proposition 1.6 Let x 2 
 be �xed and let �1(x) and  (x; y; v) be the �rst eigenvalue andeigenvetor of (7). Let S(x; y; v) be a soure term in L2(Y �V ). Then there exists a solution'(x; y; v) 2W 2(Y � V ) of8>>>><>>>>: v � ry'(x; y; v) + �(x; y; v)'(x; y; v) = ZV �(x; y; v0; v)'(x; y; v0) dv0+�1(x)ZV f(x; y; v0; v)'(x; y; v0) dv0 + S(x; y; v)y 7! '(x; y; v) Y � periodiif and only if S is orthogonal to the �rst eigenvetor  � of (8), i.e., S satis�es the ompatibilityondition ZY ZV S(x; y; v) �(x; y; v) dydv = 0:Furthermore, if it exists, the solution ' is unique up to the addition of a multiple of  .The �rst eigenvetors  and  � are bounded from above and below by positive onstants asstated in the following proposition, based on the averaging lemma [14℄ and Sobolev inequal-ities, the proof of whih an be found in [2℄.Proposition 1.7 Let  and  � be the �rst positive eigenvetors of problems (7) and (8),respetively. Then there exist two positive onstants 0 < C � C 0 suh that, for a.e. (x; y; v),0 < C �  (x; y; v) � C 0 and 0 < C �  �(x; y; v) � C 0:Finally, we state a ompatness result for transport equations whih is a straightforwardvariation of the lassial veloity averaging lemma of [14, 15℄.Lemma 1.8 Let u"(z; v) be a family of funtions of W 2(RN � V ) suh that there exists apositive onstant C independent of " satisfyingk (1 + jzj)u"(z; v) kL2(RN�V ) + k v � ru"(z; v) kL2(RN�V )� C:Then the family RV u"(z; v) dv is relatively ompat in L2(RN ).In the sequel, we always assume that hypotheses (H1)-(H4) hold.2 Asymptoti expansionTo address the phenomenon of onentration and homogenization for (1) the simplest ap-proah is the lassial tehnique of two-sale asymptoti expansions, oupled with Taylorexpansions around the onentration point x = 0. This is a formal method whih has theadvantage of avoiding all the �ne points of funtional analysis that are required for a onver-gene proof. Therefore, we believe it is interesting even though we shall not use the results5



of this setion in our onvergene theorem of Setion 3. Remark that it is possible to justifythe asymptoti expansion by a areful study of the remainder terms, but this method hastwo drawbaks. First, it requires smoother physial data. Seond, it gives a full justi�ationonly of the �rst term in the expansion although the expansion ontains four terms. Thisphenomenon is well doumented in [4℄.The �rst step of the derivation is to approximate the following funtions around x = 0by their Taylor expansions (the Einstein onvention of summation over repeated indies isused)8>>>>>>><>>>>>>>: � (x; y; v) = �0 (y; v) + xk�1k (y; v) + xkxl �2kl (y; v) + o(jxj2)� (x; y; v0; v) = �0 (y; v0; v) + xk�1k (y; v0; v) + xkxl �2kl (y; v0; v) + o(jxj2)f (x; y; v0; v) = f0 (y; v0; v) + xkf1k (y; v0; v) + xkxl f2kl (y; v0; v) + o(jxj2) (x; y; v) =  0(y; v) + xk 1k(y; v) + xkxl  2kl(y; v) + o(jxj2)�1(x) = �1(0) + xkxl �2kl + o(jxj2): (10)Here we use the following notation. For any funtion g(x), we de�ne g1k = �g�xk (x = 0), andg2kl = 12 �2g�xk�xl (x = 0). We also de�ne 2(�2kl) as the Hessian matrix of x 7! �1(x) at x = 0,where �1 is assumed to reah its minimum.Following [4℄, where a similar problem for the di�usion equation is onsidered, we intro-due the following ansatz for the �rst eigenpair of (1)8>>><>>>: �"(x; v) = exp��Mx � x2" � h�0 �x" ; v�+ xk�1k �x" ; v�+ xkxl �2kl �x" ; v�+ "�3 �x" ; v�+ r"(x; v)i�" = �0 + "�1 + o(") (11)where �0, �1k, �2kl, and �3 are Y -periodi funtions in their �rst argument to be determined,M is an unknown symmetri positive de�nite matrix, and r" is a small remainder term. Thematrix M being positive de�nite, we notie that, for any p 2 N,k xp exp ��Mx�x2" � kLr(
)k exp ��Mx�x2" � kLr(
) � O(" p2 ) for any r 2 [1;+1℄:Assuming that the �rst term �0 in the asymptoti expansion is normalized suh that itsL2-norm is 1, then the seond term �1 = (�1k) will be of order p", and the third and fourthterms �2 = (�2kl) and �3 of order ". After some algebra, we �ndr(�") = 1" exp��Mx � x2" �hry�0 �x" ; v�+ (xkry�1k �Mx�0)�x" ; v�+ �xkxlry�2kl �Mxxk�1k� �x" ; v�+ " ��1 +ry�3� �x" ; v�+ r0"(x; v)i ;where, as usual, rx and ry denote partial derivatives with respet to the slow variable xand fast variable y, respetively, and r0" is a remainder term. Identifying all terms aordingto their power in x and ", we obtain a asade of equations from whih we keep the four �rstones. The zeroth order terms yieldv � ry�0 +�0�0 = ZV �0�0 + �0 ZV f0�0: (12)The �rst order terms in x give for all k 2 f1; :::; Ngvi(�yi�1k �Mik�0) + (�0�1k +�1k�0) = ZV (�0�1k + �1k�0) + �0 ZV (f0�1k + f1k�0); (13)6



where �yi denotes the i-th omponent of the gradient ry. The seond order terms in x givefor all k; l 2 f1; :::; Ng,vi(�yi�2kl �Mil�1k) + (�0�2kl +�1k�1l +�2kl�0) =ZV (�0�2kl + �1k�1l + �2kl�0) + �0 ZV (f0�2kl + f1k�1l + f2kl�0) (14)(the formula (14) has to be symmetrized with respet to k; l sine xkxl is itself symmetri),and the �rst order terms in " yieldvi(�1i + �yi�3) + �0�3 = ZV �0�3 + �0 ZV f0�3 + �1 ZV f0�0: (15)Eventually, solving these equations leads to the asymptoti behavior of �". Equation (12)allows us to determine �0 and �0. Equations (13) and (14) allow us to determine �1k and �2kl,and some ompatibility onditions will give us the expression for M . Finally, equation (15)determines the " order term �3 and its solvability ondition gives the �rst order orretor �1for the eigenvalue.2.1 Zeroth order equationSine at x = 0 the funtions in (10) oinide with the zero-order terms in their Taylorexpansions, the zeroth order equation (12) is simply the periodi ell problem (7) at x = 0.Thanks to Theorem 1.3, (12) has thus a unique positive solution given by�0(y; v) =  0(y; v); �0 = �1(0); (16)where  0(y; v) is equal to  (x = 0; y; v) up to some multipliative onstant depending on thenormalization of �".2.2 First order equation in xFor eah k, equation (13) an be written as followsv � ry�1k +�0�1k = ZV �0�1k + �0 ZV f0�1k + g1k; (17)where the soure term g1k is given byg1k = viMik 0 � �1k 0 + ZV �1k 0 + �0 ZV f1k 0:Aording to the Fredholm alternative of Proposition 1.6, these equations an be solved ifand only if the soure-term g1k is orthogonal to  0�(y; v) =  �(0; y; v), i.e.,ZY ZV �viMik 0 � �1k 0 +�ZV �1k 0�+ �0�ZV f1k 0�� 0� = 0: (18)Upon di�erentiating the in�nite medium equation (7) with respet to x at x = 0, we obtainv � ry 1k +�0 1k +�1k 0 = ZV �0 1k + ZV �1k 0 + �0 ZV f0 1k + �0 ZV f1k 0; (19)whih admits  1k = (�xk 0)(x = 0) as a solution. Still, it admits a solvability ondition givenby ZY ZV ���1k 0 +�ZV �1k 0�+ �0�ZV f1k 0�� 0� = 0: (20)7



Thus, (13) is solvable if and only ifZY ZV viMik 0 0� = 0;or equivalently if and only if M ZY ZV v 0 0� = 0:The latter equation holds thanks to hypothesis (H4), hene (13) admits solutions. We shallsee later on that M is a symmetri positive de�nite matrix, so (H4) is a neessary andsuÆient solvability ondition for equation (13). The solution �1k of (17) an be written asthe sum of two terms �1k = �Mkj�j +  1k; (21)where  1k is de�ned in (10) and �j is the solution of the following equationv � ry�j +�0�j = ZV �0�j + �0 ZV f0�j � vj 0: (22)Sine J(0) = 0, the solvability ondition of this equation is veri�ed, and therefore �j isuniquely de�ned up to a multiple of  0. Notie that terms proportional to  0 an be inor-porated into �0 in (16).2.3 Seond order equation in xFor eah k; l, equation (14) an be rewritten asv � ry�2kl +�0�2kl = ZV �0�2kl + �0 ZV f0�2kl + g2kl;where the soure term is given byg2kl = viMil�1k � �1k�1l � �2kl 0 + ZV �1k�1l + ZV �2kl 0 + �0 ZV f1k�1l + �0 ZV f2kl 0: (23)In truth, g2kl is symmetri with respet to k; l so that equation (23) should be symmetrized(for brevity we do not inlude the symmetri terms in (23)). Again, this equation admits asolution if and only if g2kl is orthogonal to  0�. Owing to (21), the soure term g2kl an bereast asg2kl = �viMilMkj�j + viMil 1k +�1kMlj�j � �1k 1l � �2kl 0+ ZV (��1kMlj�j + �1k 1l + �2kl 0) + �0 ZV (�f1kMlj�j + f1k 1l + f2kl 0);whih after reordering yieldsg2kl = �MilMkj vi�j+Mil�vi 1k +�1k�i � ZV �1k�i � �0 ZV f1k�i�+���1k 1l � �2kl 0 + ZV (�1k 1l + �2kl 0) + �0 ZV (f1k 1l + f2kl 0)� :Upon di�erentiating the in�nite medium equation (7) twie in x at x = 0, we obtainv � ry 2kl +�0 2kl +�1k 1l +�2kl 0 = ZV (�0 2kl + �1k 1l + �2kl 0)+�0 ZV (f0 2kl + f1k 1l + �2kl 0) + �2kl ZV f0 0;8



whih admits a solution by onstrution. We rewrite this equation asv � ry 2kl +�0 2kl = ZV �0 2kl + �0 ZV f0 2kl+���1k 1l � �2kl 0 + ZV (�1k 1l + �2kl 0) + �0 ZV (f1k 1l + f2kl 0) + �2kl ZV f0 0� :Its solvability ondition readsZY ZV ���1k 1l � �2kl 0 + ZV (�1k 1l + �2kl 0)+�0 ZV (f1k 1l + f2kl 0) + �2kl ZV f0 0� 0� = 0: (24)Thus, the solvability ondition of (14) is�MilMkj ZY ZV vi�j 0�+Mil ZY ZV �vi 1k +�1k�i ��ZV �1k�i�� �0 �ZV f1k�i�� 0���2kl ZY ZV �ZV f0 0� 0� = 0: (25)As explained before, this equation has to be symmetrized with respet to k and l. This yieldsa quadrati matrix equation for the unknown M , whih readsMkjDSjiMil +BkiMil +MkiBil = Akl;or MDSM +BM +MB� = A; (26)where Akl = �2kl ZY ZV ZV f0(y; v0; v) 0(y; v) 0�(y; v0) dy dv dv0; (27)Bki = ZY ZV �vi 1k +�1k�i ��ZV �1k�i�� �0�ZV f1k�i�� 0�; (28)and DS denotes the symmetrial part of D, whih is given by the Kubo Formula (see [8, 19,27℄) Dij = � ZY ZV vi�j 0�: (29)Equation (26) is a Riati Equation, whih is lassial in Control Theory. The followingtheorem, whih an be found in [26, pp. 225-235℄ or in [25℄, ensures that this equationadmits a unique symmetri positive de�nite solution.Theorem 2.1 Let D and A be symmetri de�nite positive square matries, and let B be asquare matrix of the same size. Let us onsider the Riati matrix equationMDM +BM +MB� = A:Then there exists a unique symmetri de�nite positive solution M of this equation.9



Remark 2.2 In order to ompare the results given by asymptoti expansions and two-saleonvergene, it is worth notiing that Bki = �Ji�xk (0) :This result will be proved in setion 6. In the ase where rxJ(0) = 0, it allows us to have asimple expression for M . Indeed, M solves a Riati Equation now of the formMDSM = Aand M is therefore given byM = DS � 12 �DS 12ADS 12� 12 DS � 12 : (30)2.4 The " order equationFinally, equation (15) yields the �rst order orretor to the eigenvalue of our initial problem(1). Equation (15) an be written asv � ry�3 +�0�3 = ZV �0�3 + �0 ZV f0�3 + ��vi�1i + �1 ZV f0 0� :The Fredholm alternative shows that this equation admits a solution if and only ifZY ZV vi�1i 0� = �1 ZY ZV �ZV f0 0� 0�;whih eventually gives us the following orretion to the leading eigenvalue�1 = ZY ZV vi�1i 0�ZY ZV �ZV f0 0� 0� : (31)We have seen that �1i =Mij�j +  1i , and therefore, as  1i = �xi (x = 0),�1 = �Mij ZY ZV vi�j 0� + ZY ZV vi 1i  0�ZY ZV �ZV f0 0� 0� = Tr �MD�+ � ;where � and  are given by (34).2.5 Results of the asymptoti expansionWe will not try here to justify the full ansatz (11) for the eigenvetor �". Instead we willrigorously justify the result of exponential onentration postulated in (11) in the followingsetions with a di�erent method, and will show that the expressions for M , �0, �0, and �1predited by the asymptoti expansion are indeed orret. Let us mention that we will notseek any justi�ations for the higher order terms �1k , �2kl, and �3. Indeed, it is shown in [4℄in the similar ase of di�usion equations that the error term r" de�ned by�"(x; v) = exp��Mx � x2" ���0 �x" ; v�+ xk�1k �x" ; v�+ xkxl�2kl �x" ; v�+ "�3 �x" ; v��+ r"(32)is of order p" in any Lp norm, and hene of the same order as the �rst orretor term xk�1k.10



3 Main resultsThis setion is devoted to the statement of our main result on the homogenization on-entration in transport. Throughout this paper, the heterogeneous and periodi transporteigenvetors are normalized in suh a way that their L2-norm in the phase spae is 1,k �" kL2(
�V )= 1 and k  kL2(Y�V )= 1:We also normalize  � in suh a way that for all x 2 
,ZY ZV ZV f(x; y; v0; v) (x; y; v0) �(x; y; v) dydvdv0 = 1:3.1 The homogenized problemWe introdue the homogenized eigenvalue problem for the transport equation (1)8<: �div �Dru�+ �Az:z + �u+ z � �B�ru� = ��uu 2 H1(RN ) \ L2z(RN ); (33)where L2z(RN ) = fu(z) 2 L2(RN ); jzju(z) 2 L2(RN )g. This homogenized problem is aonvetion-di�usion problem, whih is posed on the whole spae RN . The homogenizedoeÆients are given by the following formulas8>>>>>>>>>>>>><>>>>>>>>>>>>>:
� = ZY ZV ZV f(0; y; v0; v) (0; y; v0) �(0; y; v) dydvdv0; = ZY ZV v � rx (0; y; v) �(0; y; v) dydv;Aij = �2ij ZY ZV ZV f(0; y; v0; v) (0; y; v0) �(0; y; v) dydvdv0;Bij = ZY ZV vj�xi(  �)(0; y; v) dydv;Dij = � ZY ZV vi �(0; y; v)�j(y; v) dydv; (34)

where the funtions �j(y; v) are de�ned as the solutions of the ell problems (22), i.e.,8>>>><>>>>: v � ry�j +�(0; y; v)�j = ZV �(0; y; v0; v)�j(y; v0) dv0+�1(0) ZV f(0; y; v0; v)�j(y; v0) dv0 � vj (0; y; v)y 7! �j(y; v) Y -periodi: (35)Aording to the Fredholm alternative, sine J(0) = 0, equation (35) has a solution �j , whihis unique up to the addition of a multiple of  (x = 0). Beause J(0) = 0, one an easilyhek that adding suh a multiple of  does not hange the homogenized oeÆients Dij .Remark 3.1 Equation (33) is well known in quantum mehanis where it is alled the har-moni osillator equation. The �rst eigenvetor of (33) is expliitly given by (see e.g. [13℄)u1(z) = exp��Mz � z2 � ;where, after some algebra, M is the solution of the same Riati Equation (26) as in theprevious setion. Moreover, the orresponding �rst eigenvalue is�1 = Tr �MD�+ � ;11



and orresponds to the �rst order eigenvalue orretor given by our asymptoti expansion.Reall that remark 2.2 states that B = rxJ(0) where J(x) is de�ned by (9). Therefore,if we assume that rxJ(0) = 0, the onvetion term in (33) disappear and M is given by theexpliit formula (30).It is well known that the spetral problem (33) is ompat in L2(RN ) beause of the pos-itive quadrati potential. Remark however that (33) is usually not self-adjoint. Therefore itsspetrum is made of at most a ountable number of �nite multipliity eigenvalues (possiblyomplex-valued). We label the eigenvalues of (33) by inreasing order of their real parts (withrepeated multipliity). Sine (33) satis�es a maximum priniple, by the Krein-Rutman the-orem it admits a �rst eigenvalue whih is real, positive, simple, and suh that its eigenvetoran be hosen positive in RN . In partiular, this implies that the spetrum of (33) is neverempty. Of ourse, if (33) is self-adjoint (in the ase where B = rJ(0) = 0), then it admits aountable in�nite number of real eigenvalues.3.2 Main resultThe main result of this paper, whih justi�es many of the homogenization and onentrationfeatures presented in the previous setion, is as follows.Theorem 3.2 We assume that (H1)-(H4) hold. Let (�1(x);  (x; y; v)) be the �rst positiveeigenpair of (7). Let (�m)1�m�m1 and (�"m)m be the eigenvalues (with repeated multipliityand in inreasing order) of the homogenized problem (33) and the original problem (1), re-spetively. Then, for any m 2 f1; :::;m1g and for suÆiently small ", there exists an mtheigenvalue �"m of (1) suh that �"m = �1(0) + "�m + o(");and, if �"m is a orresponding normalized eigenvetor of (1), then it satis�es�"m(x; v) =  �x; x" ; v�u"m� xp" ; v� ; (36)where, up to a subsequene, "N=4u"m(z; v) (properly extended to RN � V ) onverges to um(z)strongly in L2(RN � V ), and um is an eigenvetor assoiated to �m of the homogenizedonvetion-di�usion eigenvalue problem (33). Moreover, in the original domain we have thefollowing onvergenelim"!0 �"m(x; v)� "�N=4 �0; x" ; v�um� xp"�L2(
�V ) = 0: (37)Remark 3.3 The oeÆient "N=4 omes from the saling k�"mkL2(
�V ) = 1 whih impliesthat k"N=4u"mkL2(RN�V ) is of order one.The onvergene of the eigenvetors is obtained up to a subsequene beause of the possiblemultipliity of the limit eigenvalue. Sine the �rst eigenvalue �1 is simple, the whole sequene(�"1; u"1) onverges (and not merely a subsequene).In the sequel, we shall use the following onvenient notation: for a funtion g(x; y; v),Y -periodi with respet to the fast variable y, we de�neg"(x; v) = g �x; x" ; v� :To prove theorem 3.2, we �rst establish that the spetral problem (1) is equivalent to anotherproblem obtained by fatorization. 12



Proposition 3.4 Let  (x; y; v) be the positive eigenvetor of (7). Then, the linear operator8<: L2(
� V ) �! L2(
� V )�(x; v) 7�! u(x; v) = �(x; v) "(x; v) ; (38)is ontinuous and has a ontinuous inverse. With this hange of unknowns, the problem (1)is equivalent to the following spetral problem8<: v � ru" + �"u" + 1"Q"(u") + �1(x) � �1(0)" F "(u") = �"F "(u") in 
� Vu" = 0 on ��; (39)where we have de�ned8>>>>>>>>>>>>><>>>>>>>>>>>>>:
�" = �" � �1(0)"Q"(u)(x; v) = u(x; v) "(x; v) ZV �"1(x; v0; v)  "(x; v0) dv0� 1 "(x; v) ZV �"1(x; v0; v) "(x; v0)u(x; v0) dv0F "(u)(x; v) = 1 "(x; v) ZV f"(x; v0; v) "(x; v0)u(x; v0) dv0�"(x; v) = v � (rx )"(x; v) "(x; v) ; (40)

with the notation �1(x; y; v0; v) = �(x; y; v0; v) + �1(x)f(x; y; v0; v);��1(x; y; v0; v) = ��(x; y; v0; v) + �1(x)f�(x; y; v0; v): (41)Proof. The result is obtained by straightforward algebra. Notie that the positivity andboundedness of  that we stated in Proposition 1.7 are required to justify the hange ofunknown funtion (38).We next introdue another hange of variables, whih will be of ruial importane to displaythe onentration e�ets, 8<: 
 �! 
" = "�1=2
x 7�! z = xp" (42)For eah funtion g(x; y; v), Y -periodi with respet to the fast variable y, we introdue thenotation ~g"(z; v) = g�p"z; zp" ; v� ; with z = xp" 2 
":We similarly de�ne the operators ~Q" and ~F " fromQ" and F ". For instane, with this notationwe have r( ")(x; v) = �rx + 1"ry ��x; x" ; v� = �(rx )" + 1" (ry )"� (x; v);andr( ~ ")(z; v) = �p"rx + 1p"ry ��p"z; zp" ; v� = �p"^(rx )" + 1p" ^(ry )"� (z; v):Aordingly we obtain the following result. 13



Proposition 3.5 With the hange of variables (42), the spetral equation (39) beomes8<: 1p"v � r~u" + ~�"~u" + 1" ~Q"(~u") + �1(p"z)� �1(0)" ~F "(~u") = �" ~F "(~u") in 
" � V;~u" = 0 on �"�: (43)The spetral equation (43) is reast asS"~u" = 1�" + � ~u": (44)Here, the ompat (see [2, 6℄) operator S" is de�ned byS" : ( L2(
" � V ) �! L2(
" � V )~q(z; v) 7�! ~u"(z; v); (45)where ~u" denotes from now on the solution of the following soure problem assoiated to (39)8<: 1p"v � r~u" + ~�"~u" + 1" ~Q"(~u") + ��1(p"z)� �1(0)" + �� ~F "(~u") = ~F "(~q) in 
" � V~u" = 0 on �"�: (46)Notie the presene of a positive oeÆient � > 0 in equations (44) and (46). This oeÆientwill be useful in our energy estimates and is harmless beause it simply shifts the eigenvaluesof (43) to the right. The sequene ~u" is de�ned on domains 
" � V that depend on ". Toestablish a onvergene proof, we need to extend ~u" to RN � V as follows. We assume that~u" solves v � r~u" + e 1" ~u" = 0 on (RN n
")� V; (47)and impose the ontinuity of ~u"(x; v) aross the interfae �
" � V . We also assume that nopartiles arrive from in�nity, i.e., ~u"(x; v)! 0 as jxj ! 1.Theorem 3.6 Under the hypotheses of Theorem 3.2, the sequene ~u"(z; v) of solutions of(46) onverges strongly in L2(RN � V ) to u(z), the solution of the following homogenizedproblem 8<: �div �Dru�+ �Az:z + �� + �u+ z � �B�ru� = F (~q);u 2 H1(RN ) \ L2z(RN ); (48)where D, A, B, �, and  are given in (34) andF (~q) = ZY ZV ZV f(0; y; v0; v) (0; y; v0) q(z; v0) �(0; y; v) dydvdv0: (49)This theorem will be proved in setions 4 and 5.3.3 Proof of theorem 3.2We are now in a position to prove our main result. Let us de�ne the homogenized operatorS by 14



S : ( L2(RN � V ) �! L2(RN � V )~q(z; v) 7�! u(z);where u is the solution of the homogenized equation (48). Then S is a ompat operatorbeause H1(RN )\L2z(RN ) is ompatly embedded in L2(RN ). We dedue from Theorem 3.6that S" onverges to S pointwise in L2(RN � V ), in the sense that for all q 2 L2(RN � V ),then S"(q)! S(q) in L2(RN � V ) strongly.Furthermore, as a onsequene of Corollary 4.3, S" onverges ompatly to S, in thesense that, for every bounded sequene ~q" in L2(RN � V ), S"(~q") is relatively ompat inL2(RN �V ). The following lassial result in operator theory, realled here for ompleteness(see [5, 10℄), allows us to onlude that the spetrum of S" onverges to that of S. Eventually,estimate (37) is due to the speial form of the eigenfuntions of the homogenized problem(33), whih are exponentially deaying away from the onentration point 0, thus allowingto replae  (x; x="; v) by  (0; x="; v) in the fatorization (36).Theorem 3.7 Let X be a Banah spae, and (Tn)n2N a sequene of bounded operators inL(X) onverging ompatly to T . Let �(T ) and �(Tn) be the spetra of T and Tn respetively.Let � be an isolated eigenvalue of T of �nite (algebrai) multipliity m and let � be a losedJordan urve in the omplex plane enlosing � and leaving outside the rest of the spetrumof T . Then, for suÆiently large values of n, � enloses exatly m eigenvalues of Tn (withrepeated algebrai multipliity).Moreover, if �n is a sequene of eigenvalues of Tn onverging to �, and un is a sequeneof normalized assoiated eigenvetors, then, up to a subsequene, un onverges to a limit uin X whih is an eigenvetor of T assoiated with �.4 A priori estimatesThe �rst step in the proof of Theorem 3.6 is to derive a priori energy estimates for the soureproblem (46). These estimates are as follows.Lemma 4.1 Let ~u" be the unique solution of (46). Then there exists a positive onstant Cindependent of " and ~q, suh thatk ~u" kL2(
"�V ) + k v � r~u" kL2(
"�V ) +jzj ZV ~u"L2(
"�V )+ 1p"~u" � ZV ~u"L2(
"�V ) + 1" 14 k ~u" kL2(�"+;jv�nj) � C k ~q kL2(
"�V ) : (50)where L2(�"+; jv � nj) is the trae spae of funtions u satisfying R�"+(v � n) juj2d� < 1 with�"+ = f(x; v) 2 �
" � V j v � n(x) > 0g and d� = dvd� (d� being the surfae measure on�
").Proof. We multiply equation (46) by ~u" ~ " ~ �", taking into aount the notation (40), andintegrate over 
" � V to obtainZ
" ZV 1p"v � r~u"~u" ~ " ~ �" + v � (℄rx )"(~u")2 ~ �" + 1" ~Q"(~u")~u" ~ " ~ �"+��1(p"z)� �1(0)" + �� ~F "(~u")~u" ~ " ~ �" dzdv = Z
" ZV ~F "(~q)~u" ~ " ~ �" dzdv: (51)
15



Let I1 = 1p" Z
" ZV v � r~u"~u" ~ " ~ �" dzdv. Then we haveI1 = 1p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 1p" Z
" ZV v � r(~u" ~ " ~ �")~u" dzdv= 1p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 1p" Z
" ZV v � r~u"~u" ~ " ~ �" dzdv� 1p" Z
" ZV v � r( ~ " ~ �")(~u")2 dzdv= 12p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 12p" Z
" ZV v � r( ~ " ~ �")(~u")2 dzdv= 12p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 12 Z
" ZV v � (r̂x  �)"(~u")2 dzdv� 12" Z
" ZV v � (r̂y  �)"(~u")2 dzdv:Upon multiplying the in�nite medium equation (7) by  � and subtrating the adjoint equa-tion (8) multiplied by  , we getv � ry(  �) =  � ZV �1 dv0 �  ZV ��1 �dv0;where �1 and ��1 are de�ned in (41). Thus, it yields the following expression for I1I1 = 12p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 12 Z
" ZV v � r̂x  �"(~u")2 dzdv� 12" Z
" ZV (~u")2� ~ �" ZV ~�"1 ~ "dv0 � ~ " ZV ~��"1 ~ �"dv0� dzdv:Let I2 = 1" Z
" ZV ~Q"(~u")~u" ~ " ~ �" dzdv. Then,I2 = 1" Z
" ZV �(~u")2 ~ �" ZV ~�"1 ~ "dv0 � ~u" ~ �" ZV ~�"1 ~ "~u"dv0� dzdv:We dedue thatI1 + I2 = 12p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 12 Z
" ZV v � r̂x  �"(~u")2 dzdv+ 12" Z
" ZV �(~u")2 ~ �" ZV ~�"1 ~ "dv0�2~u" ~ �" ZV ~�"1 ~ "~u"dv0 + (~u")2 ~ " ZV ~��"1 ~ �"dv0� dzdv;and the third term in I1 + I2 is equal to12" Z
" ZV ZV ~u"(z; v)2 ~ �"(z; v)~�"1(z; v0; v) ~ "(z; v0)�2~u"(z; v) ~ �"(z; v)~�"1(z; v0; v) ~ "(z; v0)~u"(z; v0)+~u"(z; v0)2 ~ "(z; v0)~��"1(z; v; v0) ~ �"(z; v) dzdvdv0= 12" Z
" ZV ZV ~ �"(z; v) ~ "(z; v0)~�"1(z; v0; v) j~u"(z; v)� ~u"(z; v0)j2 dzdvdv0:At last, we �ndI1 + I2 = 12p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 12 Z
" ZV v � r̂x  �"(~u")2 dzdv+ 12" Z
" ZV ZV ~ �"(z; v) ~ "(z; v0)~�"1(z; v0; v) j~u"(z; v)� ~u"(z; v0)j2 dzdvdv0; (52)16



and it is straightforward to hek thatI1 + I2 � �C Z
" ZV (~u")2 dzdv + C2" Z
" ZV j~u" � ZV ~u"j2 dzdv + Cp" Z�+" (v � n)(~u")2: (53)Let I3 = Z
" ZV v �℄rx "(~u")2 ~ �" + � ~F "(~u")~u" ~ " ~ �" dzdv. Adding and subtrating theontribution � R
" RV (~u")2 ~ �" RV ~f" ~ " yieldsI3 = Z
" ZV �v �℄rx " + � ZV ~f" ~ "dv0� ~ �"(~u")2+�~u" ~ �"�ZV ~f" ~ "~u"dv0 � ~u" ZV ~f" ~ "dv0� dzdv: (54)Sine ~f", ~ " and ~ �" are bounded from below by positive onstants, hoosing a suÆientlylarge value of � (whih is independent of " and q), we an estimate the �rst term in I3 frombelow by C(�) Z
" ZV (~u")2dzdv: (55)The seond term in I3 is given by� Z
" ZV ~u" ~ " ~ �" � ~F "(~u")� ~u" ~F "(1)� dzdv= � Z
" ZV ~u" ~ " ~ �"� ~F "(~u" � ZV ~u")� ~F "(1)(~u" � ZV ~u")� dzdv:Its sign is not known a priori, but this term is bounded in absolute value byC k ~u"kL2(
"�V )~u" � ZV ~u"L2(
"�V ): (56)Let us de�ne I4 = R
" RV "�1(�1(p"z) � �1(0)) ~F "(~u")~u" ~ " ~ �" dzdv. Aording to thehypotheses on the funtion x 7! �1(x), it is lear that �1(x) � �1(0) is bounded frombelow on 
 by a quadrati positive de�nite form, i.e.,9C > 0, 8x 2 
, �1(x)� �1(0) � Cx � x:Sine ~f", ~ " and ~ �" are also bounded from below by positive onstants, and V is boundedaording to (H1), we dedue thatI4 � C Z
" ZV jzj2~u" ~ �" �ZV ~u" ~f" ~ "dv0� dzdv � C Z
" �jzj ZV ~u"dv0�2 dz: (57)Finally, the right-hand side in (51) is equal to R
" RV ~u" ~ �" �RV ~f" ~ "~q� dzdvdv0, hene isbounded by C k ~u" kL2(
"�V )k ~q kL2(
"�V ) : (58)Summing up the estimates in (53), (55), (56), (57), and (58), we dedue thatC k ~u" k2L2(
"�V ) +C" ~u" � ZV ~u"2L2(
"�V ) + Cp" k ~u" k2L2(�+" ;jv�nj)�C k ~u" kL2(
"�V ) ~u" � ZV ~u"L2(
"�V ) + Cjzj ZV ~u"2L2(
"�V )� C k ~u" k2L2(
"�V )k ~q kL2(
"�V ) : (59)17



Consequently, we haveC" �~u" � ZV ~u"� " k ~u" k�2 + (C � C") k ~u" k2 +Cjzj ZV ~u"2 � C k ~u" k k ~q kThis implies �rst that k ~u" kL2(
"�V )� C k ~q kL2(
"�V ), and then,jzj ZV ~u"L2(
"�V ) � C k ~q kL2(
"�V ) :Next we observe thatC �k ~u" k �~u" � ZV ~u"�2 +�C" � C�~u" � ZV ~u"2 � C k ~u" k k ~q k;whih gives us 1p"~u" � ZV ~u"L2(
"�V ) � C k ~q kL2(
"�V ) :Finally, the bound for k v � r~u" kL2(
"�V ) is dedued from equation (46) sinev � r~u" = �p"v �℄rx "~ " ~u" � 1p" ~Q"(~u")���1(p"z)� �1(0)p" +p"�� ~F "(~u") +p" ~F "(~q):The �rst and fourth term on the right-hand side are easily bounded by p"C k ~u" k andp"C k ~q k and hene by p"C. Sine ~Q"(~u") = ~Q"(~u" � RV ~u"), the seond term is boundedby 1p"C k ~u" � RV ~u" k and hene by C. Sine �1(x)� �1(0) is bounded on 
 by Cjxj, thethird term is bounded by C k jzj RV ~u" k +p"C k ~u" k and hene by C. This onludes theproof of the lemma.We now extend ~u" to RN as in the preeding setion by imposing that it solve (47), thatit be ontinuous aross the interfae �
" � V , and that ~u"(x; v) ! 0 as jxj ! 1. The verystrong absorption in RN n
" allows us to prove by integration along harateristis that theabove a priori estimates also hold for the extended funtion ~u" (remark that we need theestimates on �+" to establish the following orollary). Thus we obtainedCorollary 4.2 Let ~u" be de�ned on RN � V as above. Then we havek ~u" kL2(RN�V ) + k v � r~u" kL2(RN�V ) +jzj ZV ~u"L2(RN�V )+ 1p"~u" � ZV ~u"L2(RN�V ) � C k ~q kL2(
"�V ) : (60)We onlude this setion by stating an important result, whih derives from the above apriori estimates,Corollary 4.3 Let ~q" be a bounded sequene of L2(RN � V ). Let ~u" be the solution of (46),where ~q is replaed by ~q", and then extended to RN � V as above. Then, the sequene ~u" isrelatively ompat in L2(RN � V ).Proof. The previous a priori estimates still hold when ~q is replaed by ~q". Therefore,there exists C > 0 suh thatk ~u" kL2(RN�V ) + k v � r~u" kL2(RN�V ) +jzj ZV ~u"L2(RN�V ) � C:Using lemma 1.8, we dedue that the sequene RV ~u" is relatively ompat. But we also knowthat k ~u" � RV ~u" kL2(RN�V )� Cp". This proves the relative ompatness of the sequene~u". 18



5 Convergene proofThe aim of this setion is to prove Theorem 3.6. It is based on the use of the two-saleonvergene tehnique [1, 2℄.We �rst introdue some notation and denote by C1# (Y ) the spae of in�nitely di�erentiablefuntions in RN that are Y -periodi, and L2#(Y ) (respetively H1#(Y )) the ompletion ofC1# (Y ) for the norm of L2#(Y ) (respetively of H1#(Y )). Sine our funtions osillate withperiod p" on RN , our de�nition of two-sale onvergene is here:De�nition 5.1 A sequene of funtions g" in L2(RN � V ) is said to two-sale onverge toa limit g in L2(RN � Y � V ) if, for any funtion  in D(RN � V ; C1# (Y )), we havelim"!0 ZRN ZV g"(x; v) �x; xp"; v� dxdv = ZRN ZY ZV g(x; y; v) (x; y; v) dxdydv:We also reall here an important result of two-sale onvergeneTheorem 5.2 Let g" be a bounded sequene in L2(RN � V ). Then there exists a limit g inL2(RN � Y � V ) suh that, up to a subsequene, g" two-sale onverges to g.The a priori estimates obtained for ~u" will allow us to prove a result of two-sale onvergenefor ~u", and to guess what form its limit should have. This is the goal of the next proposition.Proposition 5.3 Let ~u" be a sequene in L2(RN � V ) suh that there exists a onstant Cindependent of " satisfying the following energy estimatek ~u" kL2(RN�V ) + k v � r~u" kL2(RN�V ) + 1p"~u" � ZV ~u"L2(RN�V )+jzj ZV ~u"L2(RN�V ) � CThen, there exists u0(z) in H1(RN ) \ L2z(RN ) and u1(z; y) in L2(RN � V ;H1#(Y )) suhthat, up to a subsequene, ~u"(z; v) strongly onverges to u0(z) in L2(RN ), v � r~u" two-saleonverges to v � rzu0 + v � ryu1, and 1p" (~u" � RV ~u") two-sale onverges to u1 � RV u1.The proof of this proposition follows from minor modi�ations of that of [2, Proposition 5.3℄.We dedue the following result from the above proposition.Proposition 5.4 Assume that hypotheses (H1)-(H4) hold. Let ~u" be the unique solution to(46) extended to RN by imposing that it solve (47), that it be ontinuous aross the interfae�
" � V , and that ~u"(x; v) ! 0 as jxj ! 1. With the notation of Proposition 5.3, u1 isgiven by u1(z; y; v) = NXj=1 �u0�zj (z) �j(y; v);where �j(y; v) is the unique solution of( v � ry�j +Q(0; �j) = �vj in Y � V;y 7! �j(y; v) Y � periodi; (61)up to an additive onstant. The operator Q(x; �) is de�ned byQ(x; u)(y; v) = u(y; v) (x; y; v) ZV �1(x; y; v0; v) (x; y; v0) dv0� 1 (x; y; v) ZV �1(x; y; v0; v) (x; y; v0)u(y; v0) dv0;19



and the adjoint operator Q�(x; �) byQ�(x; u)(y; v) = u(y; v) (x; y; v) ZV �1(x; y; v0; v) (x; y; v0) dv0� (x; y; v) ZV ��1(x; y; v0; v) 1 (x; y; v)u(y; v0) dv0:Proof. Let �(x; y; v) be a smooth Y -periodi funtion with ompat support in its �rstvariable. Multiplying (46) by p"�(z; zp" ; v) and integrating over RN � V yieldsZRN ZV v � r~u"� dzdv + ZRN ZV ~Q"( ~w")� dzdv = p"ZRN ZV ~S"�; dzdv; (62)where ~w" = ~u"�RV ~u"p" , and where the soure term is~S" = �~�"~u" ���1(p"z)� �1(0)" + �� ~F "(~u") + ~F "(~q):The di�erene �1(p"z)��1(0)p" is learly bounded in 
" by Cp"z �z. Thus, sine � has ompatsupport, the right-hand side in (62) onverges to 0 as " goes to 0. The �rst term in (62)onverges to RRN RY RV (v � rzu0 + v � ryu1)� dzdydv as " goes to 0.To study the onvergene of the seond term, we need to introdue some notation. We de�ne~ "0(z; v) =  �0; zp" ; v� ;and similarly ~ �"0 , ~�"10, f"0 , and the operators ~Q"0 and ~F "0 . By Lipshitz regularity of allphysial parameters, we dedue that��� ZRN ZV ( ~Q" � ~Q"0)( ~w")� dzdv��� � C(�)p" k ~w" kL2(RN�V ) :Introduing the adjoint sattering kernel ~Q�"0 , we obtainZRN ZV ~Q"( ~w") � dzdv = ZRN ZV ~w" ~Q�"0 (�) dzdv +O(p"):Next we hek that ~Q�"0 (�(z; zp" ; v)) two-sale onverges to Q�(0; �)(z; y; v) and thatlim"!0 k ~Q�"0 (�(z; zp"; v)) kL2(RN�V )=k Q�(0; �)(z; y; v) kL2(RN�V ) :This last property allows us to pass to the limit in a produt of two weakly onvergingsequenes [1℄. Sine w" two-sale onverges to u" � RV u", we get in the limit thatZRN ZY ZV (v � rzu0 + v � ryu1)� dzdydv + ZRN ZY ZV Q(0; u1 � ZV u1)� dzdydv = 0:Thus u1 is a solution of the following equation( v � ryu1 +Q(0; u1) = �v � rzuoy 7! u1(z; y; v)Y � periodi:Sine u0 depends only on z, we dedue that u1(z; y; v) =PNj=1 �u0�zj (z)�j(y; v), where �j is asolution of the following equation( v � ry�j +Q(0; �j) = �vjy 7! �j(y; v)Y � periodi:20



It is easy to see that �j = �j 0, and therefore, thanks to hypothesis (H4), this last equationis solvable, and has a unique solution, up to an additive onstant. This onludes the proofof our proposition.Proposition 5.5 With the same hypotheses as in the previous proposition, the sequene~u"(z; v) onverges strongly in L2(RN � V ) to u0(z) 2 H1(RN ), solution of the followingproblem8<: �div �Dru0�+ �Az:z +  + ���u0 + �div �B�z u0�� div(J)(0)u0� = F (~q)u0 2 H1(RN ) \ L2z(RN ); (63)where the oeÆients are de�ned in (34) and (49).Proof. Let us �rst de�ne, for 1 � i � n, the adjoint ell problem at x = 0( �v � ry(  ���i) +Q�(0;   ���i) = vi  �y 7! ��i(y; v)Y � periodi; (64)whih admits a unique solution, up to an additive onstant, sine RY RV vi  �dy dv = 0 atx = 0. Let �(z) be a smooth funtion with ompat support in RN . We de�ne�"(z; v) = �(z) +p" NXj=1 ���zj (z) ��j � zp" ; v� :Upon multiplying (46) by �" ~ " ~ �" and integrating over RN � V , we obtainZRN ZV 1p"v � r~u"�" ~ " ~ �" + ZRN ZV ~�"~u"�" ~ " ~ �" + ZRN ZV 1" ~Q"(~u")�" ~ " ~ �"+ ZRN ZV ��1(p"z)� �1(0)" + �� ~F "(~u")�" ~ " ~ �" = ZRN ZV ~F "(~q)�" ~ " ~ �"; (65)Denoting these integrals by J"i in the same order, (65) readsJ"1 + J"2 + J"3 + J"4 = J"5 :We now pass to the limit in eah term J"i . The right-hand side is given byJ"5 = ZRN ZV ZV f�p"z; zp" ; v0; v� �p"z; zp" ; v0�~q(z; v0) ��p"z; zp" ; v���h�(z) +p" NXj=1 ���zj ��j� zp" ; v�idzdvdv0;By Lipshitz regularity of the funtions f ,  , and  �, we haveJ"5 = ZRN ZV ZV f�0; zp"; v0; v� �0; zp"; v0�~q(z; v0) ��0; zp" ; v��(z) dzdvdv0 + C(�)p";Thus, it onverges toJ5 = ZRN ZY ZV ZV f (0; y; v0; v)  (0; y; v0) ~q(z; v0) � (0; y; v) �(z) dzdvdv0:21



The fourth term isJ"4 = ZRN ZV ZV ��1(p"z)� �1(0)" + �� f �p"z; zp" ; v0; v� �p"z; zp" ; v0� ~u"(z; v0)�(z) ��p"z; zp" ; v� dzdvdv0+p"ZRN ZV ZV ��1(p"z)� �1(0)" + �� f �p"z; zp" ; v0; v� �p"z; zp" ; v0� ~u"(z; v0) NXj=1 ���zj ��j ��p"z; zp" ; v� dzdvdv0;or, by Lipshitz regularity,J"4 = ZRN ZV ZV ��1(p"z)� �1(0)" + �� ~u"(z; v0)�(z)f �0; zp" ; v0; v� �0; zp" ; v0� ��0; zp"; v� dzdvdv0 +O(p");and, thus, onverges toJ4 = ZRN ZY ZV ZV (�2ijzizj + �)f(0; y; v0; v) (0; y; v0) �(0; y; v)u0(z)�(z) dzdydvdv0:The seond term isJ"2 = ZRN ZV v � rx  �p"z; zp" ; v� ~u"(z; v)�(z)(  �)�p"z; zp" ; v� dzdvdv0+p"ZRN ZV v � rx  �p"z; zp"; v� ~u"(z; v) NXj=1 ���zj ��j � zp"; v� (  �)�p"z; zp" ; v� dzdvdv0;or, by Lipshitz regularity,J"2 = ZRN ZV v � rx  �0; zp"; v� ~u"(z; v)�(z)(  �)�0; zp" ; v� dzdvdv0 +O(p");and thus onverges toJ2 = ZRN ZY ZV v � rx (0; y; v) �(0; y; v)u0(z)�(z) dzdydv:Let us next deal with the sum J"1 + J"3 . After integrating by parts, J"1 an be written as thesum of seven integrals8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

K"1 = � 1p" ZRN ZV ~u"v � rz� ~ " ~ �"K"2 = � ZRN ZV ~u"v � NXj=1rz ���zj ��j ~ " ~ �"K"3 = � 1p" ZRN ZV ~u"v � NXj=1 ���zjry��j ~ " ~ �"K"4 = � ZRN ZV ~u"v � �(r̂x  �)"K"5 = �1" ZRN ZV ~u"v � �(r̂y  �)"K"6 = �p" ZRN ZV ~u"v � NXj=1 ���zj ��j(r̂x  �)"K"7 = � 1p" ZRN ZV ~u"v � NXj=1 ���zj ��j(r̂y  �)"22



and J"3 is the sum of two integrals8>>><>>>: K"8 = 1" ZRN ZV ~Q"(~u")� ~ " ~ �"K"9 = 1p" ZRN ZV ~Q"(~u") NXj=1 ���zj ��j ~ " ~ �":We �rst observe that K"6 onverges to 0. Now, realling that�v � ry(  �) +Q�(  �) = 0;for eah x 2 
, we have K"5 +K"8 = 0:Again, we use Lipshitz regularity to show that K"2 and K"4 onverge toK2 = � ZRN ZY ZV vi ��j(y; v) (0; y; v) �(0; y; v)u0(z) �2��zizj (z) dzdydvand K4 = � ZRN ZY ZV v � rx(  �)(0; y; v)u0(z)�(z) dzdydv= � ZRN div(J)(0)u0(z)�(z) dzdydvrespetively. Sine we assume that our data are of lass C2 with respet to the slow variablex, we have for instane8>><>>: (̂  �)"(z; v) =   ��0; zp" ; v�+p"z � rx(  �)�0; zp"; v�+O(")~Q�"(h)(z; v) = Q�(0; h)�0; zp" ; v�+p"z � rxQ�(0; h)�0; zp" ; v�+O("):Therefore, the sum K"1 +K"3 +K"7 +K"9 is equal to S"1p" + S"2 +O(p"), whereS"1 = ZRN ZV �~u"(z; v)v � (rz�)(z)(  �)�0; zp" ; v��~u"(z; v)v � NXj=1 ���z (zj)ry(��j  �)�0; zp" ; v�+~u"(z; v) NXj=1 ���zjQ�(0; ��j  �)( zp" ; v);and S"2 = ZRN ZV �~u"(z; v)v � (rz�)(z)z � rx(  �)�0; zp" ; v��~u"(z; v) NXj=1 ���zj (z)v � ry(��jz � rx(  �))�0; zp" ; v�+~u"(z; v) NXj=1 ���zj z � rx(Q�)(0; ��j  �)( zp" ; v)+~u"(z; v) NXj=1 ���zjQ�(0; ��jz � rx(  �)( zp" ; v):23



Realling that ��j is the solution of the adjoint ell problem (64)�v � ry(  ���j) +Q�(  ���j) = vj  �;we obtain that S"1 = 0. Next, S"2 onverges toS2 = ZRN ZY ZV �vi �(  �)�xj (0; y; v) ���zi zju0(z)�u0(z) NXj=1 ���zj (z)v � ry(��jz � rx(  �))(0; y; v)+u0(z) NXj=1 ���zj (z)z � rx(Q�)(0; ��j  �)(y; v)+u0(z) NXj=1 ���zj (z)Q�(0; ��jz � rx(  �))(y; v)dzdydv:It is straightforward to verify that the last three terms in S2 vanish. After integrating byparts, we haveS2 = ZRN ZY ZV �zi(vi�xj (  �)zju0)�0 dzdydv = ZRN div �B�zu0��0 dz:Eventually, passing to the limit yieldsK2 + J2 + J4 + S2 +K4 = J5;or equivalently,� ZRN ZY ZV u0(z)vi��j(y; v) (0; y; v) �(0; y; v) �2��zi�zj dzdydv+ ZRN ZY ZV u0(z)v � rx (0; y; v) �(0; y; v)�(z) dzdydv+ ZRN ZY ZV ZV (�2ijzizj + �)f(0; y; v0; v) (0; y; v0) �(0; y; v)u0(z)�(z) dzdydv+ ZRN ZY ZV �div �B�z u0�� div(J)(0)u0��0 dzdydv= ZRN ZY ZV ZV f(0; y; v0; v) (0; y; v0) �(0; y; v)~q(z; v0)�(z) dzdydv: (66)
To onlude the proof, we remark thatZY ZV vi��j  � = � ZY ZV vj  ��i = � ZY ZV vj ��i = Dji;whih we obtain by multiplying (64) by �j and integrating by parts. Thus, (66) is nothingbut the homogenized equation (63).6 Cell problems with driftThis setion is devoted to the so-alled drift or �-exponential ell problems, whih allow usto prove that the asymptoti expansions and the two-sale method yield the same results.
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6.1 �-exponential ell problemsLet � be a onstant vetor in RN . We introdue the following �-exponential ell problem8<: v � ry � +� � = ZV �  � dv0 + �1(x; �) ZV f  � dv0y 7!  �(x; y; v) exp(� � y) Y � periodi; (67)and its adjoint problem8<: �v � ry �� +� �� = ZV ��  �� dv0 + �1(x; �) ZV f�  �� dv0y 7!  �� (x; y; v) exp(�� � y) Y � periodi: (68)It is onvenient to perform the following hange of unknowns '�(x; y; v) =  �(x; y; v) exp(��y)and '��(x; y; v) =  ��(x; y; v) exp(�� � y). They solve the following problems8<: v � ry'� � v � �'� +�'� = RV � '� dv0 + �1(x; �) ZV f '� dv0y 7! '�(x; y; v) Y � periodi; (69)and 8<: �v � ry'�� � v � �'�� +�'�� = RV �� '�� dv0 + �1(x; �) ZV f� '�� dv0y 7! '��(x; y; v) Y � periodi: (70)Suh problems were studied in [7℄, where, among other properties, it is proved that, for anyx 2 
, the funtion � 7! �1(x; �) admits a unique ritial point �0 (depending on x) whihis a maximum and that r��1(x; �) = J(x; �) = ZY ZV v � �� : (71)Therefore, �0 is uniquely haraterized by J(x; �0) = 0. Our previous notation J(x), de�nedby (9), oinides with J(x; 0) as de�ned in (71). Our assumption (H4) just means that forx = x0 = 0 we have �0 = 0.6.2 On a relation between the limit drift B and the ell drift JWe are now in position to prove a result announed in remark 2.2, namely thatBij = �Jj�xi (x = 0):Deriving (69) with respet to �j yieldsv � ry��j'� � vj'� � v � ���j'� +���j'� = ZV ���j'� + �1(x; �) ZV f��j'�+��j�1 ZV f'�: (72)Multiplying by '��, and integrating on Y � V yields� ZY ZV vj'�'�� = ��j�1 ZY ZV �ZV f'��'��;25



or equivalently �J(�; x) = � ZY ZV v � �� = r��1 ZY ZV �ZV f �� �� : (73)Deriving (72) with respet to xi, we obtainv � ry�2xi�j'� � vj�xi'� � v � ��2xi�j'� +��2xi�j'� + �xi���j'� = ZV (��2xi�j'� + �xi���j'�)+�1 ZV (f�2xi�j'� + �xif��j'�) + �xi�1 ZV f��j'� + ��j�1 ZV (f�xi'� + �xif��j'�)+�2xi�j�1 ZV f'�:We write this equation at (x; �) = (x0; �0) = (0; 0). Therefore, assumptions (H3) and (H4)imply that the terms �xi�1 and ��j�1 vanish. Multiplying by '�� and integrating on Y �Vyields at x = 0ZY ZV �vj�xi'0'�0 +�1i ��j'0'�0 = ZY ZV (ZV �1i ��j'0)'�0 + �1(ZV f1i ��j'0)'�0+�2xi�j�1 ZY ZV ZV f'0'�0: (74)Remember our normalization for the eigenvetorsZY ZV ( �)2 dydv = 1 and ZY ZV (ZV f �) �� dydv = 1:With this onvention, deriving (73) with respet to xi yields��Jj�xi = �2�1�xi��j : (75)At (x; �) = (0; 0), we have obviously �xi'� =  1i by omparing (19) and (69). Similarly,omparing (22) and (72), we have ��j'� = ��j . And thus, (74) and (75) yieldBij = ZY ZV (vj 1i +�1i�j � ZV �1i �j � �1 ZV f1i �j) 0� = �xiJj ;whih is the desired result.Remark 6.1 If we assumed, instead of (H4), the muh stronger assumption that the drift uxJ(x) vanishes in a neighborhood of x = 0, it would be possible to prove in a muh simpler way(avoiding �-exponential ell problems) that B = rxJ(0) = 0. Indeed, the following equation,similar to (22) is solvable in a neighborhood of x = 0,v � r�j +��j = ZV ��j + �1(x) ZV f�j � vj :Thus, di�erentiating this equation with respet to xi at x = 0 yieldsv � r�xi�j +��xi�j = ZV ��xi�j + �1 ZV f�xi�j � �1i�j + ZV �1i �j + �1 ZV f1i �j � vj 1i ;whih is also solvable by de�nition. Therefore, the solvability ondition of this last equationis satis�ed, and this preisely means that Bij = 0.26



6.3 On a generalization of the onvergene resultIn view of the properties of �1(x; �), it is natural to replae our hypotheses (H3) and (H4)by a new one, (H5), whih states that there exists a unique ouple (x0; �0) 2 
� RN , suhthat (H5) � 7�! �1(x0; �) reahes its maximum at � = �0andx 7�! �1(x; �0) reahes its minimum at x = x0with rxrx�1(x0; �0) positive de�nite.Notie that (H3) and (H4) are indeed equivalent to (H5) when (x0; �0) = (0; 0).We now explain a new phenomenon ourring when hypothesis (H3) and (H4) are notsatis�ed, but are replaed by (H5). Of ourse, we still need the hypotheses (H1), (H2).Instead of writing the �rst eigenfuntion �" of (1) in the form�"(x; v) =  �x; x" ; v� u"(x; v);we introdue a new fatorization and write�"(x; v) =  �0 �x; x" ; v� u"�0(x; v);where  �0 is the solution of (67). At (x0; �0), by de�nition we have J(x0; �0) = 0, and thusour whole study is still valid with this new fatorization priniple. Remark that (H4) was ofruial importane in the previous setion beause it was a Fredholm solvability ondition,but it is now replaed by J(x0; �0) = 0 whih is a onsequene of the �rst assumption in(H5). Therefore, we an prove thatu"�0(x; v) � exp��M(�0)2" (x � x0) � (x� x0� : (76)We skip the details for the sake of brevity. Formally, this indiates that, in the limit "! 0,the asymptoti behavior of �" is hanged and we have�"(x; v) � '�0 �x0; x" ; v� exp���0 � x� x0" � exp��M(�0)2" (x� x0) � (x� x0� ; (77)where '�0 is periodi. Note that the approximation sign in (77) is purely formal and has noreal justi�ation sine we an not pass easily from (76) to (77) by multiplying by a funtion,exp (��0 � (x� x0)="), whih is widely unbounded as " goes to zero. At least, (77) is anindiation that there is a ompetition between the onentration term and the drift term andit seems to indue a new onentration point for �". Formally, (77) suggests that this newonentration point x1 is given by x1 = x0 +M(�0)�1�0;but a more detailed analysis is required to �nd the preise value of x1. Remark also that itis not lear how to hek assumption (H5) on spei� examples of oeÆients.Referenes[1℄ G. Allaire, Homogenization and two sale onvergene, SIAM, 23 (1992), pp. 1482{1518. 27
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