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Introduction

In this paper we are concerned with the homogenization of the Stokes
and Navier-Stokes equations, with a Diriclilet boundary condition, in a do-
main containing many tiny obstacles. The main goal of this paper is to
present, in an easy and self-contained form, some results on this topic, we
proved in two different articles (see [1] and [2]). Here, many technical details
are skipped, and the emphasis is put on the signification of the mathema-
tical theorems, rather than on their proof. The starting point of this study
1s the numerical simulation of viscous fluid flows past an array of fixed solid
obstacles: for example, flows in porous media, or through porous walls or
mixing grids. Such flows are governed by the Stokes or Navier-Stokes equa-
tions with a no-slip (Dirichlet) boundary condition on the obstacles, and the
fluid domain is mathematically represented by an open set perforated with
holes (i.e. obstacles). As the number of holes increases, the flow will tend
to the solution of certain effective or “homogenized” equations which are
homogeneous in form (i.e. witliout obstacles). Homogenization is a mathe-
matical method which provides such effective models (see, e.g. [4] and [18]
for a general introduction to this topic).

In our framework, a porous medium is modeled as the periodic repe-
tition of an elementary cell of size ¢, in which lies a solid obstacle of size
a. (see figure 1). When the holes size a, is of the same order of magnitude
as the period ¢, it has been proved that the homogenization of the Stokes
equations leads to the well-known Darcy’s law (see e.g. [11], [13], and [18]
for two-scales methods, and [19] for the proof of convergence; see also [3]
for a generalization of [19] to the case of a connected solid part). Instead,
in the sequel we always assume that the holes size a. is smaller than the
period . The problem is now to find what kind ,of homogenized equations
can be obtained, according to the scaling of the holes size ae. This is what
section 1 is devoted to. It turns out that there are three different limit flow
regimes, depending on the holes size (see figure 2). For a so-called critical
size (e.g., a, = ° in the three-dimensional case), the homogenized problem
is a Brinkman’s law. For smaller sizes the homogenized problem reduces to
the initial Stokes equations, and for larger sizes it is Darcy’s law (but not
the same one as in the case of the holes of size €). The so-called Brinkman’s
law (introduced in the late forties by H. Brinkman [6]) is obtained from the
Stokes equations by adding to the momentum equation a term proportional
to the velocity (this new term expresses the slowing and mixing effect of the
obstacles). These results hold true either for the Stokes or the Navier-Stokes
equations, because in our framework the non-linear term does not play any
part in the homogenization process.

In section 2, we also derive Brinkman’s law in a different geometrical
situation. The obstacles are no longer distributed in volume, but on a
hyperplane (see figure 3). Then for a specific critical size (different from
that arising in the case of a volume distribution), the homogenized problem
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is still a Brinkman'’s law, but now the new term in the momentum equation

is concentrated on the hyperplane (i.e. is equal to zero elsewhere).

Furthermore in section 3 we generalize our previous results to the case of
a slip boundary condition on the obstacles, instead of a no-slip ( Dirichlet)
one. Basically this slip condition allows the fluid to s

lip on the surface
of the obstacles, proportionally to the tangential stress, but still not to

penetrate them. Finally let us mention that the two-dimensional case is

always completely different from the three-dimensional one, because the

homogenized Darcy’s and Brinkman’s laws do not depend on the shape

and the size of the obstacles (though they do in three dimensions). We
conclude this brief introduction by referring to some other works dealing
with the derivation of Brinkman’s law through homogenization of the Stokes
equations (see the introduction of [1] for a short survey of these works): the
firsts to derive Brinkman’s law were V.A. Marcenko and E.Ja. Hrouslov
[14], followed by E. Sanchez-Palencia 17, T. Levy [12], A. Brillard (5],
and J. Rubinstein [16]. Finally we mention the works of C. Conca [8], and
[0], where other effective equations in fluid mechanics are derived through

homogenization of the Stokes equations.

! 0 exp (-1/ €%) £
| | | | — } —
Va : 5 { - 3.
ejejelo @ [e]e LN Stokes Brinkman Darcy  Darcy
mENEDLL |
ool B 2€ DimensionN = 2
| | N, fe ] N
T - 0 exp (-1/ €7 €
HHHTT ————]
2 £ r 1
! | ! — |
Q, Stokes Brinkman Darcy Darcy
Tf Dimension N = 3
{ Figure 2
J--}--
af_i“_ »——i 3128
I t
P!
Figure 1

Figure 3




10 G. Allaire

1.- Main Results

We consider a smooth bounded domain Q of RY(N > 2), wich repre-
sents a porous medium. Now we define a subdomain {1, of Q, which repre-
sents the fluid part of a porous medium. First the set Q is covered with a
regular mesh of size 2¢, each cell being a cube Pf, identical to | — ¢, +¢[V.
At the center of each cube Pf, included in ! we make a hole T}, each of
them being equal to the same model obstacle T scaled to the size a.. Then
{1, is obtained by removing from {2 this collection of periodically distributed

obstacles (T )i1<i<n(e) (their number N(¢) is of order e~ (see figure 1).

The holes size a, is always assumed to be smaller that the inter-hole distance
£, l.e. lirr(iJ a./e = 0. We define the so-called critical size of the holes aS™* :
r—

' d -£ T
aS™* = Coe™=7 for N > 3 and ai™* = ¢~ +¥ for N =2
where Cj is a strictly positive constant. We also define a ratio o, between
the current size of the holes and the critical one:

Oy = (2%7)1”2 for N >3

o = €| Log (2¢)[*/? for N =2.

When the limit of o, is strictly positive and finite, the current holes size
is actually critical. If the limit of o, is zero, then the current holes size is
larger than the critical one. If the limit of o, is infinite, then the current
holes size is smaller than the critical one.

Consider now a stationary viscous fluid flow in a porous medium (repre-
sented by £2.): we model it by the Stokes equations with a no-slip condition
on the surface of the obstacles (see corollary 1.4 for the case of the Navier-
Stokes equations). For a given force f € [L*(Q)]V and a constant positive
viscosity u, denoting by u, the velocity, and by p. the pressure, the Stokes
equations in §1,, with a Dirichlet boundary condition, are:

Vpe —plAu, = f in Q.
(Se) Viug=0 in Q.
tie =10 on 9,

It is well known (see e.g. [10]) that there exists a unique solution of (S.)
such that (u.,p.) € [H} ()Y x [L3(Q.)/R). For different values of ¢, the
solutions (u,, pe) do not belong to the same fixed space, because {), changes
with £. In order to overcome this inconvenient, we extend those solutions
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to the whole domain Q. Let i, and P be extensions of the veloecity ue and

of the pressure pe respectively, defined by:
(1) P. = pe and e = Ue in .

(i1) P, = —lwcl—,;‘ ] pe and Ug = 0 in each hole T}
] CI

he part of the ball

where Cf is a ucontrol” volume around T defined as t
difficult part of our

of radius ¢ outside T7. Actually the most technical and
work is the construction of an extension of the pressure, which is bounded

in [L2(Q)/R]. Then, using the so-called energy method introduced by L.
Tartar [20] (see also F. Murat [15]), and adapted by D. Cioranescu and F.

Murat (7], we prove the following

the scaling of the holes size there are three

Theorem 1.1. According to
different limit flow regimes:
(i) if 13:1;.}0, = 400, then
& —
[Hé(Q)}N x [L*()/ R], where (u, p) is the uni

(iie, Pe) converges strongly to (u,p) in
que solution of the Stokes

equations:
Vp—plbu=f in Q
V.u=0 in §
u=10 on I

(i.e. the holes are too small, and nothing happens when passing to the

limit.)

(ii) if iinéas = ¢ > 0, then (t.,
[HI(QY x [L2(Q)/IR), where
Brinkman-type law:

Vp— pdu+ £ Mu = f inQ

V-u=0 in )
u=0 on 0%}

P,) converges weakly to (u,p) in

(u,p) is the unique solution of the

(i.e. for this critical size of the holes, a supplementary term appears

when passing to the limit.)

(iii) if 1'1;% o =0, then (%4, P,) converges strongly to (u,p) in
(L2 x [L2()/ R), where (u, p) is the unique solution of the Darcy’s
law:
u=M"Yf-Vp) inQ
V-u=0 in
u-n = on 91

(i.e. the holes are too large, and the Stokes flow degenerates in a Darcy

flow when passing to the limit.)
Moreover the matrix M, which appears in the
in the Darcy’s law, is the same in both cases, and de

Brinkman-type law and
pends only on the
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model hole T (not on the force f and the solution (u,p), nor on the
holes size a. ). W

Actually, we can compute M through a local problem around the model
obstacle T :

Proposition 1.2:

e For N > 3, denoting by ex the k** unit basis vector in IRV, for each k the

local problem is:
Vagr — Awi =0 in RN -T

V- -wg = in RN - T
wig =10 on T
Wi = €k at infinity

Then the matrix M is given by the following formula:

M = i,\ [ Vwi - Vw;

RN ~T 1<i,k<N

e For N = 2, because of the celebrated Stokes paradox the local problem is,
fork=1,2:

Vagr —Vwg =0 in RN-T

V wp=0 in RN =T

wg =0 on OT

wg = (Log r)ex at infinity

(Remark the logarithmic growth at infinity). Then we have the paradoxical
result:

M = wId for any model hole 7. W

Remark that the Darcy’s law which is derived at line (iii) in theorem 1.1
has nothing to do with the one obtained by the two-scales method when the
holes size is exactly ¢ (see, e.g. [18]). Actually in both cases the permeability
tensor (here the matrix M ') has a different value. Furthermore, here the
local problem occurs in the entire space around the obstacle, while it takes
place in a unit period of the porous medium, with a periodic boundary
condition, when the obstacle and the period have the same size £. Besides
the rigorous derivation of the Brinkman's law through homogenization of the
Stokes equations, theorem 1.1 gives a complete description of the different
flow regimes obtained at the limit. The entire range of the holes sizes has
been examined. and the only effective equations that have been found are
the Stokes equations, the Brinkman's law, and the Darcy’s law (see figure
2). We empbhasize that, in theorem 1.1, the viscosity is always assumed
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to be constant, not related to the period & of the porous medium. An
interesting open problem is to find whether one can obtain other effective

equations through homogenization of the Stokes equations with

now depending on £.

a viscosity,

Remark 1.3:

The two-dimensional case
mations on the geometry
size of the obstacles) is lost whe
medium was not isotropic, we fin
tions (Brinkman’s or Darcy's law) is al
dimensional case is more satisfactory,
scalar, and even non-diagonal. It means that th
track not only of the slowing effect, but also of the ro
effect of the obstacles. Furthermore, the assumption that the holes are all
the same is not necessary in'the homogenization process (a clear hint of this
is that there is no periodic boundary condition in the local problem). Thus
we can obtain a matrix M which is no longer constant, but depends on the

current point z € €. L

is somehow disappointing, because all the infor-

of the porous medium (i.e. the shape and the
n passing to the limit. Even if the porous
d that the matrix M in the effective equa-
ways scalar. Fortunately the three-
because the matrix M can be non
e effective equations keep
tating or deviating

For N = 2, or 3, the homogenization of the Navier-Stokes equations (NS.)

proceeds exactly as in the case of the Stokes equations, because, in this
ework, the non-linear term is a compact perturbation of (Se)-
Vpe + e * Ve = pAu, = f 1n Q,

(NSe) V-ue =0 in Q.
ue =0 on 0%

be a solution of (N S.)- Extending it as previously, we obtain

fram

Let (e, Pe)

Corollary 1.4:

g to the same scaling of the holes size as for the Stokes equations,

Accordin
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(1) if i'm%a, = 400, then (he; Pe)

[HE ()N x [L2(Q)/IR), where (u,p) is a solution of the

converges strongly to (u,p) in
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equations:
Vp+u-Vu»—;u.\u¢f in
V.ou=0 in
u=0 on 91

P,) converges weakly to (u,p) in

(i) if Iimb g, = o >0, then {fiy,
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(i) if 1';:% o, = 0, then (%%, P.) converges strongly to (u,p) in
&= €

[L2()]N x [L*())/ IR], where (u, p) is the unique solution of the Darcy’s
law:

u=M"Yf-Vp) ind

Vou=0 in £}

u-n=20 on 982

The matrix M is the same as that appearing in theorem 1.1, and is still
given by proposition 1.2. W

Remark 1.5:

One can see in theorem 1.1 that, according to the type of effective equations,
there are different kinds of convergence of the solutions. If the convergence
is weak, it is possible to improve it in a strong one thanks to the intro-
duction of so-called correctors, and assuming some smoothness of the limit
solution. Furthermore, it is also possible to estimate the difference (or error)
between the solutions (ue,pe) and the limit solution (u,p), matched with
the corrector. This corrector is physically interpreted as a boundary layer
of the Stokes problem in the vicinity of the obstacles. It turns out that,
by rescaling the solution of the local problem around the model obstacle
T, and expanding it by periodicity in the domain {2, we actually construct
boundary layers (or correctors), denoted by (w§,gf)1<k<N- Then, for the
case of a critical size of the holes (corresponding to Brinkman’s law), we
obtain the following errors estimates:

N
llie = > urwillage < Cellullwro@) and
k==1
N
lpe —p ~ urgillz2./m S Cellt)lwre(q).
k=]

For larger holes sizes (corresponding to Darcy’s law), the convergence is
already strong, thus we do not need any correctors. Nevertheless we obtain
the following errors estimates:

o Ue \ £ T
1|-""£ — u||L2(Q) <C(—+ (fg)h'u”wzm(ﬂ) and
o? o,

lpe — Pllz2ay/m < C(;—- + oe)|lullwrom) W
1 4
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2.- Surface Distribution of the obstacles

In this section we work out the homogenization of the Stokes or Navier-
Stokes equations in a domain containing obstacles distributed on 2 hyper-
plane embedded in the domain, rather than in the entire domain. Such
a situation can occur in the study of fluid flows through a porous wall, a
sieve, or a mixing grid (for the case of a sieve, we refer to the paper of C.
Conca [8]). As in section 1, we model these devices by an array of fixed and
disconnected obstacles (for example, one can think of the obstacles as the
vanes of a mixing grid, which are supported by a negligible lattice), and for
some critical size we derive a Brinkman-type law.

More precisely, we consider a smooth bounded domain Q2 of RN(N 2 2),
which intersects the hyperplane H = {z € RN /zn = 0}. We define a thin
slice of §2, of thickness 2¢ near H:

H, = {z € Q/|zn| <€}

The set H, is covered with a regular mesh of size 2¢, each cell being a cube
P¢, identical to | —¢, +¢[N. At the center of each cube Pf included in H, we
make a hole T, each of them being homothetic to the same model obstacle
T with a ratio a.. The fluid domain (2. is then obtained by removing from

Q all the holes (T )N{EJ (their number N(¢) is of order gl=N) (see figure 3):

p=1

Q= Q- ULPTY

t=1 ]

Remark that, if the centers of the obstacles are located on the hyperplane
H, the obstacles themselves are N —dimensional objects, not necessarily flat
(ie. included in H).

We assume that the holes size a, is critical, i.e. for some strictly positive
constant Cp we have:

=1

{ac = Coc V=t for N>3
fop Noms 3.

1]

Q. = €

X3

Compared with the case of a volume distribution, this definition means that,
for a surface distribution, there are fewer holes, but they are bigger. Recall
the Stokes equations in {2, :

Upe — pAu, = F in €,
($.) V-u.,=0 in Qe
u, =0 on €,

Then we prove
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Theorem 2.1. Let i, and P, be extensions of the velocity u. and of the
pressure p., defined by:

(z) P, = p, and i, = u, in (2,
1

(i1) by Told -/ pe and i, =0 in each hole T}

[

where Cf is a “control” volume around T defined as the part of the ball of
radius € outside T} .

Then, for any value of ¢’ such that 1 < ¢' < N/(N —1), (iie, P;) converges
weakly to (u, p) in [HE(Q)]N x[L? (R)/ R], where (u,p) is the unique solution
of the following Brinkman-type law:

Vp— pdu+ %%,-\-Iﬁy u=Ff inft
Viu=0 in
uw=10 on J§1

where the constant o? is equal to CS"N for N > 3, and to Cyg if N = 2,
and the matrix M is the same as in section 1 (see proposition 1.2). The
symbol 6y denotes the measure defined as the unit mass concentrated on
the hyperplane H, 1.e.:

<6H,¢ >p . D(R)= / $(s)ds for any ¢ € D(RY). W
H

Obviously the main difference with theorem 1.1 in section 1 is that the new
term appearing in the Brinkman-type law is concentrated in the hyperplane
H, ie. %%AI&HU — 0 elsewhere. Remark that, for technical reasons, the
convergence of the pressure is weaker than in the first section (we merely
haveq < N/(N—1) € 2). As already men tioned in remark 1.3, the obstacles
do not need to be all the sames, and in the three-dimensional case the matrix
M may be non-diagonal. Therefore the matrix M can obviously express the
mixing effect of the obstacles. That is why the Brinkman-type law obtained
in theorem 2.1 seems to be an interesting model for fluid flows through
mixing grids.

Remark 2.2:

As in section 1. theorem 2.1 can easely be generalized to the case of the
Navier-Stokes equations. We obtain a non-linear Brinkman-type law with
the same matrix M, and the convective term of the Navier-Stokes equations
is kept unchanged while passing to the limit. |
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3.- Slip boundary condition.

This section is devoted to the generalization of all the previous results of the
present paper, when the no-slip (Dirichlet) boundary condition is replaced
by a slip one. More precisely we assume that on the surface of each obstacle
we have:

u, -n=10 on OTF
a Lt £
ﬁu, =2(F%-n)n - (Vue +! Vue)n  on 9T

where the slip coefficient a is a positive constant. Remark that we have
given a precise scaling of the slip coefficient. Nevertheless the following
results are valid for all its scalings, because a can take the extremal values
0 and +o0o. The first equation expresses that the fluid does not flow through
the obstacle T¢. The second one is a balance relation between the tangential
components of the velocity and the infinitesimal force exerted by the fluid
on the obstacle. Mathematically speaking, this slip boundary condition is
a mixed-type one. For another example of mixed-type boundary condition,
see C. Conca [9].

Now we can state our main result which is similar to theorem 1.1, but now
the matrix M depends on a. There are also some technical differences with
theorem 1.1: for example, here the extension of the velocity is no longer
obvious (see [2]). Anyway, we obtain

Theorem 3.1.

Let (u., p.) be the unique solution of the Stokes equations with a slip bound-
ary condition. There exists an extension (E ue, P.), such that:
(i) if lirréa, = 400, then (E.u., P;) converges strongly to (u,p) in

s

[HR ()N x [L*(Q)/R], where (u, p) is the unique solution of the Stokes

equations:
Vp—uAu=f inf
V-u=10 in £
u =10 on 91

(ii) if iin:é o, = & > 0, then (E.u,, P.) converges weakly to (u,p) in

{ff&(ﬂ}]” x [L*()/IR], where (u,p) is the unique solution of the
Brinkman-type law:

Vp — pAu+ HM(a)u = f inf§}
V:u=0 in Q2
u=0 on 99

(iii) if }1:3] o, = 0, then ( 1—;-3'*-* P.) converges strongly to (u,p) in

[L2(Q))N x[L?*(Q)/IR], where (u,p) is the unique solution of the Darcy’s
law:

u= M) (f-Vp) inQ

V-u=0 in

u-n=>0 ond) B
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As in section 1, the matrix M(a) is the same for the Brinkman-type law
and the Darcy’s law, and we can compute it through a local problem around
the model obstacle T :

Proposition 3.2:

Denoting by ex the k*" unit basis vector in RN, the local problem is:
qu—wAwkz(lir}IR"_T
V. wg=0in B -7
awg = 2 %“—;L .n)n — (Vwg + Vwi)n on or
wig-n=0ondT
wi = ex for N > 3 and wi = (Log r)ex for N =2 at infinity

e For N > 3, the matrix M is given by the following formula:

ﬁf(a):lﬁ / Vuvk~§7w,}
RN -T 1<i k<N

e For N = 2, because of the logarithmic growth at infinity, we have the

paradoxical result:

M(a) = nId for any model hole T, and for any value of a. E

One can wonder if, even for N 2 3, the matrix M(a) really depends on .
In order to show that it does actually, we give its value when the obstacle
T is the unit ball:

_ SNN(N -2)2+a) ,
b 2N(N = 1)(N +a) Id for N 23

(Sn is the area of the unit sphere).

In this formula one can see that, even if the fluid slips on the boundary of
the obstacles (corresponding to the limit case a = 0), with no slowing effect
due to the viscosity, the matrix M is still non-equal to zero. It means that
the mere presence of the obstacles is enough to yield the same limit flow
regimes, according to the same holes sizes, as in section 1. Let us conclude
by claiming that, as in section 1, theorem 3.1 hold true also for the Navier-
Stokes equations, and that we can easily generalize the correctors results and
the errors estimates obtained for the case of a Dirichlet boundary condition.
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