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ABSTRACT. - This paper investigates the existence of minimizers for the 
so-called Kohn-Strang functional with affine boundary conditions. Such a 
functional, which arises in optimal shape design problems in electrostatics, 
is not quasi-convex, and therefore existence of minimizers is, in general, 
guaranteed only for its quasi-convex envelope. Such a quasi-convexification 
has been computed in two space dimensions in [ll]. Recently, necessary 
and sufficient conditions on the affine boundary conditions for existence 
of minimizers for the Kohn-&rang functional have been derived in two 
space dimensions in [7]. We generalize these previous results for arbitrary 
space dimensions. Our method relies on the homogenization approach for 
relaxing optimal design problems. We also generalize our results to some 
variants of the Kohn-Strang functional. 0 Elsevier, Paris 

Key words: homogenization, quasiconvexity, rank-one convexity, calculus of variations, 
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Rl?SUMl?. - Dans cet article nous Ctudions l’existence de minima pour la 
fonctionnelle dite de Kohn-Strang avec des conditions aux limites affines. 
Une telle fonctionnelle, issue de problemes d’optimisation de formes 
en Clectrostatique, n’est pas quasiconvexe, et de ce fait l’existence de 
minima n’est en general garantie que pour son enveloppe quasiconvexe. Sa 
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302 G. ALLAIRE AND G. FRANCFORT 

quasiconvexification a CtC calculee en dimension deux d’espace par Kohn et 
Strang. Recemment, une condition necessaire et suffisante sur la condition 
aux limites affine pour l’existence d’un minimum de la fonctionnelle de 
Kohn et Strang a CtC trouvee par Dacorogna et Marcellini. Nous generalisons 
ces resultats en toute dimension d’espace. Notre methode repose sur la 
methode d’homogeneisation pour relaxer des problbmes d’optimisation de 
formes. Nous donnons aussi quelques generalisations a des variantes de la 
fonctionnelle de Kohn et Strang. 0 Elsevier, Paris 

1. INTRODUCTION 

Let R be a bounded domain of R”. Let U(X) be a vector-valued function 
from R into WN with derivatives denoted by DU = (I%,/&c:,) E WN. 
Let t be a constant matrix in WLN, i.e., < has N lines and 71 columns. 
Let DC denote the space 

D, = {<. z + II,@; W”)}. 

This paper is devoted to the question of existence of minimizers in DE 
for the following functional 

F(u) = f(Du)dx> 
.I 

(1) 
0 

where the integrand f is a function from WN into R+, defined by 

whith 0 < Q, X < +co. In the case n = 2, the function f under 
consideration was introduced by Kohn and Strang in [ 1 I] as a model 
problem in the field of optimal design. Specifically, the associated 
minimization problem is equivalent to a shape optimization problem in 
electrostatics. 

It is by now well-known that the functional F is not (sequentially) weakly 
lower semi-continuous on DC. Therefore, the direct method of the calculus 
of variations does not yield the existence of minimizers for (1) in DC. 
Rather, one needs to introduce the relaxed functional (see [6]) 

F(u) = 
J’ 

Qf(Du)dx, (3) 
n 
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where Qf is the quasiconvex envelope of f defined by 

where Y = (0,l)” is the unit cube of W”. Then, ~~(2) = E.x is a minimizer 
of the relaxed functional F on DC, and 

When n = 2, the quasiconvexification Q f has been computed in [ 1 I]. 
The result is 

x + 4v12 if lr112 + 21adhvl 2 $, 
Qf(rl) = { 2&!&,~7,~ + 21adjzq[)“2 - 2aladj2ql otherwise, 

where adjzq is the v vector of the 2 x 2 minors of n E &!2N. 
In a recent paper [7] Dacorogna and Marcellini addressed the question 

of finding conditions for existence or non-existence of minimizers in D, of 
functionals of the type (1) for a general non-quasiconvex integrand f. As 
an example, they considered the Kohn-Strang energy, defined in (2), when 
n = 2, and derived the following 

THEOREM 1.1. - Let E belong to R 2N A necessary and sufficient condition . 
for (I) to have a minimizer over DC is that, either f(t) = Qf (I), or rank 
l$ = 2. 

The main results of the present paper are. generalizations of the 
computation of the quasi-convexification Qf and of the above theorem 
to the case n > 2. For arbitrary n, denoting by nl, . . . . qn the square roots 
of the eigenvalues of ~~7, we prove that (see Theorem 2.2) 

Furthermore, for arbitrary n, we also prove (see Theorem 2.3) 

THEOREM 1.2. - Let < belong to #TN. A suficient condition for (1) to 
have a minimizer over DE is that, either f(t) = Qf (I), or rank c = n. 
While a sz@cient condition for (1) to have no minimizer over De is that 
f(E) > Qf (I) and rank < = 1. 

Remark that our theorem does not furnish a necessary and sufficient 
condition for existence of minimizers, since it does not cover the case 
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f(E) > &f(E) and 2 5 rank [ 5 n - 1. However, in such a case we 
conjecture there are no minimizers for (1) over DC. To support our claim, 
we prove that in such a case there are no smooth-type minimizers of (1) 
in DC (see Proposition 2.5). 

The existence of possible minimizers for (1) is not merely a question of 
purely theoretical interest. It also has important consequences in the context 
of optimal shape design. Let us briefly explore the connection between the 
Kohn-Strang energy, defined in (2), and optimal shape design (see Section 
4 in [l l] for more details). For each measurable subset w of R, define 

(alDv(s)12 + X)dz 
> 

) 

where DC,, is the space defined by 

4 + = {w E DC s.t. Dv(z) = 0 a.e. in 0 \ w}. 

Of course, any function w E DC,, satisfies 

J’ f(Dv)dz L (alD~(z)(~ + X)dz, R s w 
but it is also true that 

where the measurable set R, c R is given by 

R, = {XT E 0 s.t. Dw(z) # 0). 

Therefore, we deduce 

(4) 

Whenever the right hand side of (4) admits a minimizer U, the corresponding 
set R, minimizes the left hand side of (4). The minimization in the left hand 
side of (4) is a shape optimization problem in electrostatics : find the best 
arrangement of conductor Q and holes so as to minimize the stored electrical 
energy. Since the seminal counter-examples of Murat [14] and Tartar [16], 
the generic non-existence of such optimal shapes is well-known. Rather, 
the problem is relaxed through the introduction, as admissible designs, of 
composite materials that mimic the behavior of minimizing sequences of 
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shapes. Nevertheless, there could exist boundary conditions, corresponding 
to a special choice of 6, for which an optimal shape is feasible. Our results 
provide conditions on [ that permit to assert or to rule out the existence 
of such an optimal shape. 

As a final remark, we emphasize that our method is very specific to 
the type of functionals considered here, i.e., to the so-called Kohn-Strang 
energy and its various generalizations. Indeed, our key argument is the link 
between these functionals and the homogenization theory for two-phase 
composite materials. Of course, there are many other non-quasiconvex 
functionals for which existence of minimizers has been investigated : we 
refer to the recent article of Dacorogna and Marcellini [7] and references 
therein. 

The outline of this paper is as follows. Section 2 is dedicated to 
the computation of Qf(q) and to the proof of Theorem 1.2. Section 3 
investigates the “dual” problem to (l)-(2), i.e., a functional acting on 
divergence-free fields. Our motivation in the analysis of this dual problem 
is twofold : firstly, the conditions for existence of minimizers are quite 
different, and secondly, it is this type of dual problem, and not (l)-(2) 
which arises in the context of optimal shape design (see [ 1 l] or [l] for 
details). Finally, section 4 deals with a partial generalization of Theorem 
1.2 to the case of non-quadratic Kohn-Strang type functionals. 

2. EXISTENCE OF MINIMIZERS FOR 
THE KOHN-STRANG FUNCTIONAL 

This section is devoted to an analysis of possible minimizers for the 
functional 

.I’ 
f (Du)dx (5) 

R 
where R is a bounded domain of W, and u is affine on the boundary 
of fl, i.e., 

UE D, = {<-x+H;(f2;RN)}, (E wN. (6) 

The specific function f under consideration was introduced by Kahn and 
Strang in [ 111 as a model problem in the field of optimal design ; specifically, 
for r] E lPN, 

f(v) = 
C 

x f 4r112, v # 0, o 3 rl = 0, (7) 

where 0 < (II, X < +co. 
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Only the case n = 2 is investigated in [ 111. In the two-dimensional 
setting it is shown in Section 4 of [ 111 that the minimization problem stems 
from a shape optimization problem in electrostatics. 

In any case the functional defined in (5) is not (sequentially) weakly 
lower semi-continuous over H’(R; RN) so that minimizers for (5) over DC 
defined in (6) need not exist. It was shown in [l I], Theorem 1.1, that, when 
n = 2, the quasiconvexification of f is 

[VI2 + q&24 2 i> 

otherwise, (8) 

where ad&v is the v vector of the 2 x 2 minors of q E R2”. 
Accordingly the functional 

s R Qf(Du)dz (9) 
admits (a) minimizer(s) over DC and the minimum value of (9) coincides 
with the infimum of (5) over DC (see [l 11, Theorem 1.1). 

As mentioned in the introduction, the following result about the existence 
of a minimizer for (5) (and not only for (9)) over DC is derived in [7], 
Theorem 6.1 : 

THEOREM 2.1. - (n = 2): A necessary and sufficient condition for (5) to 
have a minimizer over DC is that at least one of the following hold 

(9 E = 0, 
(ii) ItI2 + 214&J L $, 

(iii) rank < = 2. 

The proof of Theorem 2.1 hinges on the knowledge of the 
quasiconvexification Qf of f. 

We prove below a generalization of Theorem 2.1 to arbitrary 12. Our 
method is closely related to the homogenization approach for the relaxation 
of functional (5) because it uses decisively the characterization of Qf(v) in 
terms of a finite dimensional minimization problem over the set of effective 
tensors associated to arbitrary mixtures of a material -with isotropic 
conductivity cy- with voids of arbitrary shapes and sizes. 

Let us begin with an explicit formula for the quasi-convexification Qf(r/) 
of the original function f(v) for arbitrary n. 
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THEOREM 2.2. - Let 0 5 ql 5 . . . I qn be the singular values of q (i.e., 
the square roots of the eigenvalues of $q). Then 

(10) 
Furthermore, the quasi-convexification Q f (v) coincides with the rank-one 
convex envelope of the original function f(q). 

Of course, in space dimension n = 2 the definitions (8) and (10) of 
Qf(q) are equivalent. 

THEOREM 2.3. - Let 0 5 II 5 . . . 5 &, be the singular values of I. A 
sufficient condition for (5), (7) to have a minimizer over DC is that at least 
one of the following hold 

(0 I = 0, 

(ii) CT& Ei 2 $, J 
(iii) rank [ = n, 

while (5) has no minimizers over DC when 
(iv) rank < = 1 and ]<I2 < $. 

Remark 2.4. - Note that sufficient conditions (i), (iv), and (ii) when 
rank < = 1, were previously derived in Corollary 5.3 of [7]. Thus the new 
results are sufficient conditions (ii), when 2 5 rank [ 5 12, and (iii) for the 
existence of a minimizer. We however present a complete proof of Theorem 
2.3 because our proof of (iv) as a sufficient condition for non existence 
does not use in an essential manner the rotational invariance of the original 
functional, in contrast with that given in [7]. 

Theorem 2.3 says nothing about the matrices [, with intermediate ranks 
between 2 and n - 1, when EYE”=, & < fi (in contrast to the setting 
of Section 3 below). In such a case we conjecture that, for a bounded 
domain R, there are no minimizers of (5), (7). To support our claim, we 
now state a partial result which rules out the existence of “smooth-type” 
minimizers in such a case. 

PROPOSITION 2.5. - Let 0 be a bounded domain with IdRl = 0. Let 
0 5 El 5 . . . 5 In be the singular values of E. Assume that 

2<rank{<n-1, .!rtd&i< 
k=l 
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For each function u E DE, extended by < . x outside R, define the set 

2, = {X E Iw” such that Du(x) = 0). 

Then, (5) admits no minimizer u E DC such that Z, is a closed set in R. 

Remark 2.6. - We must however confess our dissatisfaction with the 
condition on the closed character of Z,. Indeed, it is doubtful whether this 
condition will be satisfied in general by a minimizer in DC (see, for example, 
the “confocal ellipsdids” construction, when rank < = n, in the proof of 
Theorem 2.3). Nevertheless, we believe the idea of the proof of Proposition 
2.5 interesting enough to be included here. We also refer to Remark 2.12 
below for a discussion of this conjecture from a different perspective. 

Proof of Theorem. 2.2. - The proof is divided into three steps. The first 
step provides a convenient characterization of the quasiconvexification of 
f using homogenization theory. In the second step an explicit expression 
for Qf is obtained. Finally the third step addresses the computation of the 
rank-one convex envelope of f with the help of the Kohn-Strang algorithm 
(see section 5C in [ll]). 

STEP 1. - The starting idea in our proof is familiar in the context 
of homogenization whenever the microstructure exhibits voids. A poor 
conductor is allowed to fill those, which cures the degeneracy of the 
conductivity tensor and permits direct application of the theory of 
homogenization. Of course it still remains to show that the algebraic limit, 
as the conductivity of the poor conductor tends to 0, of the obtained result 
is indeed the sought result (cf. for example [ll], Section 6, or [l], Section 
3, for similar considerations). 

We introduce, in lieu of (7) 

ffl(rl> = inf (A + ~1~12, PM”) (11) 

where 1 5 p < +cc. The sequential lower semicontinuous envelope of 

.I 
fdDu)dx 

n 

over DC is obtained by consideration of the new functional 

.I QfdDuPx cl 
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where Qfp is the quasiconvexification of fp, i.e., 

(12) 

In (12) Y is a unit cube in R” (Y = (0,l)“) and H$(Y; W”) denotes 
the subspace of Hi(Y; RN) of periodic functions. Note that the usual 
definition of the quasiconvexification of a functional over WN involves 
Dirichlet rather than periodic boundary data for the trial fields (see e.g. [6], 
Theorem 1.1, p. 201) but that both definitions are equivalent, at least when 
the functional is non negative, continuous and grows at most quadratically, 
which is precisely the case here ([5], Conjecture 3.7 and Theorem 3.1). 

A simple switch in the minimizations leads to 

where, denoting by (ei)i<icn the canonical basis of IV, A, is a n x n 
symmetric matrix defined by its entries 

A,ei . ej = vt~p~y,R) 
# ’ s 

y(~a + (1 - x>Pk + &4 f (ej + Wdy. 

The matrix A, is the limit in the sense of homogenization -the 
H-limit- of the sequence 

A; = (x(4a + Cl- x(4)P>I2, (14 

where 12 is the identity matrix on R”. See [ 151, Section 5. 
For a given 19 E L”(0; [0, l]), the set 6{ of all possible H-limits of 

sequences of the form 

(X”(4~ + (1 - XYw)~2 

with 
X n - 19 weak-* in L”(fl; [0, 11) 

is known ([ 171, Theorem 1). It is of the form 

S,” = {A E Lw(R; Rf ) 1 A(x) E G&, a.,.} 

where Gf is, for any 0 5 0 5 1, a fixed set of matrices which is nothing 
else than the closure of the set of all H-limits of periodic sequences of 
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the form (14) with &, x dy = 0 (see [17], Proposition 3 for a constructive 
proof or [8] for a more general argument). Further, as proved in Theorem 
1 of [17], G{ is the set of all symmetric n x n matrices with eigenvalues 
Xl, “‘, A, satisfying 

{ 

&ye> := (g + Qp-’ 2 xj 5 go(s) := ea + (1 - e)p, 1 5 j < r1, 
c;&j - a)-’ 2 (dye) - a)-1 + (n - l)(sifl(@ - o)-1, 
Cj”_,(P - X,)-l 5 (p - &e))-1 + (rz - l)(P - zP(e))-‘. (15) 

Then (13) reads as 

(16) 

Elementary order preserving properties of H convergence immediately 
imply hat fp*(&rl) is monotonically increasing with /3. Furthermore, the 
function fi can be checked to be continuous in both its arguments (cf. 
e.g. [9], Lemma 3.9 for a proof in a more general setting). Thus Qfp is a 
continuous function. Let us pause a moment in the proof of Theorem 2.2 
in order to link Qfp to the quasiconvexification of f ; this is the object 
of the next lemma. 

LEMMA 2.7. - The sequence Qfp monotonically increases to Qf as ,6 
goes to +CQ, where Q f is the quasiconvexi$cation of f dejined in (7). 

Proofi - Since fo monotonicity increases to f as ,B /“+“, 

Qfp L Qf. 

The functional Qf is quasiconvex and has at most quadratic growth. It is 
thus rank-l convex (cf. [6], p. 105), hence continuous (cf. [6], Theorem 
2.3, p. 29). Set 

sdrl) = min {fdrl), Qf (v)}, rl E wN. 

The sequence gp is monotone in p and continuous in n; it converges to Q f 
as p tends to +oo. Dini’s theorem implies that 

gp /IO/+- Q f uniformly on compact subsets of WN. (18) 
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Note that 

Qgp I Qfo 2 Qf- (19) 

We prove that 

Qf I aliy Qgo, (20) 
--too 

which establishes the desired result. Indeed take cp in HA(Y; RN) such that 

Qgh) 2 s, sob + W)~Y - $ 

= J y Qf(rl + &PY - j - 1 lsp - Qfl(rl+ Dv)~Y. 
Y 

Since s&d = &f(v) as soon as 1~1 is large enough (say 1~1 > M, 
Ikf independent of ,6), (18) implies that, denoting by YM the set 
{Y E Y I I&(y)1 I M + Id}, for my E > 0, 

J lsp - Qfl(v + DPPY = J lsp - Qflb + WRY 5 E, 
Y YM 

as soon as ,B is large enough. 
Thus, for p large enough 

Qgdv) 2 J y Qf(71+ DVPY - $ - E L Qfh) - j - & 

because Qf is quasiconvex. Letting E tend to 0 and p to +cc proves (20), 
which concludes the proof of Lemma 2.7. 

Let us resume the proof of Theorem 2.2. Upon setting 

we conclude, by virtue of Lemma 2.7, that 

&f(v) = ,,$&,Cf*C4 rl) + W. (21) -- 

Since fp” is continuous in 0, there exists, for a fixed p, a value BP of 
6 such that 

Qfdrl) = f*(b 77) + X~P. (22) 
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Extract a converging subsequence of 60 (0 5 Bp 5 l), still indexed by 
,Cl, and call e the limit. If p < p’, the monotone character of fs implies 

We let p’ tend to +cc and obtain, by virtue of the continuous character 
of f,*L rl)l 

Thus, letting p tend to +cc, 

z.e., 

Qfh) = f*(& 7) + M 

and we conclude from (21), (22) that 

A much more explicit expression for f*(0, n) may be derived with the help 
of (17) which defines fg(19,q) as the infimum of a linear functional over 
the set Gf . In view of equation (15), let us define GT as the algebraic 
limit, as p /*+03, of Gf, i.e., the set of symmetric n x n matrices with 
(possibly infinite) eigenvalues X1, . . . , X, satisfying 

This yields 

which completes the first step in the proof. 

STEP 2. - To compute f* (0, n), we first remark that 

where H = $7 is a n x n symmetric matrix. Let us denote by 
0 5 q1 5 . . . 5 n7n the singular values of n, i.e., the square roots of 
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the eigenvalues of H. A well-known result of 
[ 131) yields 

von Neumann (see e.g. 

where (Xi, . . . . X,) are the ordered eigenvalues of A, and the infimum is 
taken on the convex set defined in (24). Therefore, the infimum in (25) is 
a minimum if infinite values of Xi are allowed. If the minimizer in (25) 
is such that, for some index ia, 

then, the constraints in (25) implies that all the others eigenvalues Xi are 
infinite for i # i 0. This can happen only if vi = 0 for i # n + 1 - ia, i.e., 
if q has rank one. Let us assume for the moment that the rank of the tensor 
7 is strictly greater than one. Then, when writing the optimality conditions 
for minimizers in (25), the constraints Xi 2 z, which are not saturated, do 
not play any part. Therefore, the optimality conditions read 

3C > 0 such that qE+iPi = 
c2 

(Ai - a)” 
lI:iln. (26) 

Taking into account that, at the minimum, CyEi(Xi - cr.)-’ = $$-, a 
straightforward calculation yields 

c = (1 -Q n 
I9 c vi, 

i=l 

and 

. (27) 

Formula (27) is immediately seen to hold true also if 7 has rank one. Then, 
a simple minimization over B in (23) leads to the desired formula (10). 

STEP 3. - According to Kohn and Strang [l 11, section 5C, the rank-one 
convex envelope Rf of f, i.e., the largest rank-one convex function below 
f, is the limit as p goes to infinity of the sequence of functions fp defined by 

fobI) = f(rl), fp+%9 = li=-BI)l+(l~$2 o~e~l (e.f”(%) + (I- WP(r/2)). 

rankc Tl-VZl<l 
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The precise computation of limP++oo fr is cumbersome. Rather, we 
construct a sequence f 2 g” 2 f” such that g” = Q f. Since Q f is 
a rank-one convex function and fp monotonically decreases to Rf, this 
proves that gn = f n = Q f = Rf. Let us define the sequence (gP)o~P~7Z by 

Q’lr112 - Q(C’:4, r,i)2 + ax’;==, 7); 
sP(rl) = if Cy=“=, rl; < J 2 and rank(q) < p, 

+?I2 + x otherwise. 

Obviously gp is a decreasing sequence such that go = f and g” = Q f. It 
remains to prove that gr 2 f* for 0 1: p > n. We proceed by induction on 
p. It is true for p = 0 ; let us assume it is also true up to order p. Then 
s*+%) = s*(v) h w enever the rank of v is different from p + 1. Thus 
g*+‘(q) 2 f*+‘(v) if rank(v) # p + 1. When rank(n) = p + 1, the polar 
decomposition of 77 allows us to write 

P+l 

rl=~rl&@hi, 
i=l 

where (vi) are the singular values of q and (ei), (hi) are orthonormal 
families of vectors in WN and Iw” respectively. Then, 

f”+‘(d 5 ,~~, (Sf”(rll) + (1 - B)fP(q2)) 

5 ,g, (OgP(771) + (1 - W(m)), 

where 

1-O 
711=rl+ Tvp+lep+l @ hp+l, and v2 = q- vp+lep+l @ h,+l. 

Since the rank of ~1 is p + 1, g* (71) = f (vi), and a tedious minimization 
over 0 yields 

9”+‘(d = ,g, (hPh) + (1 - %IP(r12)), 
-- 

which proves that f*+’ 5 g*+’ for any p. This completes the proof of 
Theorem 2.2. 

Remark 2.8. - In [ 111, section 5C, Kohn and Strang already proved, in 
the case n = 2, that Q f coincides with the rank-one convex envelope of f. 
Our proof that it is also true in higher dimensions n 2 2 is a generalization 
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of their two-dimensional proof, once the quasiconvexification Qf of f has 
been computed. 

Remark 2.9. - Our computation of the quasiconvex envelope Qf does 
not use in an essential manner the knowledge of the entire G-closure, i.e., 
the set G;P (see (15)). It is enough to be able to minimize {A$ . q} over 
all A’s in Gp (see the second step in the proof of Theorem 2.2). At the 
price of tedious computations, this latter task can be performed without 
the explicit knowledge of Gr by using the so-called Hashin-Shtrikman 
variational principle (see [3] or [2]). 

Proof of Theorem. 2.3. - If < = 0 or ~~=, & 1 8, then f(E) = &f(l) 
which proves that ,$’ . 2 is a minimizer for (5) over DC. The rest of the 
proof is divided into two steps. The first step addresses the case where rank 
< = 1 while the second one examines the case where rank [ = 72. 

STEP 1. - If rank [ = 1, we deduce from Theorem 2.2 (or more precisely 
from (23)) that 

&f(E) = ,,$, {; ItI + A+ -- (28) 

Either CX][]~ 2 X, in which case the minimum is obtained for 6 = 1 and 

&f(l) = alEI + x = f(t), 
which proves sufficient condition ii) for the existence of a minimizer. Or 
o]<12 < X in which case the minimum is obtained for 

and 
&f(S) = W+)““l~l~ 

In such a case assume that u is a minimizer for (5) over DC. Since, by the 
very definition of the quasiconvexification Qf of f, <. 2 is a minimizer for 

over DC, 

&f(t) = & s, f(Du&. 
Vol. 15, no 3-1998. 
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Then 

Note that 

Dudx=[=+&/ &dx, 
u CL 

(29) 

Jensen’s inequality implies, in view of (29), (30), that 

which, together with (28), implies that 

and 
+, k lW412dx = filF12, IJ 

or, equivalently, 

s Q, 
JDu(x)12dx = g[<12. 

21 

If v is a fixed element of RnN, (31) leads to 

(31) 

J Qu 
IOU(X) - v12dx = g [ - +f 2: 

I I 

and a choice of v = H< yields u 

II M,$ 2dx = 0. CL Wx) - lfizll 
Ann&s de l’hstitut Henri Poincar6 - Analyse non linhire 



EXISTENCE OF MINIMIZERS 317 

Consequently, 

Du(z) = lo”-1 
{ 

FL& a.e. on R,, 
> a.e. on s2 \ R,. 

But a vector valued function cannot have a gradient that only takes two 
values on 0 unless QU and R \ R, are made of parallel strips normal to 
their difference (cf. Proposition 1 of [4]). These layers necessarily meet the 
boundary of Q and the boundary value of u cannot be affine all along that 
boundary. There are thus no minimizers u for (5) over DC. The proof of 
sufficient condition iv) for the non existence of minimizers is complete. 

STEP 2. - If rank E = n, then H = (“1 is a positive definite n x 12 matrix. 
Denote by 0 < cf 5 . . . 5 cz < +oc the eigenvalues of H. 

By virtue of (23) 

&f(t) = f*(W + M 

for some 19 E [0, 11. Further 0 # 0 otherwise 

because [ # 0. 
If 6’ = 1 then 

f*(L E) = 4a2, 

and 
QfK) = 4E12 + A, 

from which it is immediately concluded that E . 2 is a minimizer for (5) 
over DC. 

Assume from now onward that 0 $! (0, 1) and recall from (25) that 

where the eigenvalues Xj belong to the convex set defined in (24). 
The infimum in (32) is attained and this at a point (Xy , . . . . Xz) such that 

since rank < is strictly greater than one (cf. step 2 in the proof of Theorem 
2.2). 
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We now revisit the explicit construction proposed in Proposition 6 of 
[ 171 with the help of the so-called coated ellipsdid. Consider two ellipsdids 
B,- and B,+ with equations 1L 
c Xj” 

i=, Pf + ?i 
= 1, p- < p+, m = (ml, . . . . m,) E R”, p- +inf(mj) > 0. 

j 
_I - 

(33) 
In (33) x~j denotes the jfh component of x in the orthonormal basis 
{e;}i=i,...+ generated by the eigendirections of H. 

For each vector C E I#“, the real-valued solution u(<, Bp+ ) of 

1 

- div(A(z)Du(<, BP+)) = 0 on R” \ BP- 

u(C, Bp+) = 0 on dB,- , (34) 
4<,Bp+) = <.x onlR”\B,+, 

with 

44 = 1 gy= A. @ ei 
on BP+ \ BP-, 

2 1 zez on W” \ BP+, +j < X1 5 . . . 5 A, < +m, 

is of the form (see Proposition 6 of [17]) 

45, BP+ l(x) = 2 Gxifib) (35) 
i=l 

with 
-1 

1 .I P dt 

g&>(t 4 
1 5 i 5 n. 

p- + 
(36) 

In (36) 

h(P) = fi(p + mkY2 
k=l 

is the volume of the eliipsdid B, with equation 

Further 

(37) 
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so that, if we choose p-/p+ in a manner such that 

Sm(P-) = (1 - Qlm(P+L (38) 

we get 

Finally when m spans ‘WY, all points (XI, . . . . A,) satisfying (39) can be 
obtained as can be shown through a degree argument (see Proposition 6 of 
[17]). Before completing the proof of Theorem 2.3, we make a few useful 
comments on the above construction. 

Remark 2.10. - The ellipsdids BP* corresponding to a given point 
(A r, . . . . A,) satisfying (38) can always be resealed through multiplication 
of p+, p- and the mi’s by a small number so that BP+ lies inside the 
unit cube Q. Then 

=O! 

=-- 
s 

uADz~.Ti’ddH”-~ 
a@” -Bp+ 1 

= 
.I 

uAD~~?i’ddH~-~- 
J 

ADu.Dudx 
aQ QIBP+ 

where, in the last two equalities, ?;’ represents the outward normal to the 
hypersurface over which integration is performed. But, according to the 
third equality in (34), u = C . x on s \ BP+ so that 

&Q uA D u - 3 dH”-l =‘& X&, 

JQ\B, A Du . Du dx = 

Thus 

Q 
s 

IDuK, B,+)12dx = 
BP+ 

REMARK 2.11. - Everywhere inside B,,+ \ BP- one has 

WC, Bp+ Xx> # 0. 
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Indeed, by virtue of the form (35) of u(<,Bp+), 

But, from (37), 

thUS 

If 

it implies that 

au 
-=o, j=l,..., 72, axj 

which is impossible since fj(p) and f,!(p) are positive for p- < p < p+. 
Coming back to the proof of Theorem 2.3, we consider the point 

(X7 ***, Xi) satisfying (38) such that the infimum in (32) is attained. 
According to Remark 2.10, there exists, say for a given p- (hence a given 
p+ determined by (38)), resealed versions of BP- and B,,+ lying inside 
the unit cube and corresponding to (Xy, . . . . Xz). Vitali’s covering theorem 
implies the existence of a countable family 9 of disjoint homothetics, of 
ratio less than or equal to 1, of B,+ such that 

(40) 

Define, for x E 0, 

;jCf+)(4 if x +% B+ E Q, 
otherwise. (41) 
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Then, according to Remark 2.10, for BS in G, 

Q .I B+ 

Thus, by virtue of (40), 

(42) 

Choose 5 to be successively [I , . . . . &,J (the lines of the matrix 0, and define 

q = MGLa4). 

Then, in view of Remark 2.11, and upon denoting by B- the homothetics 
of BP-, rq, an element of DC, satisfies 

q(z) =Oon B- (B- c B+, B+ E G), 
Do # 0 on B+ B+ E G, 

hence 

s 12 
f(Du&))d~ = 5 &“- 101 +A c IB+ \B-1 

(i=l j=l ’ “) B+EG 

= (tr(AH) + M)lQ (43) 

But 
inf 

{S 
f(Wz))dz I u E D, = Qf(E)l% (44) 

s2 
which in view of (43) permits us to conclude that ut is a minimizer for 
(5) over DC and proves (iii) in Theorem 2.3. The proof of that theorem 
is compIete. 

Remark 2.12. - Let us examine briefly the confocal ellipsdids 
construction adapted to a matrix < of rank p with 2 5 p 5 n - 1. Let 
us denote by 0 = 112 = . . . = JzVP < &+r 5 . . . 5 ri < $00 the 
eigenvalues of the matrix H = ttl, and by el , . . . . e, the corresponding 
eigendirections. In the computation of f*( 8, I), the optimality condition 
(26) in the minimization over the eigenvalues (Xi)I<i<, of the homogenized -- 
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tensor implies that the (n - p) largest eigenvalues Xi are equal to +co. 
According to Proposition 6 in [ 171 the corresponding values of the ellipso’ids 
parameters m; are also equal to +oo, implying that the domain B,- and 
B,+ defined by equation (33) are cylinders obtained by translation in 
the directions ei , . . . , e+r of p-dimensional ellipsoids with axes given by 
en-p+l, . . . . elL. It can easily be checked that a solution ~(5: B,+ ) of (34) 
can still be defined, which does not depend on the variables x1. . ., x,,-~. 
Therefore, Step 2 of the proof of Theorem 2.3 can be generalized if we 
assume that R is a cylindric (unbounded) domain defined by translation 
in the ei, . . . . en-p directions of a y-dimensional domain in the subspace 
generated by en-p+l, . ..? e,. In other words, this proves the existence of 
a minimizer for (5) when 2 < rank [ 5 7~ - 1 and cy=“=, & < $ if the 
domain R is an unbounded cylindrical domain, aligned with some of the 
eigendirections of H = I”(. 

However, when R has no such special properties (in particular if it is 
a bounded domain), we conjecture that there exists no minimizer for (5) 
over De when 2 5 rank [ 2 7~ - 1 and Cy=“=, [i < $. We make such a 
claim because we believe that the optimality condition (26), which forces the 
(7~ - rank <) largest eigenvalues Xi of the homogenized tensor to be equal to 
+co, implies that possible minimizers do not depend on the corresponding 
(n - rank I) variables zi, a fact that would violate the boundary condition. 

Proof of Proposition 2.5 . - Let u E DE be a minimizer for (5) such 
that 2, is closed in R. Let d = d( Z,, 80) denote the Euclidean distance 
between Z, and 8R. Since Du(z) = [ # 0 for all points IC of the closed 
set W” \ R, the distance d is strictly positive. This implies the existence, for 
any boundary condition on X& of a test function, satisfying the boundary 
condition, and such that its gradient vanishes on Z,. In other words, for 
any ~0 E Hi(O), 

inf 
s mtluo+H;(n)l fi 

alDcj(z)12dz < +m. (45) 

D4=o in Z, 

Let Y = (0,l)” be the unit cube in R”. By Vitali’s covering theorem, 
there exists a countable family (fli)i21 o f disjoint homothetics, of ratio less 
than or equal to 1, of R such that 
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Let (.&)i be the associated family of homothetics of 2,. Denote by 2 
the set 

z = U(Zu)i. 
i>l 

Let X(Z) be the characteristic function of the set Y \ 2. Define the 
homogenized tensor A, associated to the characteristic function X(Z) by 

(46) 

where C is any vector in R”. Let us prove that A, is a bounded matrix in 
I#“*. Let 4 be an admissible test function for (45) with boundary condition 
‘1~e(z) = < . z. In each 52i we define a test function cp to be the sum of 
the homothetics of $J and of -5 f 2. Since cp is equal to 0 on the boundary 
of each Ri, pasting these contributions together we obtain a function of 
Hi (Y) . Therefore, 

A& . < < +cm b’[ E W”. (47) 

If < is a line <i of <, for 1 < i 5 N, we can obtain a better bound for 
A,cj . <i. Using cp(~) = -I; . z + ‘ZL, z as a test function in (46), where .( ) 
ui is the homothetic of the ith line of u, yields 

A,Jt . E I & n al~u(z)l~dx. s 
If u is a minimizer for (5), it satisfies 

-.I’ aIDu(x)j2dx+X 
IA R 

w = &f(c). 

Therefore, 

Since J,x(s)ds = w, we deduce that 0 = w and A = A, 
realize the minimum in the right hand side of (48). On the other hand, 
the optimality condition on A in the computation of &f(t) (see (23), (25), 
and (26)) shows that at least one eigenvalue of A is equal to +W because 
rank [ < n. This is a contradiction with (47). Thus, there is no minimizer 
u E DC such that 2, is closed. 
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3. EXISTENCE OF MINIMIZERS FOR A KOHN-STRANG TYPE 
FUNCTIONAL DEFINED ON DIVERGENCE FREE FIELDS 

This section, which parallels Section 2, is devoted to an analysis of 
possible minimizers for the functional 

J * f (ff)dx (49) 

where R is a bounded domain of IF, and CJ is a divergence free field 
“which is affine” on the boundary of 0, i.e., 

where n’ denotes the outward unit normal to 0 at a point of 6’R and div c 
is the N-vector whose components are { Cy=, $$}iCi,,. The specific 
function f under consideration is similar to that introduced in Section 2. 
It is taken to be, for n E WnN, 

f(v) = inf{X + P-l Iv?, 01 (51) 

with 0 < p < +cc and X < +CG. 

As in Section 2, the function f(q) is in truth the limit of the function 

fa(71) = inf{A + P-llr112, a-11r1121 

when Q > 0 tends to zero. In contrast to the setting of Section 2 we shall 
also prove a partial result for the non-degenerate function fa. 

Once again the functional defined in (49) is not (sequentially) weakly 
lower semicontinuous over L2(Q RnN) so that minimizers for (49) over 
Cc defined in (50) need not exist. It is widespread belief that the lower 
semicontinuous envelope of a functional defined on divergence free fields 
has for integrand the quasi-convexification of the original integrand. In 
other words, if 

Qf(rl) = .I& Cs y f(rl + s(y))&/ > 
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with 

C, = s E L2(Y; WN) 1 divs = 0 in Y, 

s . ri antiperiodic on aY, Ls&/=O}, 

then the functional 

admits (a) minimizer(s) over Cc and the minimum value of (53) comcides 
with the infimum of (49). The equivalence between sequential weak lower 
semicontinuity and quasiconvexity in the context of divergence free fields 
has recently been established in [lo]. We will not concern ourselves in 
this section with a complete proof of the proposed form for the lower 
semicontinuous envelope. 

Let us begin with an explicit formula for the quasi-convexification Qf(n) 
of the original function f(q). 

THEOREM 3.1. - Let 0 < nl 5 . . . 5 Q, be the singular values of v (i.e., 
the square roots of the eigenvalues of #Q). Dejne the function p(q) by 

(there exists a unique p E (2, . . . . n) such that vp+l > & Cf=‘=, vi 2 rip 
with the notation qn+l = +oo). Then 

Qfb) = +?I2 + x if P(V) L m, 
#?I” - ;hd2 + 2fiP(d if P(d < m. 

Remark 3.2. - In space dimension 2, formula (54) simplifies in 
p(q) = ~1 + 112 and the function Qf introduced in Section 2 is recovered 
upon setting a = +. 

In space dimension 3, there are two regimes in formula (54) 

P(V) = 
if 173 5 rll + v2 

if v3 >vl+7]2. 
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Let us also remark that, in any space dimension, when rank (v) < n - 1, 
i.e., when ~1 = 0, one has p(n) = 1~1. In this case, we deduce that 

&f(v) = Cf(rl) = 
$h12 + x if lrll L dJF 
2 ;I71 21 if b-11 5 dV 

if rank (q) 5 n - 1. This last remark is at the root of the next theorem. 

THEOREM 3.3. - A sufJicient condition for (49), (51) to have a minimizer 
over Cc is that at least one of the following conditions holds 

(i) < = 0 
(ii> ~(0 2 Jxp 

(iii) rank E = n and Jn < & Cy=“=, & 
while (49) has no minimizers over Cc when 

(iv) 1 5 rank E 5 n - 1 and ItI < m. 

Remark 3.4. - Theorem 3.3 leaves open the case rank [ = n, 
p(c) < &$, and & 2 & cy=“=, I;. We conjecture that in such a 
case there are no minimizers of (49). As in Proposition 2.5 we could have 
stated a result ruling out “smooth-type” minimizers in this case. In the spirit 
of Remark 2.12 we point out that in such a case some of the eigenvalues 
of the homogenized tensor A, entering the computation of Qf (see (3.14) 
below), are zero. We believe it implies that possible minimizers do not 
depend on the variables of the corresponding eigendirections, a fact that 
would violate the affine boundary condition. 

THEOREM 3.5. - Consider the minimization of the functional 

over Ct, defined in (50), with fey dejned in (52). Zf rank t < n, then (56) 
has a minimizer over C, if and only if 

Proof of Theorem 3.1. - An argument identical to that which led to (16) 
would demonstrate that, for the function fa defined in (52), 

(57) 
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with 

and where G; is identical to the set Gf defined by (15). Note that the 
superscript has changed since Q is now the varying parameter. 

Since fa monotonically increases to f as a goes to 0, an argument 
identical to that of Lemma 2.7 yields the monotone convergence of Qfcy 
to Qf as cx goes to 0 and, 

&f(v) = ,$j$, Cf*(R 77) + X(1 - W, (59) -- 

with 

and where Gi is the algebraic limit of Gg as (Y goes to 0, i.e., the set of 
symmetric n x n matrices with eigenvalues X1, . . . . A, satisfying 

1 

0 5 xi 2 (1 - e>fi 
c;=“=,(p - xi)-1 5 y (61) 

Since Aelqt ~71 = tr(A-‘$v) where $q is a n x n matrix, denoting by 
0 5 7/l 5 1.. 5 7, the singular values of q and by 0 < X1 < . . . < A, the 
eigenvalues of A, a well-known result of von Neumann (see e.g. [mirsky]) 
states that 

(62) 

where the infimum in the right hand side of (62) has to be taken over all 
values (Xi)l<i<n satisfying -- 

To compute this infimum, let us assume for the moment that none of 
the constraints 0 2 Xi 5 (1 - 0)/I is active and that the only saturated 
constraint is 

k(p - xi)-1 = e -ip+ n. 
i=l 
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In this case, a possible minimizer must satisfy the following Euler-Lagrange 
equation : 

where C > 0 is a Lagrange multiplier. 
An easy calculation yields 

(63) 

Note that the (X;)‘s are ordered. One must check that 0 2 Xi 5 (1 - e)/J, 
for all 1 5 i 5 n, which is equivalent to 

(66) 

Note that 0 < Xi < (1 - 4)/?, f or all 1 2 i < n, is equivalent to the strict 
inequality in (65). If (65) is satisfied, the value of the minimum in (62) is 

f3 /3(1-~9)(n- 1) (66) 

If (65) is not satisfied, then one of the constraint 0 < pi 5 (1 - 0)p is 
saturated. Since Xi = 0 can achieve the minimum in (62) only if Q~ = 0, 
we consider the case when one of the eigenvalue Xi is equal to (1 - @)p. 
Let us assume that X, = (1 - 6)p and that all the other eigenvalues satisfy 
0 < xi < (1 - e)p, 1 < i 2 n - 1. The minimization in the right hand 
side of (62) becomes a (n - 1)-dimensional problem with the single active 
constraint 

n-1 

c(p - xi)-1 = 6 -;; n. 

%=l 

A computation similar to the previous one yields 

A; = hi 

vi+&& CTI: Vi’ 

l<i<n-1. 

One must check again that 0 5 X; 5 (1 - 19)p, for all 1 5 i 5 n - 1, 
which is equivalent to 

1 n-1 

qn-1 5 - c 
n-2 i=l 

Vi. (67) 
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If (67) is satisfied.(but not (65)), the value of the infimum in (62) is 

n-l ( ) 
2 

f*(w = ;lv12 + (1 -&4 + 
(l-&n-2) .yi . c 

An easy induction argument shows that the minimum in (62) is 

f*(4 rl) = $o12 + (1 BR)@ .-$- 73 + 0 1 p 2 - 
(l-qbP-1 yi ( ) 

c 
a--P+1 

if 7 satisfies the following condition, denoted by (HP), 

1 p 
VP I - p - 1 i=l vi> c 

and does not satisfy all previous conditions (H,) for p + 1 5 Q 5 n. It 
is easily seen that, if (HP) is not satisfied, all previous conditions (Hq) 
for p + 1 5 Q 5 n are not satisfied either, and that (Hz) is always 
true. Therefore, with the notation qn+l = +oo, then exists a unique 
p E {2,3, . . ..n} such that 

1 p 
VP I - c 

p - ’ i=l 
Vi < Vp+l* 

Introducing the function 

(68) 

with p defined by (68), we finally obtain 

f*(e>ll) = $lR12 + (1 BqpP(d2. 

An easy optimization in 8 leads to the announced formula for Qf (q). 

Remark 3.6. - In the spirit of Remark 2.9, we emphasize that our 
computation of the quasiconvex envelope Qf does not use in an essential 
manner the knowledge of the entire G-closure, i.e., the set G’& Indeed, 
the minimum of {A-l# . n} over all A’s in Gi can be computed without 
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the explicit knowledge of Gi by using the so-called Hashin-Shtrikman 
variational principle (see [3] or [2]). 

Proof of Theorem 3.3. - For any matrix t, if p(t) 2 m, then 
f(t) = &f(l), and G(X) = < is a minimizer of (49) over Cc. Now, 
let < be a matrix of rank n such that 

Then, the homogenized matrix A which achieves the minimum in the left 
hand side of (62) has eigenvalues (Xi)l<i<n. satisfying 

Since the (&)‘s do not reach the values 0 and (1 - S)p, one can repeat 
the argument of Section 2 concerning the confocal ellipso’ids construction 
(the parameters (m ,) Z lsi<~ of the ellipsdids are finite and non zero, see 
(33)). In the present case, the boundary condition on LIB,- is a Neumann 
one, and the matrix A(z) is 

A(z) = 
in B,,+ \ B,- q 
in W \ Bp+, 

where (Xi) is the minimizer in the right hand side of (62). Apart from 
this, the second step of the proof of Theorem 2.3 can be repeated mututis 
mutandis to yield the existence of a minimizer of (49) over Ct. 

Finally, consider a matrix < of rank less than or equal to n- 1 and such that 

~(0 = 111 < m. A s noticed in Remark 3.2, &f(c) = Cf([) = 2fi]<] 
for such matrices <. In such a case, assume that a(z) is a minimizer for 
(49) over Cc. Then 

Qf(l) = & 1 f(a)dz. 

Define the set 

Then 

&f(E) = &, 6, jl+)l’ + $$. (69) 
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Note that 

331 

so that h Jaudx = <. 

The mapping 4 defined on R+ \ (0) x W” by 

is convex, and Jensen’s inequality implies, in view of (69) that 

Hence, recalling that, since rank [ < n, 

we deduce that 

PPI - = 1 - timin, 
If4 

and that equality holds in (70), i.e., 

s Ra 4WG))dx = 4 P, ,RP, ~, ( -it.- / n(x)dx). (71) 

But, for to > 0, zo E UP2 and any (t, z) E (0, +w) X RnL, 

c#,(t, 2) = c,h(to, 20) + D$(to, 20) . (z - Zo,t - to) + $ - $” 

SO that, upon setting 

c 
2 = u(x) , zo = E, 
t=p , to = p(l - 8min), 
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(71) implies that 

“(“)=l-; [ for a.e. II: E Rp. 
Ill,” 

Then L?(X) = g(x) - < IS a divergence-free field that satisfies 

But there are no such fields other than 0. Thus, for < # 0 and rank < < n, 
there are no minimizers for (49). 

Proof of Theorem 3.5. - The proof is very similar to that of Theorem 
3.3. We start from the formula (57) for QfCY(q), 

Qfdrl) = ,,y& U,P, rl) + X(1 - 0)) 
-- 

where, denoting by 0 < ql 2 . . . < 71, the singular values of the matrix 71, 

(72) 

In (72) the infimum has to be taken on the following set : 

{ 

c&q = (; + y>’ I xi 5 oa + (1 - e>j3 = Z(0) 
c;&; - cl-1 < (g(O) - cl)-1 + (n - l)@(e) - a)-1 . 
~y=“=,(p - xiy I (P - @))-l + (n - l)(P -a(e)>-’ 

If rank 71 < n, then nl = 0 and it is easily seen that the minimum in 
(72) is attained for 

x1= (Z+!jy and & = @a + (1 - B)p, 2 5 i 5 n, 

(In this case the constraint cF’“=,(p - Xi)-’ 5 (p - ~(0))~’ + (n - l)(,fY - 
Z(0))-’ is exactly satisfied.) Therefore, for rank v < n, 

1 
fz*(s, 7) = #ga + (1 - qp lr112, 

and a simple minimization in 8 yields Qf= (q) = Cfa (n), the 
convexification of fa. From here on, the end of the proof follows that 
of Theorem 3.3. 
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In this short section the setting is that of Section 2, but a more general 
(non quadratic) functional is considered. Specifically, for Q a matrix with 
lines (rll, “‘, 7~) in Rn, 

4. A GENERALIZATION OF THE KOHN-STRANG 
FUNCTIONAL; PARTIAL RESULTS ON THE 

POSSIBLE EXISTENCE OF MINIMIZERS 

where IV1 and IV, are convex Cl-function on R”, positively homogeneous 
of degree p (1 < p < +co) (i.e., lVi(Aa) = PVVi(a), A 2 0, i = 1,2); 
it is also assumed that 

Wj,(U) # 0, U # 0, i = 1,2, 

and that, for every b in R”, there exists a constant y(b) > 0 such that 

W;(a) > Wi(b) + DWi(b) . (a - b) + r(b)la - blp. (74 

We are unable, in this latter setting, to prove the exact analogue of 
Theorem 2.3 (or rather of the generalization of Theorem 2.3 to the non- 
degenerate case) because we lack an explicit construction of the type 
performed in the proof of Theorem 2.3 whenever rank 5 = n. Our result 
is the following 

THEOREM 4.1. - Zf rank [ = 1, (5), (73) has a minimizer over DC if 
and only if 

min 5~: ( 
eE(o,l) K ) 

ew,* + (1 - e)w;)*(a) + x0 
i=l 1 

2 mm [(&+(a) + A> (@jIV2(.)] > (75) 

where E = CL @ a, P E RN, a E R”, and * denotes the Legendre 
transformation. 

Remark 4.2. - The seemingly non explicit character of Theorem 4.1 can 
be cured whenever a more explicit form is available for IV, and W2. For 
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example if IVi(u) = (a/p)]a]P, Wz(a) = (P/p)]a]P, Q < p, then (75) is 
satisfied if and only if 

Proof of Theorem 4.1. - The functional (5) fails, once again, to be 
(sequentially) weakly lower semicontinuous over H1(R, IP). Its lower 
semicontinuous envelope is given by 

J 12 Qf(vPx, 

where Qf, the quasiconvexification of f, is given by 

Qf (7) = inf J $7EI4p(Y;RN) y f(rl + bQ)dY. (76) 

In (76) Y is the unit cube in R” and IVp(Y; RN) denotes the subspace of 
W’>P(Y; RN) of periodic functions. An argument identical to that developed 
at the onset of Section 2 would lead to 

&f(v) = &,W> rl) + W, (77) 

with 

(78) 

In (78), IV, is the homogenized energy associated to x, i.e., 

Wx(4 = inf ~Ew~p(y.w) y(X(Y)wl + (1 - X(Yy>)W2)(a + MY))& (79) .I 
see e.g. [12]). 

If rank < = 1, then [ = p @ a, a E IF, p E RN, and because of the 
homogeneous character of Wi, i = 1,2, (78) becomes 

with 
9(@, a) = XtL-~~(o,l)) {wx(a)). (81) 

S” X(Y)dY=@ 
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A lower bound for g(0, u) is easily obtained upon introduction of the 
dual problem for IV,. Specifically, it is a classical result of the theory 
of homogenization -and a straightforward consequence of von Neumann’s 
min-max theorem- that 

W,(a) = sup{b * a - Iv,(b)}, 
bERn 

(82) 

where 

W,*(b) = inf 
{.I 

(X(Yl>W,* + 0 + X(YwT)(~ + S(Y)MY 
> 

. 
3E% y 

(83) 

In (83), IV:, i = 1,2, are the Legendre transforms of IV1 and IV,, and 
C, is defined by 

C+L = s E L2(Y; RN) 1 div s = 0 in Y, 

Taking s = 0 as test function in (83) implies, in view of (82), that 

Actually the inequality in (84) is an equality. This latter result is well 
known in the field of homogenization although we were enable to locate 
a complete proof in the available literature. A proof is given in Remark 
4.3 below for the sake of completeness ; as such it can be safely skipped 
by a trusting reader. 

Remark 4.3. - Inequality (84) is actually an equality. Indeed, consider 
the case of the homogenized energy associated to a characteristic function 
x(y), defined on Y as 

X(Y) = Z(YI), with 2(t) = i 
if 0 5 t 5 19, 
ifO<t<l. 

Let s E R and el be the unit vector in the yl-direction. Remark that if $r and 
cj2 are any two vectors of R”, with 64, + (1 - S)& = 0, then the function 

cp(yl) = 
if 0 2 y1 5 0, 
if 0<yi<l, 
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is an admissible test function in (79) specialized to the case at hand. Thus 

The infimum I is computed as follows : 

I= inf 
01>+2 C 

QSUP[Q . (se1 + 41) - q+Jl)] 

em,+(l-@)m,=o 41 

+ (1 - 0) SUP[42 . ( 
42 

se1 + 42) - w;(q2)l> 

and, upon application of a finite dimensional min-max theorem, 

I= SUP {se . (@I + (1 - 022) - (OV(41) + (1 - O>W,*(q2)) 
41>92 

+ inf 
@l%+z 

eml+(l-e)d,=o 

{sl . &h + q2 . (1 - W2)). (86) 

But the infimum in (& , 42) is -cc unless q1 = q2. Thus 

W,(sel) 5 I = sup { se1 .4 - (eW+(q) + (1 - @w,*(q))}. 
QER” 

But, according to (81), (84) 

Wx(sel) > I. 

Thus 
Wx(sel) = I. 

Since we could always choose the yi-direction to be in the direction of a 
given vector a, the choice of a = se1 is not restrictive and 

g(k a) = pg {b. a - ww) + (1 - vq(W). (87j 

Let us resume the proof of Theorem 4.1. In view of (80), (87) if rank 
< = 1, t = p@a and 

where ( )* stands once again for the Legendre transform. Assume that 
(75) does not hold, or equivalently, that the infimum in (77) is attained for 
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0min # 0,l. (Note that g(B, u) is a continuous function of 8; see [9], (3.21), 
(3.22) and Lemma 3.9). Then, if u is a minimizer for (5), (73) in DE, let 

O1 = x E 01 5 WdDui(x)) + X < 2 Wz(Dui(x)) , 
i=l i=l 

and 

Then, 

/ f(Du(x))dx = / 5 W@ui(x))dx+/ 2 K(Du;(x))dx+Wh, 
n ‘1 i=l ‘2 i=l 

(89) 
Further, by virtue of Jensen’s inequality, 

Set 

and remark that 06 + (1 - 0)& = [ = p @ a. Then (90) becomes 

+ (1 - 0) 2 SUP {b. (I2)i - W,*(b)} + M 
i=l bEW" 

N 

= ( ) c p; p&II {b . a - (ew; + (1 - B)W,*)(b)} + Ad. (91) 
71 

i=l 

Vol. 15, Ilo 3-1998. 



338 G. ALLAIRE AND G. FRANCFORT 

The homogeneous character of degree 5 of W: (i = 1,2) has been used 
in deriving the last equality of (91). In view of (77) (88), the equality holds 
in (90) or (91), i.e., upon recalling (89) 

Invoking (74) for the first (and last) time we conclude that 

Du(z) = 
{ z: : 

a.e. on Ri; 
a.e. on 0.2, 

which is impossible unless [i = t2 by an argument identical to that used at 
the end of Step 1 of the proof of Theorem 2.3 in Section 2. But [i = E2 = < 
is not possible because u = c . z is not a minimizer since 0min # 0, 1. The 
proof of Theorem 2.3 is complete. 

Note added in proof. - In a very recent preprint of Allaire and Lods 
it is demonstrated that Proposition 2.5 holds true even without the 
assumed technical condition on the set 2,. This confirms our conjecture 
of Remark 2.12, namely that for a bounded open set 0 there exists no 
minimizer for (5) over DC when 2 2 rank< 5 n. - 1 and Cy’i li < 2. 
Note also that the existence of a minimizer for (5) when rank c = rb has 
also been observed by Grabovsky (Bounds and extremal microstructures 
for two-component composites: a unijied treatment based on the translation 
method, Proc. Roy. Sot. London Series A 452, pp. 919-944, 1996) in the 
case of periodic boundary conditions. 
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