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Optimal design for minimum weight and compliance
i plane stress using extremal microstructures

G. ALLAIRE*, ** and R. V. KOHN #**, ##+#

ABSTRACT. — We study the shape optimization of a two-dimensional elastic body loaded in plane stress.
The design criteria are compliance and weight. A relaxed formulation is used, whereby perforated composite
materials are admitted as structural components. This approach has the advantage of placing no implicit
restriction on the topology of the design. A similar method has recently been explored by Bendsoe, Kikuchi,
and Suzuki, with the goal of “topology optimization”. Qur work differs from theirs in two important respects:
we emphasize the use of optimal microstructures, and we use a formulation based on stresses. While our
pumerical work is two dimensional, the method could in principle also be applied to threc dimensional

structures.
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1. Introduction

The basic problem of structural optimization is to choose the shape or composition of
a structure so as to optimize some feature of its behavior. This paper is concerned
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840 G. ALLAIRE AND R. V. KOHN

primarily with shape optimization, in the context of two-dimensional elastic structures
loaded in plane stress. Our goal is to minimize the weight (area) subject to a constraint
on the compliance (work done by thle load).

There is by now an extensive literature on shape optimization; see for example the
reviews ([Ding, 1986]; Haftka & Grandhi, 1986]; [Pironneau, 1984]; [Venkayya, 1978])
and conference proceedings ([Bennett & Botkin, 1986]; [Mota Soares, 1987]). Virtually
all this work implements some variation of the following idea, which we shall call the
“standard approach.” One begins with an initial design in which part of the boundary is
free, i.e. subject to optimization. Its configuration is determined by finitely many para-
meters, typically the positions of certain control nodes. The elasticity problem is discreti-
zed, usually using finite elements or a boundary integral formulation. The task of
optimization then becomes a large nonlinear programming problem for the positions of
the control nodes. It can be solved by a version of steepest descent, based on successive
sensitivity analyses. Other optimization techniques are also sometimes used, including
the method of optimality criteria (e. g. [V, 1978]) and sequential linear programming (e. g.
[Fleury & Braibant, 1986]).

The main drawback of this approach is the dependence of the “optimal” design on
the form of the initial guess. As with any nonlinear programming problem there is the
difficulty of local minima. Worse, however, is the fact that the topology of the design is
fixed in the very formulation. This is a severe limitation, since the topology greatly
influences the performance of the “optimal” design (see e.g. [Bendsoe & Rodrigues,
1992], [Olhoff et al., 1991)).

There have been some attempts to permit change of topologiy in an otherwise “stan-
dard” optimization code, notably [Atrek, 1989] and [Eschenauer ef al., 1992]. Recently,
however, a totally different alternative has emerged. It is the use of a “relaxed formula-
tion”. The essential idea of relaxation is to admit perforated composite materials as
structural components, along with the originally given material. The original design
problem is nor being changed; we simply permit a microstructure of many small holes
rather than insisting upon a few large ones. After relaxation, the task of structural
optimiégtion looks more like a sizing problem than one of shape optimization. Since the
introduction of perforated composites “looks like” an expansion of the design space, it
tends to destroy local minima and to yield better performance for a given computational
mesh.

This new approach has evolved through the joint (often independent) effort of many
individuals. A sampling of the literature includes ([Bendsoe & Kikuchi, 1988]; [Cheng
& Olhoff, 1981]; [Gibiansky & Cherkaev, 1984]; [Kohn & Strang, 1986]; [Lurie er al.,
1982]; [Lurie & Cherkaev, 1986]; [Murat & Tartar, 1985]; [Olhoff er al., 1981]; [Raitum,
1979], and [Rozvany et al., 1987]. See also the recent conference proceeding volume
[Bendsoe & Mota Soares, 1992]. There are situations (see for example [Goodman et al.,
1986]; [Kawohl et al., 1991], and [K & S, 1986]) in which a relaxed formulation is required
for the very existence of an optimal design, if one desires a global optimum with no
topological constraints. In the context of shape optimization the situation is as follows:
one could consider an optimal design first with one hole, then with two, and so forth.
As the number of holes gets larger, the performance gets better. In the limit of infinitely
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OPTIMAL DESIGN IN PLANE STRESS 841

many holes one obtains a global optimum which is not a conventional design at all.
Rather, it is a structure made from composite materials obtained by perforation.

The relaxed formulation is convenient for proving the existence of optimal designs,
and for deriving necessary conditions of optimality. But its importance goes far beyond
that. The relaxed formulation provides a method for actually computing optimal designs
without placing implicit restrictions on the topology. The resulting structures might not
be easy to manufacture, since they will make use of fine-scale performation. But they
can nevertheless serve as benchmarks against which to compare any design. They may
also suggest a good initial guess for a conventional optimization code. Striking examples
are provided by the recent papers [B & R, 1992] and [O et al., 1991]: by using a relaxed
formulation as a pre-processor for a more conventional code, they obtain a dramatic
improvement in the performance of a computed “optimal” design.

The numerical calculation of relaxed optimal designs for elastic structures has recently
been considered by a number of authors: ([Bendsoe, 1989]; [B & K, 1988]; [Diaz
& Bendsoe, 1992]; [Jog et al., 1992]; [Suzuki & Kikuchi, 1991]). Some of these individuals
view it as a method of ““topology optimization.” Our approach differs from most of the
work just cited in two important respects. First, we use optimal composites rather than
ones chosen in some ad-hoc way. And second, we use a stress-based, variational formula-
tion. These two choices make the relaxed design problem resemble the analysis of
elastostatic equilibrium for a special, physically nonlinear material [see (2. 16) below].

The use of extremal composites for the optimal design of plates was considered some
time earlier by Gibiansky and Cherkaev [G & C, 1984]. That paper is roughly the
analogue of the present work in the context of plate theory. Their more recent paper
[Gibiansky & Cherkaev, 1987] includes a description of the optimal composites at a given
stress, for mixtures of two isotropic elastic materials in both two and three space
dimensions. It thus overlaps considerably with Sections 4 and 7 of the present work.
However, our method is substantially different and in our opinion more systematic than
that of [G & C, 1987].

It is obvious that the performance of a structure depends both on its shape and on its
composition; see e.g. [Ashby, 1991] for a thoughtful analysis. In considering relaxed
design problems, we recognize that these two dependencies are really one and the same.
The use of extremal microstructures is actually just shape optimization at a microscopic
length scale.

The stress-based, variational method we use here originated in [K & S, 1986]. That
paper actually computed our relaxed functional (i.e. evaluated the optimal composites)
for the special case of an elastic material with Poisson’s ratio zero. It used a method
called “‘polyconvexification”. The approach used here, based on effective moduli of
composites, is physically more intuitive.

Our attention is focussed on two dimensional structures in plane stress. However it
should also be possible to optimize three dimensional structures using a similar technique.
The characterization of the optimal microstructures is more complicated than in 2D,
but otherwise similar. We carry out the details in Section 7. The crucial bounds on a
mixture of two isotropic elastic materials are also worked out in [G & C, 1987]. The
numerical minimization of the relaxed 3 D functional requires solving an extremely large,
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842 G. ALLAIRE AND R. V. KOHN

nonsmooth mathematical programming problem. We have not yet had the courage to
undertake this.

2. The relaxed design problem

This section presents the compliance/weight optimization problem in both its classical
and relaxed formulations. Our discussion applies equally to the 2D and 3D settings.
Various technical issues — for example, an explanation of what we mean by a “perforated
composite’” — are postponed until Section 3.

Shape optimization for minimum compliance and weight is a standard model problem,
widely studied in the literature on structural optimization. Its motivation lies in the status
of compliance as a global measure of rigidity. The problem can be formulated ( prior to
any relaxation) as follows. We begin with a region Q<=R"(n=2 or 3), occupied by a
linearly elastic material with Hooke’s law A,. We suppose that Q is loaded on its
boundary by a known function f: 6Q — R". (Other boundary conditions are also possible,
€.g. part of dQ might have a specified displacement.) We intend to remove a subset
HcQ, consisting of one or more holes; the new boundaries created this way will be
traction-free. The equations of elasticity for the resulting structure are:

o=A,e(u), e(u)=—l-(Vu+VuT)
@.1) :
’ dive=0 in Q\H
o.n=f at dQ, c.n=0 at dH,

and the compliance is

2.2) c(H)=j f-u=_[ (Age(®), e(u)).
[0 oNH
Our goal is to minimize the weight subject to a constraint on the compliance:
2.3) min |Q\H]|,
c(H) =M

where M is a constant. One may just as well minimize the compliance subject to a
constraint on the weight:

(2.4) min ¢ (H).

| Q\H | sM’
The equivalence of (2.3) and (2.4) is a reflection of the fact that removing material
always increases the compliance.

Following standard practice, we shall handle the constraint by means of a Lagrange
multiplier. Thus instead of (2.3) or (2.4) we shall actually focus on the unconstrained
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problem

2.5) min [c (H) + A [Q\H]|].
H

Here A is a positive constant, which can be viewed as a Lagrange multiplier for the
constraint in (2.4). [Equivalently, A~! can be viewed as a Lagrange multiplier for the
constraint in (2.3).] It is easy to see that any solution of (2.5) also solves (2.3) and
(2.4) for suitably chosen M =M (L) and M'=M"(A). It is easy to see that as A increases
from 0, the weight of the optimal design decreases and its compliance increases. Thus
A— M (L) and A— M’ () are monotone functions. (We believe that they are continuous
in A, but this has not been proved.)

Some care is in order concerning the meaning of the term “solution”. We believe that
as stated, these problems actually have no “classical’ solutions for most choices of the
data. Analogous assertions have been proved for several closely related problems ([K ez
al., 1991}; [K & S, 1986]; [M & T, 1985]). Physically, the point is that it may be advanta-
geous to use many small holes rather than a few large ones. Achieving the optimum
may require a limiting procedure involving infinitely many, infinitely fine holes. In other
words, the optimal behavior may be achieved only by a “generalized” design consisting
of composite materials made by perforation. The microstructure of the optimal “general-
ized” design will vary from point to point, depending on the data of the problem.
(A rigorous discussion of what we mean by a composite material will be found in Sec. 3.)

As just presented, the use of composite materials might appear to be just a trick for
proving existence theorems. In fact its importance goes much further. The use of
composites permits one to calculate optimal designs without making hidden or implicit
topological assumptions. The primary goal of the present work is to demonstrate this
assertion.

The crucial first step, for both theory and calculation, is a precise formulation of what
we mean by a “‘generalized” design. Such a structure is determined by two functions: its
effective Hooke’s law A (x), taking values in the space of fourth-order tensors; and its
local volume fraction 6 (x), taking values between 0 and 1. The equations of elasticity
become

o=A(x)e(u)
(2.6) dive=0 in Q,
c.n=f at dQ,
and the compliance is defined as
(2.7) c[A]l= [‘ f.uz.[ (A(x)e(w), e(w) ).
Ji Q
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844 G. ALLAIRE AND R. V. KOHN

The weight 1s proportional to the total amount of material, which is the integral of the
local volume fraction 8(x). Therefore our minimization problem (2.5) becomes

(2.8) min c[A]+ ?&.j 6 (x) dx.

9 (x), A(x) Q

The process of permitting composites as generalized designs is called “relaxation”, so we
refer to (2.8) as the relaxed formulation of the design problem. Notice that the classical
designs are included in the relaxed formulation: a hole is obtained by taking 6(x)=0
and A (x)=0 on some subset H=Q.

This process of relaxation has been discussed by many authors. In the present context,
the main points are these:
(2.9a) The relaxed problem (2.8) is equivalent to the original one (2.5). Specifically,
their minimum values are equal, and every solution of (2.8) determines a minimizing
sequence of classical designs for (2.5).
(2.9b) The relaxed problem can be reformulated as a nonlinear optimization over the

class of statically admissible stresses. It is thus amenable to numerical minimization via the

finite element method.
(2.9¢) The relaxed problem always has a solution, at least in 2 D.

We shall explain (2.94a) and (2.9c¢) in Sec. 3. (They are virtually tautologies, once the
term ‘“‘composite material” is interpreted properly.) Most of the rest of this paper is
devoted to assertion (2.9 b).

We come now to a subtle point: to determine the relaxed design problem completely,
we must specify the admissible values of 0(x) and A (x) in (2.8). In other words, we
must specify precisely which composite materials are to be considered as design com-
ponents. The most general choice is to permit all composites attainable by perforation.
This means that we require only

(2.10) 020(x)1  and  A(X)eGy,

for each xe(), where

(2.11) Gy=the set of all effective Hooke’s laws describing
composites obtainable from the original elastic material A,
via perforation with volume fraction 1—0 of holes.

[See Sec. 3 for further discussion of (2.10)-(2.11).] This is the choice we prefer, because
it leads naturally to the fundamental properties (2.9 a-c) above. Other choices are also
possible. For example, one can restrict attention to the class of sequentially laminated
composites ([Avellaneda, 1987]; [B, 1989]; [J et al., 1992]). Since extremal composites can
be taken to be sequentially laminated (see Sec. 4), this is operationally equivalent to
(2.10)-(2.11). Another alternative is the choice of Bendsoe, Diaz, Kikuchi, and Suzuki:
they work with periodic arrays of rectangular holes, characterized (in 2D) by three
parameters —the volume fraction, the aspect ratio, and an orientation angle. Through

EURQPEAN JOURNAL OF MECHANICS, A/SOLIDS, VOL. 12, N* 6, 1993



OPTIMAL DESIGN IN PLANE STRESS 845

more elementary than ours, this approach has the defect of being arbitrary: why should
rectangular holes be better, say, than elliptical ones? The complementary defect of our
approach is that the set Gy is not explicit: further analytical work is required to do the
optimization over microstructures.

It remains to explain how, as a practical matter, one is to solve (2.8). This is an
optimal control problem of a fairly standard type, except for one important catch: we
do not know the precise form of the set of possible Hooke’s laws G,. However, we do
have partial knowledge of G, ([Allaire & Kohn, 1992a and b]; [A, 1987]; [Francfort
& Murat, 1986]; [Kohn & Lipton, 1988]; [Milton & Kohn, 1988]). In particular, we know
how to minimize the complementary energy ( A™'t, t) over AeG,, for any given t.
(This will be explained in Sec. 4.)

We now show how (2.8) can be solved using only such partial information about G,.
The first step is to represent the compliance variationally, using the principle of minimum
complementary energy:

(2.12) c[A]= min J‘(A(x)"-r,t).
dive=0 JO
t.n=f

With this substitution, (2.8) becomes

(2.13) | min ~ min | [{A@) 't T)+A0(x)]dx.
0=28(x)=1 dive=0 Jg
A(x)eGg(x) t.0=f

The next step is simple but fundamental: we interchange the order of minimization in
(2.13) to get

(2.14) min  min J [(A(x)" ', ) +A0(x)]dx.
dive=0 0=58(x}=1 e}
t.n=f A(x)eGgx)

The third step is to put the minimization over 8 (x) and A (x) inside the integral. This is
permissible because 8 (x) and A (x) are subject only to algebraic constraints (unlike 1,
which must satisfy divt=0). We thus obtain

2.15) min | ( min min  (A(x)"!t, 1) +A0 () dx.
dive=0 Jo 0=8(x)=s1 A(x]eGB(x)
t.n=f

This has the form of a (nonconvex) variational problem

(2.16) min j F, (1) dx
Q

dive=0
T.n=f
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with integrand

2.17) F,(t)= min min [( A~ ', T)+A0].

0Z60<1 AecGg

The variational problem (2.16) is the central result of this section, and the basis of
everything that follows. The point is that we can evaluate F, (t) without complete knowl-
edge of G. It suffices to know just the “optimal lower bound on complementary energy”

(2.18) min (A~!t, 1 )=/(6, 1)

AeGy

as a function of 8 and t. Given f(6, 1), evaluating (2. 17) requires just a one-dimensional
optimization in 0.

The upshot is this: in its original form (2.8), the relaxed design problem appears
uncomputable for lack of knowledge of G,. But it has the equivalent variational formula-
tion (2.16), which is computable. In its form, (2. 16) looks like a problem of physically
nonlinear (but geometrically linear) elasticity. It minimizes compliance + A .volume over
all statically admissible stress fields T. Given the solution t* (x), one recovers an optimal
design by reversing the argument that led from (2.8) to (2.16). It has volume
fraction 8* (x) of material and Hooke’s law A*(x), where 8*(x) and A* (x) achieve the
minimum in (2.17) with t=1*(x). Since A*(x)& G. (), there is a perforated composite
with volume fraction 6* (x) that has effective Hooke’s law A* (x). This yields the micro-
structure of the optimal design at x. If we take the length scale of the microstructure to
be small but finite, we get a “classical” design with many small holes whose behavior is
essentially optimal.

The relaxed variational problem (2.16) is an improvement over the classical formula-
tion (2.5) in several important ways. For one thing, it is actually easier to solve
numerically. One can use a more or less standard version of the finite element method.
The computational mesh remains fixed: there is no need for “front-tracking” to follow
free boundaries. Thus, numerical discretization of (2.16) does not introduce hidden
topological restrictions upon the form of the solutions. Another advantage is the existence
of a solution. [We shall prove that (2. 16) achieves its minimum in 2 D — see Sec. 3.] This
is a matter of practical as well as theoretical interest: it suggests that a numerical method
based on (2. 16) should be stable under refinement of the computational mesh.

The passage from the relaxed formulation (2.8) to the relaxed variational problem
(2.16) is elementary. But it is also fundamental. The main idea goes back to [K & S,
1986]. We are using quite strongly the choice of compliance as the specific design
criterion: a similar argument would not be possible, for example, if the goal were to

minimize J LagiR,
Q
The equivalence of (2.13) and (2. 14) bears further examination. The former reflects
the traditional formulation of the problem: one fixes a design, then solves an elasticity

problem, then adjusts the design to improve its performance. The other order of minimiza-
tion, (2.14), has a totally different interpretation. It fixes a candidate (statically admis-
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sible) stress field, then finds the optimal design for this stress, then adjusts the stress to
achieve kinematic admussibility. The two are equivalent, because when minimizing a
function of several variables the order of minimization is unimportant.

The passage from (2.14) to (2.15) depends, as we noted, on the fact that 6 (x) and
A (x) have only local constraints, as expressed by (2.10)-(2.11). This physically intuitive
assertion is not at all obvious from the mathematical viewpoint. Its justification rests
upon the “local character of G-closure” [Dal Maso & Kohn, in preparation]. (See Sec. 3
for further discussion.)

It i1s important to mention that optimal designs are not in general unique. Indeed,
nonuniqueness arises at both the microscopic and macroscopic length scales. By micro-
scopic nonuniqueness, we mean that a given effective Hooke’s law A € G, can be achieved
by several different microstructures (see Remark 4.1). By macroscopic nonuniqueness,
we mean that the solution of the relaxed problem (2.16) is not necessarily unique. This
is not just a matter of several local minima: for special boundary conditions there can
actually be infinitely many, globally optimal designs (see Sec. 8)! In the presence of such
nonuniqueness, a numerical method must inevitably incorporate some implicit selection
mechanism. Our method seems to choose a design whose macroscopic characteristics
vary smoothly rather than abruptly. The method of Bendsoe-Kikuchi-Suzuki seems to
make a different choice (see Sec. 8).

Apart from mathematical technicalities (to be addressed in Sec. 3), we are left with
two main tasks. The first is to evaluate the relaxed integrand F, (1) explicitly, and the
second is to solve (2.16) numerically. These are addressed for the 2D problem in
Sections 4 and 5, which form the heart of this paper. Section 6 discusses the relation
between our approach and the theory of Michell trusses. Section 7 explains how a similar
approach can be used for the optimization of 3 D structures. Finally, Section 8 discusses
the relation between our work and that of Bendsoe-Kikuchi-Suzuki, Gibiansky-Cherkaev,
and Kohn-Strang.

3. Some technical issues

We have thus far been cavalier in the use of the term *perforated composite”. The
goal of this section is to place our work on a sound mathematical foundation. Readers
who are not expert in homogenization may wish to skim this section, or even to skip it
entirely on first reading.

There is a mathematically rigourous theory of composite materials, based on the
notion of G-convergence, for structures made from two (or more) nondegenerate elastic
materials. This theory is summarized in Section 3 A, along with its application to optimal
design.

Our principal interest is shape optimization. This is not strictly speaking covered by
the general theory, since it considers structures made by mixing a nondegenerate elastic
law (“the originally given material”) with a totally degenerate one (the ‘“holes”). As a
practical matter, we resolve this difficulty by treating the “holes” as compliant but
nondegenerate inclusions. In other words, we optimize the structure first, then pass to
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limit in which the “holes” are degenerate. This procedure is physically and mathematically
correct for compliance optimization — through not necessarily for other design objectives.
Its justification is the focus of Section 3 B.

3 A. STRUCTURAL OPTIMIZATION USING TWO NONDEGENERATE MATERIALS

Let Ay and A, be two (nondegenerate) Hooke’s laws, 1. e. quadratic forms on symmetric
tensors satisfying

3.1 m|EPS(AE EXSMIER,  i=0,1,

with 0<m<M< oo. Consider a domain QeR"(n=2, 3), loaded on its boundary by
traction f. A “structure made from A, and A,” is characterized by a marker function
% (%), indicating the location of material A,:

1 in material A
3.2) x(x)={ .

0 in material A;.

The local Hooke’s law is

3.3) AX)=x(x) A+ (1 -2 (x) Ay,

and the elastic response is determined by solving
c=A(x)e(u)

(3.4) divoe=0 in Q
o.n=f at dQ.

Now consider a family of such structures, corresponding to different marker functions
vI(x), j=1, 2, 3, .... We may suppose (this is the interesting case) that the spatial length
scale of the mixture tends to 0 as j — 0. Let o/, ¢/ and A/ be the stress, strain, and local
Hooke’s law of the jthstucture. We view the limiting behavior as being that of a
“structure consisting of composite materials made by mixing A, and A,.” Its stress and
strain are
(3.5) c®(x)= lim o/ (x), e® (x)= lim &' (x)

j+w j— @
(in the weak L? topology). They are related by an effective Hooke’s law A® (x),
(3.6) o® (x)=A% (x) e® (x).

The effective Hooke's law is called the G-limit of the sequence { A’}, written A S A®,
The existence of the G-limit—i.e. the fact that o® must be linearly related to e® —is the
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fundamental compactness theorem of G-convergence, see e.g. [Murat, 1978] or [Zhikov
et al., 1979]:

ProposiTion 1. — Let{y’} be any sequence of marker functions (taking only the values
0 and 1), and denote by A’(x) the associated Hooke's law (3.3). There is a subsequence
with the following property: for any L? traction f, the associated stresses and strains
converge (weakly in L?) to limits e® (x), ® (x), and the limits satisfy o (x)=A® (x) e™ (x).
The "“effective Hooke’s law”” A™ (x) satisfies (3.1) for each x. It depends on the “microstruc-
ture”, i.€. on the sequence { y'}, but not on the particular load f.

We have stated this result only for two-component composites and for traction
boundary conditions, because that is the focus of our interest here. The general compact-
ness theorem is much more general —it permits any number of (nondegenerate, nonrigid)
component materials, and displacement as well as traction boundary conditions.

The local volume fraction of the composite is determined by the limiting behavior of
the marker functions y/: if

3.7 8 (x)= lim x/(x)

j— ™

(in the weak* topology on L®) then the limiting structure consists of A, and A, in
volume fractions 6 (x) and 1 —0(x), at xeQ. E

We repeat that the limiting structure is viewed as being made up of composite materials,
possibly varying from point to point. This might seem at first a tautology, but in fact
there is a subtle distinction. The general theory of G-convergence provides us only with
tensor-valued functions A® (-). We wish to interpret the pointwise value A® (x) as the
effective behavior of a (homogeneous) composite material. This is justified by the
following result [Dal M & K, in preparation]. (See also [Cabib & Dal Maso, 1988] for a
similar result cast in somewhat different language.)

PROPOSITION 2. — For each 8, 061, there is a closed set of fourth-order tensors G,
“the G-closure of A, and A, with volume fractions 8, 1 —8"", with the following properties:

a) if 0(x) and A™ (x) arise as in (3.5)-(3.7), then A® (x)€ Gy, for a.e. x,

b) if 8(x) and A®(x) are measurable functions satisfying the restriction A% (x)€ Gg
a.e., then B(x) and A*® (x) do arise as in (3.5)-(3.7) for a suitably chosen sequence of
structures { y’ }.

Thus, the set of all possible limits {6 (x), A®(x)} is precisely the set of all functions
satisfying the restriction A (x)e G, xy almost everywhere. We view the elements of Gy
as Hooke’s laws of (homogeneous) composites made from A, and A, in volume
fractions 6 and 1—6. The dependence 6+~ G, is continuous. It is obvious that in the
extremes =0 and 6=1, G,={A, } and G, ={A, }.

So far we have placed no restriction on the spatial character of our composites. There
is an extensive theory of spatially periodic composites, see e.g. [Bensoussan et al., 1978].
Periodicity is convenient, because it leads to an “explicit” formula for A® in terms of
the solutions of certain “cell problems.” The hypothesis of periodicity is also useful for
proving bounds on effective moduli, see e.g. ([A & K, 19925]; [M & K, 1988]). As it
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turns out, the spatially periodic composites are dense in G, [Dal M & K, in preparation]:

PROPOSITION 3. — For any 0, 0<8 <1, let Py be the set of all Hooke's laws of spatially
periodic composites which mix A, and A, with volume fraction 8, 1—6. Then Py< Gy, and
the closure of Py is precisely G,

Thus spatial periodicity represents no significant restriction. In particular, for proving
bounds on effective moduli, it is sufficient to consider the spatially periodic case. (We
emphasize, however, that approximating an arbitrary Ae Gy by a spatially periodic
A’e Py might require a microstructure with a very complicated unit cell.)

We are now prepared to justify the fundamental assertions (2.9 a-¢) for the nondegener-
ate analogue of shape optimization. Prior to relaxation our “structures” have local
Hooke’s laws of the form (3.3). The compliance is

(3.8) C[A]=f f—u=f (Ax)e(), e(w)),
[7/9] Q

where u is the elastic displacement, obtained by solving (3.4). After relaxation our
“structures” can have any volume fraction and Hooke's law 0 (x), A (x), subject only to
the restriction A (x)€Gy(,. Notice that if A®(x) arises from a sequence A/(x) as in
(3.3)-(3.4) then the elastic displacements 1/ converge (weakly) to u®, so

c[Aj]=f f.u"—rj fu®=c[A™].
fil#] aQ

Thus (3.8) remains the formula for the compliance also after relaxation.

The relaxed design problem is equivalent to the original one, by Proposition 2. In
particular their minimum values are equal, and any solution of the relaxed problem leads
to a minimizing sequence for the original one. The relaxed design problem is easily
transformed to a (nonconvex) variational problem of the form

(3.9) min j F, (t) dx,
dive=0 Jg
t.n=f

by arguing as in (2.12)-(2.16). Notice that Proposition 2 is crucial here, too: it is what
Jjustifies putting the minimum over 8 and A € G, inside the integral [see (2.15)]. We can
prove that the relaxed problem has a solution by arguing as follows. Consider a
minimizing sequence, i.e. a sequence of (relaxed) designs for which

(3.10) c[A]+KJ 0 (x) dx
9]

approaches its minimum value. By Proposition 2, there is a sequence of classical designs
with essentially the same performance. Passing to a subsequence if necessary, the compact-
ness theorem (Proposition 1) provides a G-limit which, with its associated volume
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fraction O(x), achieves the minimum in (3.10). Proposition 2 assures us that
A% (x)€ Gy, so this pair A® (x), 0(x) solves the relaxed problem.

3 B. SHAPE OPTIMIZATION

To model an elastic body of variable shape, we should take A, =0 in the above. Then
the equations of elasticity (3.4) become

o=Age(w) in O\H
=0 in H
- 15) dive=0 in O\ H
c.n=f at 0Q,

where H={x:y(x)=0} is the set of “holes.” If H has a piecewise smooth boundary
then (3.11) is equivalent to the equations of elastostatics on Q\ H, with a traction-free
boundary condition at dH [see (2.1)]. Notice that in our formulation one cannot remove
material at a loaded part of the boundary.

The theory of G-convergence cannot be used, however, in the limit A, — 0. Mathemati-
cally speaking, this limit violates the condition (3.1). Physically, the problem is that the
effect of a crack is totally different from that of an inifinitesimally thin elastic inclusion.
Indeed, as the width of an elastic inclusion tends to zero its influence on the displacement
vanishes —unlike a crack, across which the displacement can be discontinuous.

As an operational matter, we avoid this difficulty by treating the “‘holes” as being
occupied by an infinitesimally compliant elastic material. To be more specific, we formu-
late the relaxed optimization problem as in Section 3 A, with A, #0; then we pass to the
variational formulation (3.9), by evaluating for each symmetric tensor t the relaxed
integrand '

(3.12) F,(t)= min min [( A7 11, t)+6A];

02051 AeGy

then we pass to the limit A, -0 in the formula for F, (7). In other words, for shape
optimization the relaxed integrand is still given by (3.12), with

(3.13) Gg=the limit of the G-closure of A, and A,
in volume fractions 8 and (1 —8), as A, — 0.

We refer to the elements of this set as “‘effective moduli of perforated composites with
volume fraction © of material.” This is to some extent a misnomer: composites created
by the formation of cracks are not included in the set defined by (3.13).

In essence, our procedure has the effect of interchanging two limits. Shape optimization
in its raw form requires that we set A, =0 first, then optimize. In fact we are optimizing
first, then setting A, =0. We claim that for compliance optimization (though not necess-
arily for other design criteria) this procedure is both physically and mathematically
correct.
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We give the physical argument first. The main effect of our procedure is to exclude
from consideration the formation of cracks. However, for compliance optimization it is
never advantageous to form a crack. This is most easily seen from the principle of
minimum elastic energy, whose minimum value is a negative constant times the compli-
ance:

(3.14) minlf (Aoe(v),e(v))—j <u,f>=—1c[H].
2 O\H an 2

v

Introducing a crack along a surface S permits v to be discontinuous on S; this expands
the class of test fields for (3.14), so it increases the compliance. (Our optimal designs do
use “‘rank —one composites” where the stress is uniaxial. These resemble arrays of cracks,
but they are not the same thing, because the holes have positive volume fraction.)

This argument is of course special to compliance. One can easily imagine other
optimization problems in which the formation of cracks might be advantageous. If, for
example, the goal were to minimize the elastic energy in a restricted subset B<Q, it
could be desirable to shield the entire region B by making a crack around it.

We turn now to the mathematical justification. It consists of the following three
observations:

(3.15) Every “classical design” is also a design in the relaxed sense.

Indeed, a classical structure can be viewed as having stress =0 in the “holes” H, and
A(x)=A, in Q\ H. This corresponds to the choice

(3.16) {9(3‘)=1, A(x)=A, for xeQ\H

B(x)=0, A(x)=0 for xeH

in the relaxed problem. The term ( A™'t, t) in (3.12) is singular when A =0; its value
must be understood as 0 if A=0, t=0 and oo if A=0, t#0. With this convention, we
can evaluate the relaxed problem at the design (3.16) and the true elastic stress o
associated to H. The result is

j [(As'o, o) +A]=c[H]+A|O\H]
oNH

as it should be.

(3.17) In its variational formulation, the relaxed design problem has at least one solution,
at least in 2 D.

Indeed, the relaxed problem has the form

(3.18) min J\ F. (1)
divet=0 Jpn
T.n=f
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In 2D (and for isotropic A,), we shall derive a very explicit formula for B, {x). Our
analysis shows (see Remark 4.2) that F, (1) is polyconvex, i.e. it can be expressed as a
convex function of t and det t. It is also continuous in t, and it has quadratic growth as
||t]| = co. It is a standard matter in the Calculus of Variations to show, in these
circumstances, the existence of a minimizer (see €. g. [K & S, 1986]).

(3.19) Every optimal relaxed design can be approximated by classical ones.

Briefly, the reason is that our procedure of homogenizing first, then passing to the
degenerate limit, is valid for the microstructures that arise in an optimal design. Let us
spell this out. Suppose that t achieves the minimum in (3.18). By a standard argument
from numerical analysis, there is a piecewise polynomial t° which approaches optimal
behavior:

div ©*=0, . n=f, f | s
Q

I F, (‘r‘)§j F, (1) +=.
] 9]

Appealing to the calculation in Section 4, there is a “design’ corresponding to t°. Where
15(x)=0 it has a hole (6°(x)=0, A%*(x)=0); where |15|+|15] is larger than a certain
constant it is solid (6° (x)=1, A®(x)=A,); elsewhere it consists of a sequentially laminated
composite of rank one (where det *=0) or rank two (where det 1°#0). By moving a
little extra material into the regions where ©*=0 or det t*=0, one obtains a “design”
A®(x), B° (x) which is still nearly optimal, but which has no holes and uses only composites
of rank two. One can even choose A®(x) and 8°(x) to be piecewise constant (on a mesh
much finer than that of 1%). Now, the microstructure of a sequentially laminated composite
of rank 2 consists of arrays of rectangular holes, properly arranged in a matrix of
material A,. For such a microstructure the effective behavior can indeed be calculated
by homogenizing first, then passing to the degenrate limit. (The corresponding statement
for periodic microstructures is proved in Cioranescu & Saint Jean Paulin [1979]; for
rank-2 laminates one must argue a little differently, using the method of two-scale
convergence.) By taking the microstructure to be small but finite in length scale, we
obtain a classical design H for which

c[H]+l|Q\H|§J [((A% 115 ) +AB)+¢
Q

gJ F, (t)+2¢.
4]

Of course, this design may have a great many holes. Still, it represents a classical design
whose behavior is within 2 € of being optimal.

The arguments presented for (3.15) and (3.19) work essentially the same in 3D as in
2D. The argument for (3.17) is less satisfactory, since it uses the polyconvexity of
F, (t)— which we know only in 2D, with A, isotropic, and only by inspection. It might
be possible to prove quasiconvexity by the method of Kohn & Vogelius [1987]; though
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weaker than polyconvexity, this would be sufficient for the existence of optimal designs
in greater generality. Such an argument, however, is not entirely strainghtforward, and
we have not done it.

4. Explicit evaluation of the optimal composites in two space dimensions

The goal of this section is to calculate F, (t) explicitly in two space dimensions. We
recall the definition:

4.1) F,(t)= min min [( A7 'z, ©)+A0].

05021 AeGg

We shall first do the optimization over G,, leading to an explicit formula for

4.2) (6 Y)=min (A7, ).

AeGy

Then a one-dimensional optimization over 8 will lead to F,:

(4.3) F,(t)= min [ (8, t)+A8].

0s8=1

Evaluating (4.2) amounts physically to finding the “most rigid” composite with volume
fraction 6, when the (macroscopic) stress is t. Mathematically, we seek the extremal value
of the specific function A (A~!1, 1) as A ranges over the set G,.

It should be emphasized that there is no restriction in (4.2) upon the symmetry of A.
Even if the original Hooke’s law A, is isotropic, as we shall assume, the microstructure
can introduce anisotropy.

There are actually two somewhat different methods for evaluating (4.2). The first
makes use of what is now called the “translation method” (G & C, 1987]. The second
is based on the “Hashin-Shtrikman variational principle” as developed and applied in
([A & K, 19924, b]; [A, 1987]; [K & L, 1988]; and [M & K, 1988]). We prefer the latter
because it is more systematic.

The analysis of [A & K, 19925] amounts to an algorithm for evaluating (4.2). The
answer is simpler to explain than the algorithm, so we present it first. We restrict our
attention to two space dimensions. The basic elastic material A, is presumed isotropic,
with bulk modulus x>0 and shear modulus p>0:

(4.4) AgE=x(tr &)I-I—Zp(ﬁ—%(tr g)[).

Let , and 7, be the eigenvalues of t (the principal stresses). Then the optimal value of
(4.2) turns out to be

4.5) FO D=(A it o)+ 0 KFH
6 4xp

(!11!+|T2|)2'
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It is achieved by a “‘sequentially laminated microstructure of rank 2", represented schem-
atically in Figure 1. There are two length scales, £, <&, < 1. On the longer length scale

.

€%

%2

Fig. . — Microstructure of a sequentially laminated composite.
Long, thin rectangular holes, in a matrix of material A,.

€,, the microstructure is a laminated mixture of A, (volume fraction ! —p,) and a certain
composite C (volume fraction p,), in layers orthogonal to e, (the eigenvector of t,). The
shorter length scale is that of C: it is a layered arrangement of A, (volume fraction
1—p,) with void (volume fraction p,), in layers orthogonal to e, (the eigenvector of t,).
The volume fractions p, and p, are determined by the formulas

|'|:2[ 9221—9'
|T1|+|Tz| Pt

(4.6) l1—p,=6

Notice that the total volume fraction of material is (1—p,)+p, (1—p,)=86. As the figure
makes clear, this microstructure consists of long, thin rectangular holes of length p,¢,
and width p, g, appropriately arranged in a matrix of A,.

Remark 4.1. — The extremal value of (4.2) is uniquely determined by 6 and t.
However, the optimal microstructure is not unique. We described one example of an
optimal microstructure in the preceding paragraph. A second one is obtained by renum-
bering the principal stresses. When t is 2 multiple of the identity the well-known ‘“‘concen-
tric sphere construction” gives another, totally different, optimal microstructure ([Chri-
stensen, 1991]; [Hashin, 1962]). Even the optimal Hooke’s law A can be nonunique. For
example, if T is a multiple of the identity then the concentric sphere construction gives
an isotropic A, while the second-rank laminate described by (4.6) gives an A which is
merely orthotropic. It is possible to get an extremal isotropic composite by sequential
lamination, but this requires the use of a third-rank laminate (see [F & M, 1986)).

Given (4.5), the evaluation of F, (1) is elementary. The definition (4.3) becomes

4.7 F,(©)=(Ag't, 1)+ min = K+u([tl|+|t2[)2+lﬁ:l.
0<ex1 0 dxp
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The optimal 0 satisfies

4 1/2
4.8) e=(zk;‘) A2 (|1, |+ T, ])

if this quantity is less than 1, and 8=1 otherwise. If we set

1/2
@.9) pl(r):(‘::‘) A2 (|1, |+ |5 ],

then substitution into (4.7) gives

Azt + if =1
(.10) Fl(-c)={ SR mEFER T mls
(AT T A (Z~p) if p,(1)£1.
This is the desired explicit formula for the integrand of the relaxed variational
problem (2.16). To avoid any possible confusion, we note that for the isotropic A,
(4.4) in two space dimensions,

@.11) (At =2 e L 22
4xp 2u

Here ||t|?=1%,+21,+13,, in terms of the components of t. (Equivalently
| T||*=711+12, in terms of the eigenvalues of 1.)

It is natural that (4.10) should have two distinct regimes. At points where the stress
1s large, i.e. where p, (t(x))=1, the optimal design keeps the original material intact.
Thus the volume fraction is 8 (x)=1 and the Hooke’s law is A (x)=A,. At points where
the stress is smaller, i. e. where p, (t(x)) <1, the optimal design has a perforated composite.
The volume fraction of material is 8 (x)= p, (t(x)), and the Hooke’s law A (x) is extremal
for (4.2) with 6=0(x) and t=1(x). It is possible that T (x) might vanish on some subset
H < Q. Where the stress is zero no material is required, so 6=0 and H is a “hole”.

We discussed in Section 2 the distinction between permitting some composites as
microstructures, and permitting all of them. Since an optimal microstructure can always
be found within the class of sequentially laminated ones of rank two, it is obviously
sufficient to consider only microstructures of that type. This approach has been explored
by Bendsoe, Haber, and Jog [B, 1989], [J et al., 1992]. Since the optimization over
microstructures is done numerically rather than analytically in [B, 1989], that work does
not obtain explicit formulas such as (4.5) or (4.8).

Remark 4.2. — The relaxed integrand (4.10) happens to be polyconvex. This means

F, (t) can be expressed as
F, (1)=®, (1, det 1),

with ®, a convex function of its five variables. This structural property is important,
because it implies that the relaxed problem has at least one solution (see Sec. 3). To
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show that F, is polyconvex, we rewrite (4. 10) —making use of (4.11)—as

“.12) F,(0=AG@+22 2 E get 7,
pt+x

A ol A SRR
4xp

2p(®—2|detT| if p(®=L,

in which

and

with the convention
E(‘E)=|%1 | +|?2 ]

The function G (1) is polyconvex: see Lemma 3.4 of [K & S, 1986]. The second term of
(4.12) is linear in det T, hence certainly polyconvex. So F, (1), bemg the sum of two
polyconvex functions, it itself polyconvex.

The remainder of this section provides the justification of (4.5). Readers who are
willing to accept that formula can skip directly to Section 5 without loss of continuity.
We shall draw heavily upon our recent exposition [A & K, 1992 5] concerning optimal
bounds on elastic energies.

Our starting point is the following finite-dimensional concave variational principle for

£6, 1):
(4.13) O, 0—(As t, ty=(1—0)sup {2{n, t)—0g.(n)}
n

This is formula (6.9) of [A & K, 1992 b], specialized to the case of a perforated composite.
The maximization is over all symmetric matrices 1. The function g.(n) is defined by

(4.14) g.(n)= sup I“Aa Y2 w (k) Ag*m |2,
[kl=1

in which k ranges over unit vectors W (k) is the space of symmetric matrices & satisfying
£.k=0; and ng denotes orthogonal projection onto the subspace S. Notice that (4.14)
gives g. as a maximum of quadratic functions, so it is a convex function of m. One
obtains (4.5) by doing the optimizations in (4. 14) and (4. 13) explicitly.

The function g, (1) has the formula
4x 5 4
(4.15) g.(m)=—" max {n}, ni},
K+

in which n; and n, are the eigenvalues of n. This is easily deduced from formulas (6.2),
(6.10), (6.18), and (7.7) of [A & K, 1992 5].
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Turning to the variational principle for f (8, 1), (4.13), the main point is to evaluate

(4.16) sup {2{n, t)—0Bg. () }.

It is a standard result that n should be simultaneously diagonal with 7. The optimal
choice is easily seen to be n, =sgn (1,) t, N, =sgn(x,) ¢, with ¢ achieving

sup 2(|t, | +]|1,|)1— et 0%
¢ K+
The best ¢ is
K+p
4.17 = + e s
( ) (iﬁ] |T2D il
yielding
K+
41(“*; GARIES

for the maximum of (4. 16). Substitution into (4. 13) gives

FT0 Ay e D TR

5 axu (l'ﬁl"’[tzl),

which is the same as (4.5).

It remains to determine the microstructure of an optimal composite. The theory
presented in [A & K, 1992 b] gives the microstructure in terms of the optimality condition

for (4.13):
(4.18) 2teBdg.(n).

where dg.(n) is the subdifferential of g, at the optimal m. Following the notation of
[A & K, 19925], we denote by f} (k) the degenerate Hooke’s law associated to the
quadratic form

4.19) <ffqo(k)ﬂs T]>=|“A5”2wmAéﬁni2-

Then (4. 18) is equivalent to

(4.20) =0 Z michg(ki)n,

i=1

with 0<m; <1, ) m=1, and k; extremal for (4.14) for each i Arguing as for
Theorem 3.5 of [A & K, 19925] [see also formulas (6.11)-(6.12) of that paper], one
shows that a composite whose Hooke’s law A satisfies

(4.21) (1=0)(AT'=Ag)71=0 ) m 4, (k)

i=1
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is in fact extremal. Moreover, such a composite can be achieved by sequential lamination.
To be specific, consider a sequence CV, C¥, || of perforated composites obtained as
follows: C') is obtained by layering void (volume fraction p,) and A, (volume fraction
1—p,) in layers orthogonal to k,; and for r=1, C* is obtained by layering C"~V
(volume fraction p,) with A, (volume fraction 1—p,) in layers orthogonal to k,. If
Py - - -» P, are chosen so that

r—1

(4'22) (lﬂpt) H pizemr! lérép,
i=1

then the resulting composite C'” satisfies (4.21). (This is the analogue for complementary
energy of Proposition 3.2 of [A & K, 1992 5]; see [F & M, 1986] or [K & L, 1988] for

more detail.)
We shall show that at the optimal 1, (4.12) holds with p=2,

|74

fle
[te [+ ]2

(4.23) m=—L2L gy =
S ENESEN ’

and k; = the eigenvector of t associated to t,. A bit of calculation based on the results
in [A & K, 1992 5] shows that

(4.25) fi,()N=A;n—4u[(MHOk—(nk, k) kOK]

- f-wirn+2plnk k)1ic-wI+2ukok,
1c+p,

where we use the notation vOk=(v®k + k®7v)/2. Consider first the case t, T, <0. Replac-
ing T by — 1 if necessary, we may suppose that t, =0=1,. Then the optimal n for (4.13)

1=

t 0 K+u
= , t= -
4 (0 —I) 4xud (‘TII |T2D

[see (4.17)]. In this case the only extremal k for the definition of g(n) are the eigenvectors
of t. Both eigenvectors qualify, since n?=n2=12 For these n and &, (4.24) yields

Bff\u (ky)m= _(|T1 |+|Tzl)k2®k2
effao (ky)n= _(l'fl |+|T1Dk10k1-

. 0O P 0
 Peonernafy )

So (4.20) reduces to

which yields (4.23).
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The other case 1s ¢, t, 0. Replacing T by —t if necessary, we may suppose that 1, 20,

1,2 0. Then the optimal 1 for (4.13) is

K+u
=t.1, = — g e
n 4]{“9("51' | 2D

Since n is isotropic, every k is extremal in the definition of g(n). We may nevertheless
take k, and k, to be eigenvectors of 1, as before. With this choice of 11 and £, (4.24)
yields

Bf(kl)n:(lrlj_{_lrzl)kz@kz

ef(kz)n=(|"71 |+|Tz|)klok1a

. 0 0
(5 e)mtmtstud(T )

This once again yields (4.23).
The description of the optimal sequentially laminated composites follows easily from
these results. When p=2, (4.22) reduces to

and (4.20) reduces to

(1=p)=06m,, (1—py)p;=0m,.

This is readily seen to be the same as (4.6) when m,, m, are given by (4.23).

5. Numerical methods and results

We recapitulate the form of the relaxed problem in 2 D. For any fixed A >0, minimizing
compliance +\ area 1s equivalent to solving an explicit variational problem

(5.1) ' min j F, (1),
divi=0 Jn
T.n=f

The integrand is given by (4.10). If t solves (5.1), then the associated design has no
holes where p, (t)=1; it has no material where p, (t)=0; and it has a composite of
density 8=p, (1) where 0<p, (1)< 1. The microstructure of the optimal design is not
uniquely determined, but if desired it can be chosen as a sequentially laminated composite
of rank 2. [At points where t has rank one the construction degenerates to a laminated
composite of rank one, i.e. an array of fibers in the direction of principal stress, as is
readily seen from (4.23).]

The minimization of (5.1) must naturally be done numerically. Discretizing (5.1) via
finite elements presents no particular problem. Unlike most classical optimization codes,
we can use a design-independent discretization. In other words, we work with a fixed
computational mesh on Q. There is no need for front-tracking or refinement near the

boundary of an optimal shape.
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There is one subtlety, however. It is the fact that F, () is not a differentiable function
of t. The problem is that
p, (1) =Const. (|7, |+]|1;|)

has discontinuous derivative wherever t, =0 or t,=0.

This lack of smoothness is not an accident, but an intrinsic feature of the relaxation
process. When T, =0, the optimal composition consists of fibers of material. As t, departs
from zero, the optimal microstructure acquires some “struts” orthogonal to the fibers
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Fig. 2. — The optimal sequentially laminated microstructure when one principal stress is almost zero.
The long, thin holes are separated by thin struts in the associated principal direction.

(see Fig. 2). The density of the struts is approximately proportional to |'c2 [ by (4.6).
Therefore the stress in any single strut is of order 1, and the overall energy of the struts
is density % energy~c|t,|. Hence the nondifferentiable character of F, near t,=0.

We note that in the limit as T — 0,
F,()~2Ap ()

has linear growth in 1. This is another reflection of the lack of smoothness, and it, too,
has a physically intuitive explanation. For any fixed composite the elastic energy is
quadratic in 1. In the optimal design, however, the composite itself depends on 1. Since
the volume fraction 8=p, (1) is linear in t, the Hooke’s law A (x) is of order |t| for t
near zero. Hence the compliance of the optimal design, { A™'t, 1), is linear rather than
quadratic in 1. Since the density is also linear, so is F, (t)=compliance+ L. density.

It would be interesting and worthwhile to apply techniques from nonsmooth optimiza-
tion. We did not attempt this; rather, we regularized the singularity. Noticing that

(s + |5 P =] 2+ 2| det 5],
we made the approximation
(w [+ =] <[* +2(* + (det 97",

with e €1. Thus our numerical F, was still given by (4. 10), but using

5.2 ou(9=(SEY e 2 e 97
Ki
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in place of the exact formula (4.9). The effect of this regularization depends on both
|| t]| and |det t]. It is greatest, of order _/e, when t=0. It is also significant, of order ¢,
when || t|[#0 but det t=0. It is smallest, of order &2, when det t#0.

Our choice (5.2) is by no means the only way of regularizing the problem. A physically
natural alternative would be to treat the “holes™ as being occupied by a nearly degenerate
elastic material. The method of Section 4 can be used to determine an associated relaxed
problem F;**(t). The formula for Fj*® is more complicated than that for F,, because
there are several regimes rather than just two. One can show that F{*¥(t) is a continuously
differentiable function of t, by arguing as in Remark 3.8 of [A & K, 19925]. The
qualitative bechavior of Fj*®(t) is quite different from that of (5.2). The distinction in
something like that between

1= +e%)"
and
E+_l__x2
Lx)=y2 287°

X,

2w
v A
R

two very different regularizations of | x|.

Now we discuss how (5.1) was discretized. On a simply connected domain Q, every
solution of div t=0 comes from an Airy stress function {:

> _ l|’2?». _‘plz)
5.3) = s
( ¢ (_‘|’12 .‘1’11

where ;= 6% /dx;0x;. The traction boundary condition t.n=f determines \ and V
at 0Q. With this substitution (5.1) takes the form

(5.4) min f F, (VVY),
Q

Y=o € H3 ()

analogous to a problem of plate theory. We calculated the boundary condition s, for
(5.4) exactly, by hand, though of course this could have been done numerically instead.

Notice that when A=0, F, (t)=( Ay ' 1, ), and (5.1) is just the principle of minimum
complementary energy for the original design (with no holes). Dual methods for solving
elasticity problems have received considerable attention, e. g. [Fraejis de Veubeke, 1965].
Our approach to (5.1) is similar—except for the fact that F, (1) is not quadratic in T
when AL #0.

Our goal was to demonstrate the feasibility of the relaxed approach, not to develop a
general-purpose structural optimization code. We therefore worked exclusively with
rectangular domains Q. The variational problem (5.4) was discretized using the Clough-
Tocher elements [Ciarlet, 1974], which are piecewise cubic and C'. This is perhaps the
simplest choice of conforming finite element for a problem of plate theory. (It is
completely equivalent to discretizing (5. 1) directly using a mixed method, with piecewise
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linear “stress” and piecewise constant “strain”” [Johnson & Mercier, 1978].) The rectangu-
lar domain Q is divided into congruent right triangles as shown in Figure 3. The degrees

s .

Fig. 3. — Our triangularization of a square (8 x 8 mesh). Each right triangle is subdivised into three substriangles
(inset). The Clough-Tocher elements are cubic on each subtriangle The distinguished points marked in the
inset are our interpolation points.

of freedom for the Clough-Tocher elements are the nodal values of , dy/dx;, and
d/dx,, along with the normal derivative d{y/dn at the midpoint of each line segment.
Each right triangle is divided into three subtriangles which meet at the centroid. The
function Y is a cubic polynomial in each subtriangle, C' across subtriangle boundaries.
We approximated the integral over any subtriangle by a 3-point interpolation rule, using
the midpoints of the sides as interpolation points. Notice that t is linear on each
subtriangle; our interpolation rule would therefore be exact if F, (t) were a quadratic
function of .

The discretized version of (5.4) is a large, nonlinear minimization problem for the
degrees of freedom that determine \y. We used the conjugate gradient method (with no
preconditioner) to find the minimum. The efficiency of the method depends greatly on
the choice of ¢ in (5.2). When ¢ is small, say e=10"*, the optimal step size becomes
very small, so that many conjugate gradient steps are required. When ¢ is larger, say
£= 10772, the method is much more efficient. The effect of the regularization is perceptible,
however the qualitative character of the design is not affected (we shall return to this
below). The difficulty in handling € — 0 is not special to the use of conjugate gradient:
any method designed for minimizing C! functions would behave similarly.

Most of our calculations were done on a square using an 8§ X8 or 16 x 16 mesh. This
1s not as coarse as it may sound, because of the subtriangles and the piecewise cubic
character of . When the mesh is 8 x 8, { is cubic on each of 64 x 6 =384 triangles, and
there are 323 degrees of freedom (not counting those which are fixed by the boundary
data). When the mesh is 16 x 16,  is cubic on each of 256 x 6=1,536 triangles, and
there are 1,411 degrees of freedom.

The numerical optimum \ determines a piecewise linear t which is admissible for
(5.1), so it gives an upper bound for the true value of the optimum. There is an
associated composite, whose microstructure can be read off from t as described in
Section 4. Notice that since t is not locally constant, neither is the microstructure. It is
not easy to represent a stress field graphically, so we shall present here only the volume
fraction of material, p, (t). The output of our program vyields its values at the various
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interpolation points. This determines a unique piecewise linear function. We sampled it
at regularly spaced points, then used a standard graphics package to obtain our figures.

We chose the elastic moduli to be k=1.0 and p=0.5. As A varies, however, this
represents no loss of generality. Indeed, for traction boundary conditions the solution of
the relaxed problem depends only on the single parameter (u™'+x~')/A. This is most
easily seen from the formula (4.12). The second term is a null-Lagrangian; its value

2l.p_KJdt~ e jdett
pL+K o 2xp Jg

'[ (W22 ¥y —V12)

2rq.1

is completely determined by the boundary data. So the optimal design could just as well
be obtained by minimizing just the first term of (4.12), which by inspection depends
only on (u™'+x7!)/A. [The preceding argument applies only for traction boundary
conditions at 6Q2. Our approach can also be used for displacement boundary conditions,
and in that case the second term in (4.12) becomes important.] As A increases with x
and p held fixed, the compliance of the optimal design increases and the weight decreases.
This is immediately evident from the original, unrelaxed formulation of the design

problem (2. 95).

i —

_ — —e]

e = ———
—_—
_
_
e
s,

—— —= >

— e —

== ] —

(a) ®) (©)

Fig. 4. — Three different load configurations. (a) Uniform tension along the left-hand side and the middle
portion of the right-hand side; (4) Uniform tension along the left-hand side and the upper and lower portions
of the right-hand side; (¢) Uniform tension along the upper and lower parts of opposite sides.

We now present results for the three different loading configurations shown in Figure 4.
Figures 5-7 show the volume fraction of material p, (1) in some optimal designs. Each
figure corresponds to a different load configuration, and to a specific choice of A. In
each case the regularization parameter is e= 1072 and the numerical grid is 8 x 8. Notice
that these designs make considerable use of composite materials. They also have some
“holes,” i.e. regions where p, (t)~0. The density can vary rather sharply near the edge
of a “hole” (e. g. in the corners of Fig. 5). However, it is relatively smooth in the interior
of the region where composites occur. Notice that in Figure 7, the design has essentially
broken apart into two disjoint substructures. This is of course expected. The vertical
variation of p,(r) within each substructure is presumably due to the smoothing
parameter € and/or the spatial discretization.

Figure 8 shows how the optimal design changes as A varies. The different choices of A
lead to optimal designs with different total weights. These examples use the same loads,
smoothing parameter, and grid as Figure 5; only the value of A is being changed. When
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Fig. 7
Fig. 5. — The volume fraction p, () in the optimal design. The load configuration is given by Figure 4 a.

The value of X is 0.5. Approximately 35% of the material has been removed.

Fig. 6. — The volume fraction p, (t) in the optimal design. The load configuration is given by Figure 4 5.
The value of & is 0.5. Approximately 35% of the material has been removed.

Fig. 7. — The volume fraction p, (1) in the optimal design. The load configuration is given by Figure 4¢.
The value of L is 2.0

A is small (Fig. 8), the main effect of optimization is to remove the upper and lower
right-hand corners. The computed optimum makes some use of composites, but this
might be due solely to the effects of discretization and regularization. Our results are
thus consistent with the idea that the optimal design should be a classical one when only
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a8

0.2F

C.OL .

1.0 7

0.0

(@)
Fig. 8. — Same as

(b
Figure 5, except for different choices of A: (¢) A=0.2, approximately 15%

of the material is removed; () A =1.0, approximately 52% of the material is removed.

a small amount of material is being removed. At the other extreme, when A is large,
rather little material is left. The design has “holes” (p,(t)=0) in the corners, and
appropriately chosen composite materials (0 < p, (1) <1) elsewhere.

08k

0.6

0.4

0.2

a.0

0.

Fig. 9.

1 L
v} 0.2 0.4 0.6 0.8 1.0

— Same as Figure 5, except that €= 10"* rather than 1072

Figure 9 shows the effect of decreasing €. It uses the same loads, grid, and choice of A
as Figure 5, but takes the smoothing paramater to be e= 10~% rather than 1072 The
density gradient is sharper near the corners, and variations due to grid effects are more
evident, but the result is qualitatively similar.
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Fig. 10. — Same as Figure 5, except for the use of a 16 % 16 mesh rather than 8 x 8.

Figure 10 shows the effect of refining the spatial mesh. It corresponds to Figure 5
except for the use of a 16 x 16 mesh instead of 8 x 8. The general features of the design
do not change much, though grid effects are somewhat more evident.

Figure 11 shows an example involving a boundary condition other than pure traction.
The structure is a rectangle, clamped on the left and loaded in shear along the center of
the right hand edge. Arguing as in Section 2, one sees that the associated relaxed design

problem is
min j E; {7),
divt=0 a0

t.n=f on Ip

where F, (1) determined by (4.10), and I'y the portion of éQ which is not clamped.
Notice that in this case our optimal design makes essentially no use of composites.

It would be natural to compare the performance of these optimal designs with ones
obtained by a more conventional code. We did not have a conventional structural
optimization code at our disposal, so we were unable to do this.

6. The link to Michell trusses

The idea of doing structural optimization in a class of “generalized designs” is not
really new. It was first proposed by Michell in 1904, in a striking piece of work that was
far ahead of its time. The theory of Michell trusses (for elasticity) and grillage-like
continua (for plate theory) has since been developed by many authors, including ([Hemp,
1973]; [Lagache, 1981]; [Prager & Roznavy, 1977], and [Zhou & Rozvany, 1991]). Conven-
ient reviews will be found in ([Kirsch, 1989]; [Rozvany, 1989] and [Rozvany, 1992]). Our
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Fig. 11. — An example with displacement and traction boundary conditions. () schematic of loading: left

boundary is clamped, right boundary is loaded in the middle; (b) optimal design obtained using x=1.0,
p=0.5,A=0.5,e=10"%, and an 8 x 16 mesh. Approximately 70% of the material is removed.

variational formulation (5.1) of the relaxed design problem provides a direct link with
the theory of Michell trusses. A similar connection has been noted in [R ef al., 1987].

To explain, we begin by briefly summarizing the theory of Michell trusses. These
structures are made up entirely of linear truss elements, each capable of withstanding a
certain tensile or compressive stress. (The possibility of element buckling is ignored.) For
a given statically admissible stress field T, the truss elements should be oriented with the
directions of principal stress. The density of truss required to withstand t is therefore
proportional to |1, |[+|t,|, where t; and t, are the principal stresses. If the truss is

confined to a region Q, then its weight is a constant times J‘ |t,]+[72]. The optimal
9]

Michell truss is obtained by minimizing the weight as t varies among statically admissible
stress fields:
(6.1) min f|r1|+|tz|.

Q

dive=0
Tt.n=f

Because (6.1) is a convex optimization, one can use optimality conditions and convex
duality to explore the minimizers. There is a rich theory of explicit solutions. The theory
is not yet complete mathematically. Because |t, |+|t,| has linear growth, an optimal
Michell truss can be singular, i.e. the stress can concentrate on a lower-dimensional set.
Also, the boundary condition “t.n=f at dQ” may be achieved only in some generalized
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sense. The situation is similar to that of plastic limit analysis, see e.g. ((Temam, 1983];
[Suquet & Bouchitte, 1991]).

Now consider our structural optimization problem (5. 1). It corresponds to minimizing
compliance + \.area, so as A — co the area of the optimal design should tend to zero.
One might expect the limiting design to be Michell truss. This is correct for plane stress,
as we now show (formally), though it is not correct in three space dimensions.

Let t=1" achieve the optimum for given A. Since div t*=0 and t*.n=/ for every A, it
seems reasonable to suppose that t* remains bounded. (Strictly speaking this cannot
always be the case, since Michell trusses can have singular elements. For what follows,
however, all we really need is |7} |+| ;| < /L) Recall that

1z
6.2) "’-(‘)Z(E) I EAENER))

We expect that p, (") <1 as A — o0, so only the second regime of F, (7) is relevant, and
(4.10) becomes

(6.3) F,(0)=C(Aq" 1, 1) +ip (02— pr ().
Substitution of (6.2) yields
(6.4) Felgy=e 322 (v |+ m)—ealz =5 P+{AG B )

with ¢, =[(x+ p)/xp]*?, ¢, =(x+ p)/4xp. The first term is the most significant as A — oo,
and it differs from (6.1) only by a scalar factor. Hence our structural optimization
problem is asymptotically equivalent to the Michell truss problem (6.1) as A — co.

The situation is different in three space dimensions. We compute the relaxed problem
below, in Section 7, when the basic material A, has Poisson’s ratio equal to zero
(see (7.5), (7.6), and (7.13)]. Repeating in this context the argument given above, one
finds that the asymptotic variational problem is

(6.5) min jh(t).
divi=0 Jo
t.n=f
with
(6.6) h(t)z{\/j[{lrll+ T [)*+13] ?f ]fl!+ltz[§|ts|
(]2 |+ ] it e lelalznl

where |1, |<|t,|<|1;]| are the principal stresses (the eigenvalues of t). The second regime
of (6.6) corresponds to a three dimensional Michell truss. The first regime corresponds
instead to a sort of honey-comb microstructure, consisting of thin walls appropriately
arranged in space. In that regime, such a structure is preferred over a truss.

Returning to the case of plane stress, we note a further connection between our relaxed
problem and Michell truss theory. By algebraic manipulation of (6.4), one verifies that
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in the relaxed régime (where p, (t) < 1), our integrand is
(6.7) F,(@=c, M2 (|t |+|t, )+ st ta—c5 |1, 15

with ¢ = (n—«)/2xy, ¢; =(u+x)/2xp. The first term is that of the Michell truss problem.
The second term is a null-Lagrangian, i.e. its integral is entirely determined by the
boundary values of t.n. The third term is not a null-Lagrangian, because of the absolute
value, but its Euler equation is still an identity in any open set where t, 1, #0. Thus, for
any X, the stresses in an optimal design should resemble those of a Michell truss wherever
rank-two composites are used. A similarity between relaxed optimal designs and Michell
trusses has indeed been observed in some numerical examples, see e.g. [S & K, 1991],
even when the volume fraction of material is not particularly small.

All these arguments have been concerned with the relaxed variational problem, obtained
by permitting extremal composites as structural components. There is one more link to
the theory of Michell trusses, this time at the level of microstructure. We have already
observed that optimal microstructures are not unique. Qur second-rank laminates do
not look much like trusses. However, there is another class of optimal microstructures,
discovered by S. Vigdergauz [1986] (see also [Grabovsky, in preparation]) for the case
det t>0. They consist of a periodic arrangement of properly shaped holes centered at
the points of a rectangular lattice. The result is a more or less truss-like structure, with
carefully designed joints where the truss members cross one another. If we imagine these
microstructures instead of rank-two laminates (which we may do, since both classes
achieve the optimal elastic energy bounds), then our optimal designs amount quite
literally to large-volume-fraction analogues of Michell trusses where det ©>0.

7. Three space dimensions

Our approach can also be used, at least in principle, for three-dimensional shape
optimization. This section discusses the general form of the relaxed problem. We make
things completely explicit for the special case when the basic elastic material has Poisson’s
ratio zero. The case of nonzero Poisson’s ratio can also be treated by the same method
but the result is messier. As in Section 4, the essense of the matter is an optimal lower
bound on (A~' 1, 1) as A ranges over all perforated composites with volume fraction 6.
Such optimal energy bounds for 3D elasticity have also been obtained by Gibiansky &
Cherkaev [1987]. _

We adopt the notation of Sections 2-4. Since we are in three space dimensions, the
Hooke’s law of the basic elastic material is

1
Ao E=rx(tr @qu(a— S (i 6_)1)
rather than (4.4). The relaxed design problem is still

min J F, (1),
divt=0 J0
t.n=f
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but now Q<R?, and the values of t are 3 X 3 symmetric matrices. The integrand is still

(7.1} F,(t)= min [f (0, t)+A8]

0s0s1

with
f(6,1)=min (A7'1, 7).

AecGy

Our goal 1s to understand the structure of F, (7).
The Hashin-Shtrikman variational principle is not dimension dependent. Hence the
characterization

F®0,D=<(As't, t)+(1—0)sup {2{r,n)—6g. (M)}

remains valid in 3 D (subject to the interpretation explained in Sec. 3). The definition of
g, is still as before,

(7.2) g.(m)= sup |“A5”2W{k)AénT] Iz-
[kl=1

The explicit formula in three space dimensions is easily deduced from formulas in A &
K [1992 5]

(7.3) gc(n)=<Aon,n>—;§5 min (y tr n+21)%

i=1,2,3
in which we have set
_3x—2p
Jp

We claim that F, (t) a/ways has the form

ATV T E, gl
7.4 =
= R {<A5‘r,r>+xp,.(2—pu, <1,

with p, =p, (1) the volume fraction of material, expressed as a function of the stress t.
The function p, is determined by the relation

(7.5) o (1) =247 12 [gF ()2,
Here gF is the convex dual of g, defined as usual by

(7.6) gt(@=sup{{r,n)—g.(m)}

The proof of (7.4)-(7.5) does not make use of the explicit formula (7.3) for g; it
depends only on the fact that g, is convex and homogeneous of degree 2, i.e.

(7.7) g.(mm)=t’g.(m), teR.
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These properties are immediate from the definition (7.2). It follows from (7.7) that

4
(7.8) SUP{2<Rn)*ﬁgc(n)}=agé"(r)

n

Therefore (7. 1) becomes

(7.9) F,(t)=(A5't, 1)+ min [Lle_-@gf(t)+?u8}.

0=6=1

The optimal 6 satisfies
(7.10) O=(E4r"1gr (@)
if this quantity is less than one, and =1 otherwise. Notice that the right-hand side of

(7.10) is precisely p, (t). Substitution into (7.9) yields the asserted formula (7. 4).

To make the relaxation fully explicit one must calculate g¥(n). The general case is
messy. However the special case y=0 is both simple and enlightening. It corresponds to
a basic elastic material with Poisson’s ratio equal to zero, i.e. x=2p/3 and A E=2pE&.
The formula (7. 3) becomes

(7.11) g.M=2p{{n P ~nqi)
with n2;,=min{n?}, and (7.6) becomes

(155 g¥(@=sup {{v,n)—2p(n}*—ni.)}-
n

The optimal n for (7.12) is simultaneously diagonal with 1. Moreover, if we take the
convention |1, |<|t,|<|1;| then the corresponding eigenvalues of n should be ordered
similarly, with sgn(n;)=sgn(t,). So (7.12) becomes

sup Y |n||n]-2pmi+nd) )

[nil=inz2lsingl

Clearly the optimal choice has |1, |=|n,| If |n,|<|n,]| then the optimality condition
is
|T1|+|72|:4l-'-|"‘12|, |ts]=4n|nsl.

This is consistent if |1, |+|t,| <], ]|. Otherwise the optimal choice has

In[=|n2|=[ns|=¢
with

[t |+t + ]| =8 pt.
We thus deduce that
| 4 5 :
g_{(fril“"[le)"“i'fi] if |Tif+IT2!§|t3l
(7.13) grm={ °F

1 ;
“‘“‘(f”‘i]“"hﬂ"’lfal)z if |T1r+]’52!§"53l-
16

EUROPEAN JOURNAL OF MECHANICS, A/SOLIDS, VOL. 12, N° 6, 1993



OPTIMAL DESIGN IN PLANE STRESS 873

Together with (7.4)-(7.5), this makes the relaxed integrand completely explicit when the
basic elastic material has Poisson’s ratio zero.

In the general case, the formula for g¥ (t) is messier, because there are more distinct
regimes. However, it is easy to formulate an algorithm for evaluating g () numerically.

8. Discussion

This section discusses how our work is related to other recent activity.

8 A. ReLATION TO BENDSOE/KIKUCHI/SUZUKI

The approach of the recent papers ([B & K, 1988]; [B, 1989]; [S & K, 1991]) is very
similar to ours. The main differences are as follows:

(1) for the most part, these papers use suboptimal composites obtained by perforation
with a microscopically periodic array of rectangular holes,

(2) the character of the composite is piecewise constant, and the elasticity problem is
discretized by a standard strain formulation rather than a dual variational principle,

(3) the optimization is done using the method of optimality criteria rather than a
direct method.

Their results are in many respects similar to ours. These seems to be an important
difference, however. Their designs make relatively little use of composites, even when a
lot of material is removed. Instead, they tend to develop a Michell-truss-like structure
on an intermediate length scale, larger than the computational mesh but smaller than
the length scale of the domain itself. This feature is especially clear from the examples in
[S & K, 1991]. Our examples, by contrast, seem to favor the use of composites. For
large A, the Michell truss limit, our solutions are relatively smooth. They correspond to
Michell trusses as subgrid structure rather than ones which can be observed macroscopi-
cally.

We can only guess at the source of this discrepancy, following a suggestion of
A. Cherkaev. Relaxation based on the use of optimal composites led to an integrand
F, (t) which is polyconvex (see Remark 4.2). The associated variational problem is
mathematically well behaved, i.e. it has a solution. If we had permitted only suboptimal
composites, we would have reached a different, slightly larger integrand. It would be
almost quasiconvex, but not quite. So its minimization might reasonably lead to spatially
oscillatory solutions.

The situation is most easily visualized by considering a scalar optimal design problem
(torsional rigidity, electrical resistivity, etc.) rather than elasticity, since quasiconvexity is
then replaced by convexity. According to [K & S, 1986], the optimal design problem

with no use of composites corresponds to minimizing j W, (1), with
Q

|t +A T#0

WO(T):{ 0 =0
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The use of optimal composites corresponds to minimizing j W, (1), with

W;(t):{lf|z+l> ATzl

2\/X|t|, e
the convexification of W,. Our regularized relaxed problem corresponds to minimizing
j W, (1), with
Q
2+ l“lf.’l 2
Wz(‘f):{ i et (J=

21”2(|T[2+82)”2—82, l‘”z(ltlz“f-az)”zél,

2)1;’2; 1

a strictly convex approximation of W,. The method of Bendsoe-Kikuchi-Suzuki corre-
sponds to minimizing J W, (1) instead, with W5 a not-quite-convex approximation of

W,. It seems quite plausible that the numerical behavior of these two approx1mat10ns to
the relaxed problem (W, vs. W;) might be different.

8 B. RELATION TO CHERKAEV-GIBIANSKY

The paper [G & C, 1984] executes the analogue of the program developed here, in the
context of plate theory. The use of homogenization in conjunction with plate theory has
always been a bit controversial. It is perfectly valid, however, provided that the plate is
very thin so that its maximum thickness € and the length scale of thickness variation &
are related by e<8<1 [Kohn & Vogelius, 1984]. (The treatment in [Ong et al., 1988]
and [R ez al., 1987] is different, largely because it corresponds to the case § <e<1.) The
plates in [G & C, 1984] can have two possible thicknesses, 4, <h,. The case of shape
optimization, the focus of our attention here, corresponds to taking /4, =0.

The paper [G & C, 1987] addresses the same elasticity problem we consider here. It
derives the optimal bound on complementary energy, what we have called £ (8, 7). It
also considers designs made from two nondegenerate materials, and the corresponding
problem in three space dimensions. However, it does not have numerical examples.

The procedure used by Gibiansky and Cherkaev for computing the relaxed problem is
somewhat different from ours. Those papers use the “translation method™ to derive the
lower bound for (A™'t, t) when AeG,. There is no known abstract reason why this
bound should be optimal. However, it turns out to be so in each case, by an explicit
calculation involving sequential lamination. We prefer our approach, based on the
Hashin-Shtrikman variational principle, because its success is guaranteed: the bound
obtained this way is known as a matter of theory to be obtimal. The translation method
has advantages of its own, however; for example, it is not restricted to mixtures of well-
ordered elastic materials.
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8 C. RELATION TO KOHN-STRANG

Our variational approach to compliance optimization was initiated in [K & S, 1986].
The viewpoint of that paper is as follows. The compliance minimization problem can be
formulated (before the introduction of composites) as a nonconvex optimization over
statically admissible stress fields. The process of relaxation can be viewed in two equiva-
lent ways: as the introduction of optimal composites (the approach we have taken here),
or as a construction known as quasiconvexification. The latter requires no explicit
mention of composite materials. Rather, one calculates the “rank-one convexification”
of the integrand (equivalent to using optimal sequentially laminated composites). Then
one tries to prove that the result is “polyconvex” (equivalent to proving a bound on
effective moduli via the translation method). If one succeeds, then the result is the correct
relaxed integrand.

This program was explored in [K & S, 1986] primarily for scalar problems (electrical
resistivity, antiplane shear, etc.) with multiple compliance constraints. However; the
problem we consider here —shape optimization for elastic structures under a single load
in plane stress—was addressed in Section 5D of [K & S, 1986] when the basic material
A, has Poisson’s ratio equal to zero (i.e. k=p). In particular, our F, (t) was computed
in [K & S, 1986] by the method of quasiconvexification, when the spatial dimension is 2
and K=p.

With hindsight, we now see that the method of quasiconvexification could have been
used to calculate F, (t) for any choice of x and u in space dimension two. Indeed, rank-
one convexification as in [K & S, 1986] would inevitably lead to the integrand F, (1),
since the optimal composites can be rank-two laminates. Moreover, F, () Is quasiconvex,
because it is polyconvex.

One observation from [K & S, 1986] is worth highlighting here. When the boundary
condition is hydrostatic, i.e. f=f,n with f, constant, the solution of our optimal design
problem is wildly non unique. In fact, there are infinitely many “classical” solutions,
obtained by the “concentric sphere construction.” The argument is parallel to that of
Example 8.3 of [K & S, 1986], so we do not it present here. There is also a “relaxed
solution”, in which Q is filled by a homogeneous composite A having uniform density 6,
where A and 8 achieve

min min [f5{AT'L I)+X6]

0051 AeGg

The stress field associated to this uniform, relaxed solution is of course t=/,[. Our
optimization code, when given such hydrostatic boundary conditions, chooses the homo-
geneous solution. (In other words, it chooses 1=/, [.) The choice is presumably due to a
combination of our regularization and the effects of discretization. We wonder whether
the code of Bendsoe/Kikuchi/Suzuki might make a different choice.
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