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ABSTRACT. We study the shape optimization of a two-dimensional elastic body loaded in
plane stress. The design criteria are compliance and weight. A relaxed formulation obtained
by homogenization is used, whereby perforated composite materials are admitted as structural
components. This approach has the advantage of placing no implicit restriction on the topol-
ogy of the design. We compare our results with those of Bendsoe, Kikuchi, and Suzuki who
used an approach similar to ours.

I.. The Optimal Shape Design Problem

We study the shape optimization for minimum compliance and weight of a two-dimensional
elastic body loaded in plane stress. We consider a region Q c IR?, occupied by a lincarly elas-
tic material with Hooke’s law Ap. Its boundary 9Q is loaded by a given function
f 10Q - R? (other boundary conditions are also possible, e.g. part of dQ may have a
specified displacement). We intend to remove a subset H c Q, consisting of one or more
holes, the new boundaries created this way being traction-free. The equations of elasticity for
the resulting structure are :

6 = Age), e) = H(Vu+'Vu)
diveo =0 in QW (1.1)
on =f ondQ, on =0 on oH.

A global measure of rigidity for the structure O\H is the compliance defined by

ctH) = a_Lf.u = ﬂ!;{doe(u),e(ub. (1.2}

Our goal is to minimize the compliance and the weight. Introducing a positive Lagrange mul-
tiplier A, our optimal shape design problem is :

Min (  q [C(H)-FMQ\H[] (1.3)
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1. The Optimal Shape Design Problem

We study the shape optimization for minimum compliance and weight of a two-dimensional
elastic body loaded in plane stress. We consider a region Q < R?, occupied by a linearly elas-
tic material with Hooke’s law A, Its boundary 0 is loaded by a given function
f :9Q — IR* (other boundary conditions are also possible, e.g. part of dQ may have a
specified displacement). We intend to remove a subset H c €, consisting of one or more
holes, the new boundaries created this way being traction-free. The equations of elasticity for
the resulting structure are :

c = Agew), e) = %NVu+'Vu)
diveo =0 in QH (1.1)
on =f ondd, on =0 ondH

A global measure of rigidity for the structure {0\ is the compliance defined by

c(H) = |fu = <Ape(u),e(u)> . (1.2)
o= e

Our goal is to minimize the compliance and the weight. Introducing a positive Lagrange mul-
tiplier A, our optimal shape design problem is :

Min{HCQ][c(H)+l|Q\Hl:|. (1.3)



As stated, problem (1.3) has two major difficulties. First, from a mathematical point of
view, (1.3) may have no "classical" solution (i.e. a regular shape) ; the point is that it may be
advantageous to use infinitely many small holes rather than a few large ones. In other words,
the optimal structure may be achieved only by a composite material made by perforation.
Second, from a numerical point of view, the "standard approach" for computing solutions of
(1.3) is that of boundary variations. Usually, one starts from an initial guess H o with a free
boundary subject to optimization ; no new boundaries are created, and the topology (layout) of
the resulting "optimal" shape is the same as that of the initial guess. Here, instead, we are
interested in the topology optimization of the initial guess and, therefore, of the optimal shape.

To remedy both difficulties, we propose a relaxed formulation of problem (1.3) obtained
by homogenization of perforated microstructures ; this has the net effect of enlarging the set of
structural components by allowing for composite materials made of an intricate mixture of void
and material. The idea of using homogenization for relaxing optimal design problems is by
now well-known in the mathematical community (see e.g. [6], [7], [8]).

2. The relaxed formulation, and composite materials

We begin with a precise formulation of what we mean by composite material obtained by per-
foration. Such a composite is determined by two functions : its volume fraction (or density)
0(x), taking values between 0 and 1, and its effective Hooke’s law A(x). Not all values of
A(x) are attainable by perforation of the original material A, and the homogenization theory
(see e.g. [2]) tells us that A (x) is restricted to a subspace G g(x) of fourth order tensors, defined
as the set of all effective Hooke’s laws obtained by perforation of A, with volume fraction
1-0(x) of holes. We remark that G is restricted to {0} and G, to {A}, but in general the set
G g is not explicitly known. The equations of elasticity become :

= Ax)e(u)
dvo =0 inQ (2.1)
on = f on dQ,

and the compliance is
c(4) = J[ fu = I[<A (x)e(u).eu)> . (2.2)
Q
The relaxed formulation of problem (1.3) is then

Min g< gy <1
Alx) e G oy

c(A)+?LJ;9(x)de. (2.3)

Since we do not know the precise form of G g(x)» problem (2.3) must be worked on a lit-
tle further. One possibility is to restrict Gy to a special class of composites : for example,
periodic arrays of rectangular holes in squared cells, as proposed by Bendsoe, Kikuchi, and
Suzuki [5], [9]. Our approach is different and consists in using partial knowledge of G g :
more precisely, we know how to minimize the complementary energy <A7lg,0> among all
tensors A in Gy, for given o. Thus, we are going to transform (2.3) in order to use this infor-
mation. On the other hand, as a matter of theory (see [2], [4]), this process is equivalent to
restricting G g,y to the class of sequentially laminated composites, which thus appears as a



class of optimal microstructures for problem (2.3).

We now turn to the derivation of a more explicit formula for the relaxed problem (2.3).
Using the principle of minimum complementary energy, (2.3) is equivalent to

Min()se(x)sl Min divt=0in Q £[<A—I(X)T,T> =+ lB(x)J dx . (24)
Ax) € Gy, tn=f on odQ

Next, we interchange the order of minimization in (2.4), and we put the minimization over 0
and A inside the integral because they are subject only to algebraic and local constraints. We
thus obtain

Min gy e=0 i a [ Fa(D) dr @.5)
tn=f on dQ
with
FA_(T) = Min05951MinAEGa[<A_IT’T> + ?L6:| (26)

We explicitly computed (2.6) in [3] : our main tool is the Hashin-Shtrikman variational princi-
ple for the minimization over G 4. Finally (2.6) becomes

<Agltrt> + A4 ifp21

) = <Agltr> + ApR-p) ifp<1 &0
with
M
p [—ﬁm} 27 (el +1vd | 28)

where k and p are the bulk and shear moduli of A, and 1y, T, are the cigenvalues of the stress
7. The optimal value of the density 6 in (2.6) is given by

8% = Min (1,p) . (2.9)

An optimal associated microstructure (not necessarily unique) is a sequentially laminated com-
posite of rank 2 (in 2-D) whose parameters depend pointwise on T (physically, this microstruc-
ture is obtained from A by perforation with very thin and long holes, see [3] for details).

In the end, our relaxed problem (2.5) looks like a non-linear elasticity problem in plane
stress, which is amenable to numerical computations. Its main feature are :

(i) the relaxed formulation (2.5) is equivalent to the original one (1.3). Specifically, their
minimum values are equal, and every solution of (2.5) determines a minimizing sequence
of "classical" designs for (1.3),

(i) the relaxed formulation (2.5) always has a solution in 2-D.

The density 6(x) of the optimal composite (the "generalized" shape we are looking for) is

recovered from equation (2.8), and may be used to deduce an optimal topology, or layout, of
material.



3. Numerical Procedure

The relaxed problem (2.5) is solved by finite elements on a fixed triangular mesh. To satisfy
the constraint that the stress is divergence-free, we work with an Airy stress function y such
that

ohyidy? - 02y/ox dy
— *yiaxdy  dPylox? (3.1)

The function  is discretized using the Clough-Tocher finite element : each triangle being
divided in three sub-triangles, it is piecewise cubic on sub-triangles, and globally C!. To per-
form the minimization of the non-linear elastic energy (2.7), we used the conjugate gradient
method, which requires that F (1) be differentiable. Unfortunately this is not the case when
one of the eigenvalues T; of the stress is equal to zero. Therefore, F(t) is regularized by
replacing the original p, defined by (2.8), with

’/ﬁ %
Pe = [.:*_”} jE [||'c||2+2[£2+(det‘:)2]"5J : (3.2)
Kn

T =

Note that as € goes to 0, p, tends to p ; the largest error between Pe and p is made when T =0
and is of order £”.

All the cases presented here have been computed with € = 107, x = 1.0, L=0.5, and a
constant value of the loading f along selected portions of 9Q. We recall that the effect of
increasing the Lagrange multiplier A is to decrease the weight of the final optimal design.

We present three different cases : the fillet problem (figure 1) on a square mesh of 512
triangles, the cantilever problem (figure 2) and the beam problem (figure 3), both on a rec-
tangular mesh (its length is twice its width) of 256 triangles. Each interior triangle has three
degrees of freedom.

According to the different values of the Lagrange multiplier A and to the different loading
configurations, our code gives a generalized optimal design with a varying amount of compo-
site (the grey area on the figures ; white is void and black is pure material). Some examples of
“classical" solutions (i.e. a shape with almost no composite), obtained with our code, may be
found in [3]. Here, we intentionally choose three cases where large regions of composite arise.
Indeed, one of the main issue of this paper is to understand the differences between these
results and the ones obtained by Bendsoe, Kikuchi, and Suzuki [5], [9] which, on the contrary,
exhibit microstructures on the mesh scale with very little composite.

Roughly speaking, the approach of Bendsoe, Kikuchi, and Suzuki is similar to ours,
except that they use sub-optimal composite materials (rectangular holes in square cells). We
believe this has the effect of creating an optimal microstructure on the mesh scale : it does not
happen with our code since we use optimal microstructures on the sub-grid scale.

To support our claim, we have introduced in our code the possibility of penalizing com-
posites in the minimization process for (2.5), thus forcing the final optimal design to have only
small regions of composite.

4. Penalization of Composites



In order to penalize the use of composites, we add to the energy F,(t), introduced in the
relaxed formulation (2.5), a new term of the form 8(1-6) which is minimized for 8 = 0 (holes)
or 6 = 1 (material Ap). The resulting minimization process is

Min 4y 120 in g l’; [Fx('f) + ¢ 90‘"’(1—9"‘”)] dx , 4.1)
Tn=f on dQ

where ¢ is a positive constant (equal to 0.5 in all our computations), and 8% is given by
(2.9).

We remark that, unlike the relaxed formulation (2.5), the penalized formulation (4.1) is
not a well-posed minimization problem : specifically, (4.1) is not quasi-convex, and it does not
necessarily have a solution. Thus, our strategy for using (4.1) is the following : first, compute
an optimal design with the relaxed formulation (2.5), second, starting from that optimal design,
use the penalized formulation (4.1).

The results of the above process are shown in figures 4, 5, and 6, starting from the
corresponding results shown on figures 1, 2, and 3, respectively. In each case the penalization
has little effect on the compliance (about 1 %). Clearly, penalizing composites (i.e. discourag-
ing optimal micro-structures on a sub-grid scale) leads to micro-structures on the mesh scale.
For the fillet problem (figure 4), the micro-structure looks like a rank-one laminate (each layer
is of the size of one cell), which is the dominant sub-grid micro-structure too.

Further work to explain the differences in the optimal designs obtained when using
optimal or sub-optimal microstructures in the relaxation process has been completed in [1].
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Figure 3
beam : A = 0.5, 45.5 % of material removed, compliance = 44.6



Figure 4
fillet : A = 1, 52.6 % of material removed, compliance = 114.8



Figure 5
2, 47.6 % of material removed, compliance = 167.3
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Figure 6
beam : A = 0.5, 44.5 % of material removed, compliance = 45.2



