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Abstract
Allaire, G. and F. Murat, Homogenization of the Neumann problem with nonisolated holes, Asymptotic Analysis 7 (1993)
81-95,

We consider the homogenization of second-order elliptic equations with a Neumann boundary condition in open scts
periodically perforated with holes of the size of the period. When the holes are isolated, Cioranescu and Saint Jean Paulin
(1979) proved the convergence of the homogenization process. One of their main tool was the construction of an extension
of the solution, which is uniformly bounded. In the present paper, we give a new proof of the convergence, which avoids the
use of such an extension. The main advantage of our approach is that it generalizes the result of Cioranescu and Saint Jean
Paulin to the general case of periodic holes which may be not isolated (including, for example in three dimensions, the case
of a domain perforated by interconnected cylinders).

0. Introduction

This paper is devoted to the homogenization of second-order clliptic equations in a domain
periodically perforated by infinitely many small holes (having the same size as the period), with
a Neumann boundary condition. This type of problems arises from several fields of physics or
mechanics. Let us mention a few of them: the convection—diffusion of a chemical in a porous
medium [12,10], the elasticity (resp. viscoplasticity) problem for a perforated material [9] (resp.
[11]), or the Navier—Stokes equations for a gas condensating on rods [8]. For all those problems,
the heuristic derivation of the homogenized problem is by now well known and understood,
thanks to the celebrated two-scale method (sce e.g. [5,14]). Here we focus on the mathematical
problem of proving the convergence of the homogenization process. The first result in this
direction is due to Cioranescu and Saint Jean Paulin [7]. Following the lines of Tartar [15], they
rigorously proved the convergence in the case of isolated and periodically distributed holes
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which do not meet the boundary of the domain. Their main tools werce the so-called energy
method of Tartar and the construction of an extension operator. Here, we generalize their
result to the case of periodically distributed holes which are either isolated or connected, and
which may meet the exterior boundary. Qur main tools are, again, the energy method, and a
new compactness lemma in perforated domains, which avoid the use of any extension operator,

Now, we turn to a more precise presentation of our results. Let {2 be a bounded set in RY
(N = 2). The set £ is covered by identical small cells €Y, where Y =(—1,+ )" is the unit cell,
and ¢ is the period which will tend to zero. Let Y* be a subset of the unit cell Y (we call it the
material part). The domain (2_ is defined as the intersection of {2 with the union of the small
material parts Y *. We assume that the material part ¥ *, and the union of all the material
parts which cover RY, are connected, and that the volume fraction of the material 6 =
|Y*|/|Y| is strictly positive (see hypotheses (H1), (H2) and (H3) in Section 1). Those
assumptions are not too restrictive, and the holes are allowed to be isolated (i.e. Y —Y™* is
strictly included in Y), or to be connected (i.e. Y — Y * meets the boundary 8Y; this case only
occurs when the dimension is greater or equal to 3). We consider the following scalar equation
in the domain (2,

-V- (A(E)Vut_) +u,=f in (2,
(0.1)

o, x
- = [A(—)Vub_] n=0 onafl,

(':'!VAr £

where the matrix A(y) is Y-periodic, uniformly bounded, and coercive, and the right-hand side
f belongs to L*(£2). It is well known that this problem has a unique solution in HY(Q,).
Using the two-scale method, it is easy to see that the corresponding homogenized problem is

~V-[AVu| +ou=6f inQ,

ou (0.2)
—=} on af2,
dv 4

where the matrix A is a constant which can be computed through the so-called cell problem
(sce (1.5) and (1.6) in Section 1), and 8 is the material volume fraction. Our main result
(Theorem 1.4) is the following.

Theorem 0.1. The sequence of solutions u,_ of (0.1) converges to the solution u of the homogenized
problem (0.2) in the following sense

for any open set @ with ® €2, lim |lu, —ull 120 e =0.

g—=0

In the above result, the introduction of the set w means that the convergence is local inside
€2 (this local result is forced by a possible “wild” boundary 942, in the vicinity of 842). The proof
of this theorem relies upon a compactness lemma which states that “the embedding of H'(2,)
in L2(£2,) is compact, uniformly in £” (Lemma 2.3). This avoids the use of any extension of the
sequence u, in the holes 2 — (2, (this was the technical part of the proof in [7]).
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In the Appendix, written in collaboration with A K. Nandakumar, we adapt the above result
to a slightly different problem in the same geometric situation. Instead of having a Neumann
condition, both on the holes boundary, and on the exterior boundary, we consider there a
system with a Neumann condition on the holes boundary, and a Dirichlet one on the exterior
boundary; namely

iy ne,
31, [ (i) ] n=0 on 2, -, (0.3)

u£=0 on 82 Ndfl,.
Again, there is a unique solution of this problem in H'({2,), and the homogenized system is
{ ~V-(AVu)=6f inQ
u=0 on a2,

where the matrix A is the same as above. Then, we prove the following result (see Theorem
A.l).

(0.4)

Theorem 0.2. (G. Allaire, F. Murat, A.K. Nandakumar). The sequence of the solutions u_ of (0.3)
converges to the solution u of the homogenized problem (0.4) in the following sense
lim [[u, —ull 120,=0.

e—=0

Observe that, in this case, the result is no longer local, but valid up to the exterior boundary
af2. This is due to the Dirichlet boundary condition on 842.

After this work had been completed, we learned that Acerbi et al. [1] obtained the same
result as ours (i.c. Theorem 0.1), but with a completely different method; indeed, they construct
a bounded extension operator from H'(£2,) into H(£2), as in [7], but with no restrictions on
the geometry of the holes (which may be isolated or connected). Theorem 0.1 can also be
proved by using the two-scale convergence method (see [3] and [4]). Anyway, we belicved that
our main tool (the compactness Lemma 2.3), which is interesting by itself, provides the simplest
proof of Theorem 0.1.

1. Setting of the problem

As usual in the periodic homogenization theory, we first define a so-called unit cell, which,
upon rescalling to size &, becomes the period of a periodic medium. The unit cube Y=
(—1, + 1)V is perforated by a hole, and the part of Y occupied by the material is called Y *,
The volume fraction of the material is denoted by 6 = |V * | /| Y |. We make the following
hypotheses on the material part Y *:

(H1) Y* is a connected open set of RY, has a Lipschitz boundary 8Y *, and is locally located
on one side of its boundary;
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(H2) the union E* of all material parts, defined as the periodic open set obtained by covering
R"™ with the material part Y *, is connected, has a Lipschitz boundary, and lies locally on
one side of its boundary;

(H3) the material volume fraction 8 is strictly positive.

Hypotheses (H1) and (H2) imply that the material is in one piece, while hypothesis (H3) means
that there is actually some material. However, they do not restrict the topology of the holes. In
particular, the holes may be isolated, or connected in one piece, or any intermediate situation.

Remark 1.1. In hypothesis (H2) we have skipped a little technical difficulty in the definition of
E*. Because the material part Y™ is an open set, it does not contain its boundary Y *. Thus
the physically realistic material part of two contiguous cells ¥, and Y, is the union of the two
open sets Y,* and Y,* plus the material interface 3Y,* N 9Y,*. Consequently the union E* of
all material parts is rigorously defined as the interior of the union of the closures of all the
open sets Y *,

Now, let £2 be a bounded open set in RY, with Lipschitz boundary 842, £2 being locally located
on one side of its boundary. Let € be a sequence of strictly positive real numbers which tends to
zero. The set {2 is periodically covered by cells Y%, similar to the unit cell Y rescaled to size e.
More precisely, we define

X x
Y,—‘z{xeﬂ%”l(——Zi)eY}, Y,.*f={xeRN|(——2f)eY*], (1.1)
£ E
where i is an element of Z".
We also define the open set e E™ as the material part E* rescaled to size &. Up to material

interfaces, e E™ is equal to the union of the Y,**, Then, the material part §2_ is defined by
0, =0nNeE*. (1.2)

Denoting by 1, the characteristic function of the set (2,, a well-known result states that the
sequence 1, converges to § in the weak star topology of L*().

Remark 1.2. Although we have assumed (H2), the set {2, may be not connected. Indeed there
may be some connected components of (2, in the ncighborhood of (2, which have a size
smaller than e. In the same vein, because of (H2) the boundary d(2_, is smooth “in the interior
of (27, but “in the neighborhood of 3(2” nothing can be said about its regularity, because,
under our assumptions, the holes may meet the boundary 842 (contrary to reference [7]). The
definition of (2, is similar to that of a porous medium in [2], where the homogenization of
Stokes flows was studied.

In the material domain {2_, we consider the Neumann problem for the second-order elliptic
cquation

(1.3)
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As in [7], we make the following assumptions:
(A1) fel* ()
(A2) The cocfficients a;; of the matrix A are periodic of period Y, and belong to L%(R");
(A3) there is a strictly positive number a such that
‘tA(y)e=alé|® forany £€RY and yeY.

Under these assumptions it is well-known that (1.3) admits a unique solution in H'(£2,) (the
zero-order term + u, is here to enforce existence and uniqueness).

Remark 1.3. The boundary condition in (1.3) is of Neumann type, both on the boundary of the
holes {2, —df) and on the “exterior boundary” 02 N df2. In the appendix, written in
collaboration with A.K. Nandakumar, we consider a problem analogous to (1.3), where the
Neumann boundary condition on 32, N 842 is replaced by a Dirichlet boundary condition; this
allows us to remove the zero-order term + u, in the equation.

Using the celebrated two-scale method (see, e.g., [5] or [14]), it is casy to see heuristically that
the limit problem of (1.3), when & goes to zero, is

~V-[AVu| +ou=06f inQ,
ou 1.4
=) on o). (24}
dv 4
The constant matrix A is given by
- 1
'e}-'Aef = IT| Y*lijl/! le-, (15)

where the functions (w,), _, . » are the solutions of the so-called cell problem

-V ['A(y) Vw;| =0 inY*,

v 0 oY * Y

= — -)
v, on ay, (1.6)
(w;—¥) Y-periodic.

From (1.5) it is casy to deduce that there exists a strictly positive number 8 such that
A > Bl&]* for any £ € RV.
Thus, system (1.4) admits a unique solution in H ().
The goal of the present paper is to rigorously prove the convergence of the sequence of the

solutions of (1.3) to the solution of the homogenized problem (1.4), i.e., to prove the following
theorem.
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Theorem 1.4. Let u, (resp. u) be the unique solution of (1.3) (resp. (1.4)). Under the hypotheses
(H1), (H2) and (H3) on the geometry of the unit cell, the sequence u, tends to u in the following
sense:

for any open set @ with @ C (2, lmh lle, —ull 20, nwy=0. CleE)

Remark 1.5. Let us recall the result obtained by Cioranescu and Saint Jean Paulin [7]. Under a
certain further hypothesis on the holes (namely, the holes are isolated in each cell, and no holes
meet the boundary 8(2), they built an extension operator P. from H'(£,) in H'({2), such that
the sequence P.u, converges weakly to u in H'({2). In their context, the convergence (1.7)
appears as a consequence of the compact embedding of H'(£2) in L*(2) (Rellich’s theorem).
Note however that the present result (1.7) is local (i.e. holds only in the interior of {2) because
some holes may meet the boundary 942,

The main interest of Theorem 1.4 is obviously that it holds true under less restrictive
assumptions than in [7]. For example in three dimensions, the holes may be connected like a
mesh of cylinders.

2. Proof of convergence

The proof of Theorem 1.4 is based on the so-called energy method introduced by Tartar (see
[15], partially written in [13]) and on Lemma 2.3 which, looscly speaking, states that the
embedding of H'({2,) in L*({2,) is compact, uniformly in &. In [7] the energy method was also
the main tool; thus the originality of our approach lies in Lemma 2.3 which, more or less,
replaces the extension operator and Rellich’s theorem used in [7].

Definition 2.1. We denote by ~ the extension operator by zero in the holes {2 — (2. Thus, for
any function v, of LX), 0, is defined by

- i in (2,
“Tlo ine-0..

Lemma 2.2. Assume that hypothesis (H1), (H2) and (H3) hold. We then have
(1) There exists a positive constant C, which depends only on Y *, such that, for any function
v e HY(Y*), we have

1
v

(2) Let Yand Y' be two contiguous cells (i.e. two cells which share a common side). Let us
denote by Z* the material part of the two cells, namely Z* =Y*UY'* U @Y * N aY'*). There
exists a positive constant C, which depends only on Y *, such that, for any function v € H'(Z*),
we have

==

<C|Vull LAY *). (2-1)
LAY *)

-1
s <Cl|[Vp *y. 2.2
’ IY* | Y*U |Y'* | fY’*U ” ” LXZ*) ( )
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Proof. Incquality (2.1) is nothing but the Poincaré—Wirtinger incquality in ¥ *, which is casily
proved by contradiction since Y * is connected (hypothesis (H1)). Similarly, inequality (2.2) is
easily proved by contradiction since hypotheses (H1) and (H2) obviously implies that Z* is
connected. O

Lemma 2.3. Let u, be a sequence with uniformly bounded norm in H'(,), i.e.
e Nl e,y <C, (2.3)

where the constant C does not depend on &. The sequence it, being bounded in L*(12), there exists
a function u in L*(£2) such that, up to a subsequence, we have
i, — Ou weakly in L*(£2). (2.4)

Then, this subsequence u, is “compact” in the following sense
For any sequence v, in L*({2,) such that ,— 8v weakly in L*((2), and for any function
¢ € D(0), we have:

f q&ucvﬁ—bfﬂfbuu. (2.5)
0, o)
Furthermore, the limit u actually belongs to H'((2).

Remark 2.4. Although the sequence u, is “compact” in the sense of (2.5), we emphasize that &,
is definitely not compact in L*(£2). Nevertheless, it is casy to deduce from (2.5) that, for any
open set w satisfying @ C £2, we have

2, — &l 20, vwy = 0.

Note also that the compactness (2.5) could be easily deduced from the existence of a bounded
extension operator, if any. Indeed, if we assume that there exists an extension operator P, such
that, further to (2.3), P.u, is bounded in H!((2), it is easily seen that (2.4) and the equality
i, =1y Pu, in 0 imply

Pu,—u weaklyin H'(0),
and (2.5) holds true.

Proof of Lemma 2.3. Let @ be a convex subset of 2 such that @ < (2. The domain 42 is covered
by cells Y*, but is usually not exactly equal to an union of entire cells (some cells meet the
boundary 4(2). For that reason, we introduce the set C, which is the largest union of cntire
cells included in £2, namely C, = U, Y;*, with I, = {i| Y}" € £2). For sufficiently small values of
g, we have 0w CC,C2. In C, we define a piecewise constant function u_ by

1

i [ w, inthecell Y¢ foriel,. (2.6)
v

Let us prove that the sequence u, is relatively compact in L*(w) by application of the
Kolmogorov criterion. For any vector e, of the canonical basis of RY, let h € R™ be sufficiently
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small, such that, for any point x €w, x + he, belongs to £2. Let Y and Y} be two contiguous
cells such that i’ — i = 2¢,. By rescaling inequality (2.2) we obtain for x & ¥r

e (x)—u (x+2¢ee,)|* < Ce?|| Vu, | r— (2.7)

If 0 <h < 2¢, denoting by ¢f its center, the cell Vi={xe|(x—c/)e(—¢, —&)"} is made of
two parts Ai={x€Y’|—e<(x—c})-e,<e—h} and Bf={xeV’ le—h<lx <) e«
+¢}, such that

x€A; = (x+he)<eY* and XEB=(x+he)€EYs.
Since %, is constant in each cell, we deduce that
ela,(x) —u,(x+he)|"=0 for x € A¢,

N _ 2
eV (x)—u (x+he)|* < Ce?| Vu, 172000y 2o

(2.8)

y for x e B,
Integrating (2.8) over Y and noticing that | Bf | = (2¢) '4, then summing on 7, leads to
e i, (x) — &, (x+he) 122, <2CeN* R || Vu, | L2y
Thus
la (x)—u (x+he )l 120 < ChV %' % for h < 2e. (2.9)

If & > 2¢, then there exists an integer n > 1 and a positive real A’ < 2¢ such that & = 2ne + h'.
Since w is convex, and since &,(x) is a constant in each cell Y, it is easy to relate & (x) to
u,(x +he,) by using a path made of segments of the type (x + 2jeer, x+2(j+ Dee,), for
0<j<n—1,and an end scgment (x + 2nee;, x +(2ne + h')e,). For each segment (x + 2jee,,
x +2(j+ 1)ee,), integrating (2.7) over Y?, then summing on i, leads to

eVlla(x+2jee,) —u(x+2jee, + 2¢e;) 172y < Ce™2 || Yu, ”12"2(“,)’
which implies
& (x+2jee,) —u (x+2jee, + 2ee) |l 12y < CE.

Thus, summing over all segments (including the end segment for which formula (2.9) holds)
gives

1% (x) — 8 (x+he) || 120y < C(ne + b /2) < Ch  for h > 2e. (2.10)

Since u, is casily seen to be bounded in L% w), inequalities (2.9) and (2.10) are nothing but the
Kolmogorov criterion for the relative compactness of the sequence i, in L*(w). Therefore,
there exists u# such that, extracting a subsequence, we have

u,—u strongly in L*(w).
Passing to the limit in (2.10), we obtain for any value of A
lz(x) — @(x + he ) |l 120y < C LA, (2.11)

where the constant C depends neither on A nor on . Inequality (2.11) implies that u belongs
to H'(2) (see if necessary Proposition 1X.3 in [6]).
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For any smooth function ¢, with compact support in {2, and for any sequence v, in L*((2,)
such that o, weakly converges to 6v in L*(£2), we now study the limit of

f, pu,, = f{ Jd)ﬁtﬁk_ + £ } b(u, —1,)o,. (2.12)

Because i, is relatively compact in L3 (£2), we pass to the limit (for a subsequence) in the first
term of the r.h.s. of (2.12)

f{ 7,5, > j{ . (2.13)

For ¢ small enough, the support of ¢ is included in C,_, and the second term of the r.h.s. of
(2.12) is bounded by

<Cll ¢l L1540 I u,—u, | L2480, 7 C)e

f ¢(Ltf - Ef)brf.'
0,

Rescaling the Poincaré-Wirtinger inequality (2.1), and summing over all the cells of C, leads
to

| u,—u, Il e.ncy < Ce Vel LA, ) (2.14)
Thus, we deduce from (2.12) that

im [ pup, = [ opav.

e>040) £

Finally it remains to prove that & =u, where u is defined by (2.4). This is obvious because
(2.14) implies

lim 0,

e—+0

|“+= — Lot |2, =

while the strong convergence of u, implies that 1, %, converges weakly to 61 in LYw). O
Proof of Theorem 1.4. In order to prove the convergence of the homogenization process, we use

the energy method, introduced by Tartar [15]. We follow along the lines of [7], with some
modifications since here we are not using any extension operator.

First step: a priori estimates for the sequence u,
Multiplying equation (1.3) by u_, and integrating by parts, we obtain

X
‘VusA(—]Vue + [ @)Y= fu.. 2.15
From (2.15) we easily deduce that
e, N vy < C. (2.16)

Defining a function &, = A(x/£)Vu,_ in 2, (2.16) and assumption (A2) yield
€M 120, < C. (2.17)
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In view of (2.16) and (2.17), there exist two functions u € L*(2) and £ € [ L*(£)]", such that, up
to a subsequence, we have

{ﬂE — 6u  weakly in L*(02),

i (2.18)

£, —0f& weakly in [LE(Q)] e
Since £, belongs to [L?(£2,)]", and V - &, belongs also to L*(£2,), there is no problem to define
the trace £, - n as an element of H~'/%(042,). Furthermore, because of the Neumann boundary
condition satisfied by u_, the normal component £_- n is continuous through the boundary 842,

and thus V - £, is a well-defined function of L?(£2) which satisfies

&

—V-£ +ii, =1 in 2,
) £ £ ﬁsf (219)
¢(&n=10 on 2.
Passing to the limit in (2.19), and dividing by 8 gives
—Veé+u=f inf,
{§ ‘n=20 on a42. 2.20)

Second step: definition of the test functions
Rescaling the solutions of the cell problem (1.6), we define in the union ¢ E£* of all material
parts (see hypothesis (H2) and (1.2))

we(x) =sw,-(::-), nf=',4(f] V. (2.21)

The functions w satisfy

x
—V-['A(—] wa]=0 in eE*
E
awe (2.22)
=0 on d(¢E™),

i)
Ve,

and we have the estimates

[willao)< € and  ||nf|l2c, < C. : (2.23)
Since wi(x) =x,+ex{x/e) in e E*, where x; is Y-periodic, we have
W — fx,; weakly in L*(£2),
1 2.24
ﬁf‘—‘m ‘A(y) Vw; weakly in [LZ(Q)]N. (224
Y*

Furthermore, multiplying equation (1.6) by x(y) = w/(y) —y; and integrating by parts yields

fY*[‘A(y) vw,] - Vx,; = 0.
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Thus

1 N
— [ A(y) Vw= Y
77 S, A T Le

Consequently (2.24) implies that

1 N } )
= f [IA(}’) Vwi] s lept g = Eej[‘Ae,-] re;='de,.
¥* =

1

Ae; ! N
7= BT weakly in [ L2(Q)] . (2.25)

Third step: passing to the limit in the equations
For any function ¢ € D(£2), we multiply (2.22) by ¢u,, and (1.3) by ¢w;. Intcgrating by
parts, and subtracting one from the other, lead to

fm( ) vecs [ al)ve] - v f o

=] jvd)‘VuEBfl(%) s - fﬂu[A(f] ﬂw;-‘]- V- [ i (2.26)

The first and the fourth terms of (2.26) cancel out. For the remaining ones, we apply Lemma
2.3 to obtain

fﬂ wf[A(i—f) Vug]- Vqﬁ—)j;_jﬂx,-_f' Vo, fﬂ:;;wfuﬁ—)fﬂeqsx,u,

E
t...

o) ol vo= o 52 we. fmiefoom o
Thus (2.26) yields

e,

x; V- &€+ xu— | uvVe- — | = Sl

f.rz tbgf”q‘) '[f2¢(9)fa':¢f
Integrating by parts, and recalling (2.20) gives

7

—f!3¢e;‘§+_’;z¢Vu-(1€i)=U,

hence
A Vu
T8
Together with (2.20), (2.28) is the homogenized problem (1.4) which has a unique solution
u € H'(£2). Thus the entire sequence u, converges. This proves Theorem 1.4. O

(2.28)
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Appendix. Homogenization with a Neumann boundary condition on the holes and a Dirichlet
condition on the exterior boundary !

In the same geometric situation as in Section 1, we consider in the appendix the homogeniza-
tion of a system slightly different from (1.3), namely

—V-(A(E) Vug) =f in {2,

o, X

i =[A(—]Vu£ ‘n=0 onaQ,—an (A1)
dv, £

u, =0 on a2 Nafl,.

System (A.1) is similar to (1.3), except that the boundary condition on the exterior boundary
(and on the exterior boundary only) is different: Dirichlet here, while it was Neumann in
Section 1. Passing from (1.3) to (A.1) we have dropped the linear term + u,, which was there
only to ensure existence and uniqueness in (1.3). Anyway, whether this zcro-order term is
present or not does not matter for the homogenization process.

The same assumptions Al, A2, and A3, as in Section 1, are made on the matrix A;
consequently it is well-known that (A.1) has a unique solution in H'(£2,). With the help of the
two-scale method, it is easy to heuristically obtain the limit problem of (A.1)

—V-(AVu)=6f in0
u=>0 on af2,

where the matrix A is still defined by (1.5) (the cell problem is the same as it was in Section 1).
In this appendix we prove the rigorous convergence of the sequence of solutions of (A.1) to
the solution of (A.2) when £ goes to zero.

(A2)

Theorem A.1. Let u, (resp. u) be the unique solution of (A1) (resp. (A.2)). Under the hypotheses
(H1), (H2) and (H3) on the geometry of the unit cell, u, tends to u in the following sense

IIU}} || u,—u || 130y = 0. (A-3)

Remark A.2. Theorem A.1 has already been proved by Cioranescu and Saint Jean Paulin in [7]
when the holes are isolated in cach cell. As already mentioned in the introduction of this
paper, Theorem A.1 generalizes their result to the case of connected holes. Furthermore, even
in the case of isolated holes, their result is improved here because we do not “remove” the
holes which meet the exterior boundary 842,

Remark that the convergence is not local in the interior of {2, as it was the case in Thcorem
1.4. This is due to the Dirichlet boundary condition which allows us to get a result up to the
exterior boundary.

Before proving Theorem A.l, we modify Lemma 2.3 to take into account the Dirichlet
boundary condition on (2.

' Written jointly with A.K. Nandakumar.
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Lemma A.3. Let u, be a sequence such that
,=0 onof2 _Nofl

Ad
I i, I H(,) = Lo ( )

where the constant C does not depend on €.
The sequence @, is bounded in L*({2), and thus, extracting a subsequence, we can define a
function u in L*() such that

i, — u  weakly in L*($2). (A.S5)

Then the sequence u, is relatively “compact” in the following sense
For any sequence v, in LX), such that §, = 6v weakly in L*(02), we have

wu, — | Quv. (A.6)
Ja 2 g

Furthermore, the limit u actually belongs to Hy(().

Proof of Lemma A.3. We proceed as in Lemma 2.3, but, instead of defining the function &, in
0 only, we define it in the whole of R”. Before that, we need to cxtend a function defined only
in 2, to the union of all material parts e E* (see hypothesis (H2) and (1.2)). For any function
v, € H'(£2,) we define its extension Q v, in eE* by
{UE in 2,
b, =

0 ineE*-Q. &

3

The key point is now to remark that, if o, satisfiecs a Dirichlet boundary condition on the
exterior boundary 3£2 N af2_, then the extension Q,v, actually belongs to H'(¢E*).

Applying this result to a sequence u, satisfying (A.4), we define a piecewisc constant
function u, by

1
i = W[ Q.u, inthe cell Y* for i ZV. (A.8)
i it

Then, as in Lemma 2.3, we prove that the sequence &, is relatively compact in L*(w) for any
convex subset w of R™, In particular, &, is relatively compact in L*(£2). Furthermore, the limit
u of a subsequence of u, is known to belong to H} (R™). In order to prove that u is actually
equal to zero in RY — 2, i.c. belongs to H,(£2), we simply note that in RY — (2, at a distancc of
of2 greater than ¢, the function #, is equal to zero.

The end of Lemma A.3 is as Lemma 2.3, except that we do not need to localize inside {2 by a
function ¢. O

Now, we give a Poincaré inequality in £2_.

Lemma A.4. There exists a constant C, which does not depend on &, such that, for any
v, € H(Q,) satisfying v, =0 on 302, N 842, we have

o, 1l 2oy < C IV, I 2y (A9)
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Proof. For any function v, € H'(£2,), let U, be the function defined by (A.8).
o Nl 2oy < Cllo, — 0, | 2y + 10,1 1200,)- (A.10)

The first term in the right-hand side of (A.10) is bounded with the help of the Poincaré—
Wirtinger-type inequality (2.14), i.e.

I Y =B, Il ) < < Cell VL || L30,).
For the second term in the right-hand side of (A.10), we use inequality (2.10), i.e.
I5.(x) —0.(x+h)l?% 2y S <C|h|*|IVu, Il,zm) (A.11)

Because of the Dirichlet condition on the exterior boundary a2, M 942, the function U, is equal
to zero outside a neighborhood of £2. Thus there exist a h € RN such that 0.(x +h) 0, and
(A.11) yields

o, N 22y < C VOl 120, O
Proof of Theorem A.l. The only difference with the proof of Theorem 1.4 comes from the first

step, establishing a priori estimates for the sequences u,.
Multiplying equation (A.1) by «_, and integrating by parts, we obtain

x .
i 'VuEA(—) Vu,= [ fu,. (A.11)
Q, £ 0,
Using the Poincaré inequality of Lemma A.4, we deduce from (A.11)
e, |l o, <C. (A.12)

At this point, we proceed as in the proof of Theorem 1.4, except that we know from Lemma
A.3. that the limit u of u, belongs to Hy({2). Thus, we replace the last result (2.20) of the first
step by

{ ~Vefi=f Indl, (A.13)

u=10 on 042,
and we repeat the second and third step. 0O
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