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Abstract: The goal of this paper is to briefly recall 
the  importance  of  the  adjoint  method  in  many 
problems  of  sensitivity  analysis,  uncertainty 
quantification and optimization when the model is a 
differential  equation.  We  illustrate  this  notion  with 
some  recent  examples.  As  is  well  known,  from a 
computational  point  of  view  the  adjoint  method  is 
intrusive, meaning that it requires some changes in 
the  numerical  codes.  Therefore  we  advocate  that 
any  new  software  development  must  take  into 
account this issue, right from its inception. 
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1. Introduction

The  adjoint  method  originates  in  the  theory  of 
Lagrange multipliers in optimization. As an example, 
consider the minimization of a function J from Rn into 
R, under the equality constraint F, a function from Rn 

into Rm, 
min J(x)    such that    F(x) = 0 (1)

Introducing the Lagrange multilplier p in Rm and the 
Lagrangian

L(x,p) = J(x) + p.F(x) (2)
the  optimality  condition  for  (1)  (under  some 
qualification  conditions)  is  the  stationarity  of  the 
Lagragian, namely

J'(x*) + p*.F'(x*) = 0 (3)
The adjoint method is an extension of this approach 
in  the  framework  of  optimal  control  theory.  In  this 
context, the variable x is the union of a state variable 
y  and  a  control  variable  u,  while  the  constraint 
F(y,u)=0 is the state equation which gives y in terms 
of  u.  In  such  a  case  the  Lagrange multiplier  p  is 
called  the  adjoint  state.  This  approach  was 
developed by Pontryagin [20] for ordinary differential 
equations and by Lions [17] for distributed systems, 
i.e., partial differential equations.

2. Adjoint method

2.1 Setting of the problem

For simplicity in the exposition we consider a finite 
dimensional  model  problem.  Denote  by  u  in  Rk a 
control  or  a  parameter  which  is  the  ultimate 
optimization  variable.  The  state  of  the  system  is 
denoted by y in Rn and is defined as the solution of 
the following state equation

A(u) y = b (4)

where b is a given right hand side in Rn and A(u) is 
an invertible n by n matrix. Since the matrix depends 
on u, so does the solution y. The goal is to minimize, 
over all admissible controls u, an objective function 
J(u,y) under the constraint (4).  The difficulty of the 
problem  is  that  y  depends  nonlinearly  on  u.  We 
assume  here  that  u  is  a  continuous  variable  (the 
case of discrete variables is much more subtle). To 
numerically  minimize  the  objective  function  J,  the 
most efficient algorithms are by far those based on 
derivative informations. Therefore, a key issue is to 
compute  the  gradient  of  J(u,y(u)).  This  is  the 
purpose of the next section.

2.2 Computation of a gradient

By the chain rule lemma the gradient of j(u)=J(u,y(u)) 
is

j'(u) = ∂uJ(u,y(u)) + y'(u) ∂yJ(u,y(u)) (5)

Differentiating (4) with respect to u yields

A(u) y'(u) = -A'(u) y(u) (6)

From  (6)  and  (5)  we  deduce  the  so-called  direct 
gradient 

j'(u) = ∂uJ(u,y(u)) – A(u)-1A'(u) y(u) ∂yJ(u,y(u)) (7)

If the dimension k of the vector variable u is small, 
formula (7) is viable in the sense that it  is  not too 
costly for computing j'(u). Indeed, using (7) requires 
k linear solving of (6) (recall that the notation ' is the 
gradient with respect to u, a vector in Rk).  Solving 
(6)  is  a  costly  operation  since  A(u)  is  an  n  by  n 
matrix and n is usually very large (it is the number of 
degrees of  freedom in  the  state  equation,  ranging 
from 104   up to 107  in the most recent applications). 
However,  if  k  is  as  large  as  n  (like  in  structural 
optimization,  parameter  identification,  data 
assimilation, etc.), then formula (7) is useless !

Rather  one  should  use  the  adjoint  method  which 
goes  as  follows.  Introduce  the  so-called  adjoint 
equation

AT(u) p = -∂yJ(u,y(u)) (8)

where  AT(u)  is  the  adjoint  or  transposed  matrix. 
Multiplying (8) by y'(u) leads to 

AT(u)p.y'(u) =  -y'(u).∂yJ(u,y(u)) (9)

while multiplying (6) by p gives 

A(u)y'(u).p =  -A'(u)y(u).p (10)
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Comparing (9) and (10) which have equal left hand 
side yields to a simplification of (5) as

j'(u) = ∂uJ(u,y(u)) + A'(u)y(u).p (11)

On  the  contrary  of  (7),  formula  (11)  is  cheap  to 
evaluate, whatever the size of k: it requires only to 
solve  the  additional  adjoint  equation  (8).  It  largely 
outperforms (7) and it is thus the method of choice 
for computing the gradient of the objective function 
j(u)=J(u,y(u)).  There  are  at  least  two  ways  for 
introducing an adjoint in a computer code. Either, a 
so-called analytic adjoint, i.e. (8), is implemented. Or 
a program for the adjoint is obtained by automatic 
differentiation [14], [23] of the code solving the state 
equation (4). 

The only drawback of (11) (and of the whole adjoint 
approach) is that it is intrusive from a computational 
software  point  of  view,  namely  it  requires  the 
development of an adjoint solver. This is quite easy if 
you know well your software. It is impossible if your 
software is a black box with no access to the source 
code. Even, if the source files are available, it could 
be a nightmare if  they are not documented and/or 
not written in a clear and systematic manner... 

Figure 1: Optimal mast obtained with the level set 
method for shape and topology optimization

3. Applications

There are many applications of the adjoint approach. 
The most classical  ones are in control theory [17], 
[20],  optimization  [1],  sensitivity  or  perturbation 
analysis, uncertainty quantification, inverse problems 
[22] and data assimilation [15]. I will review some of 
these  applications,  in  connection  with  my  own 
experience,  therefore  not  trying  to  be  exhaustive. 
The goal of this list  is to convince the reader that, 
whatever  the  field  of  application,  any  numerical 
simulation code will sooner or later need an adjoint. 
Therefore, it  is crucial to design any new software 
with this view in mind. 

3.1 Optimal design

A classical application of the adjoint approach is the 
optimal design of structures or systems. The number 
of optimization variables describing the system is so 
large that it is the only viable approach. For example 
in fluid mechanics, the number of variables is related 
to the number of parameters, necessary to describe 
the boundary of an airplane [13], [18]. In the context 
of  topology  optimization  for  mechanical  structures, 
the number of design variables is even larger since 
any  cell  of  a  “hold-all”  computational  domain  is 
potentially  a  design  variable:  either  it  is  full  of 
material  or  empty.  For  any  topology  optimization 
method (be it homogenization [4], SIMP [10], phase 
field  [24]  or  level  set  [5])  the  number  of  design 
variables is so large that again the adjoint method is 
the only way for computing a gradient and perform 
efficient  optimization.  Topology  optimization  (using 
an adjoint approach) has been very successful those 
last years and we present two results obtained with 
the level set method [5], [6] in Figures 1 and 2.  

Figure 2: Optimal chair obtained with the level set 
method and an exact mesh of the structure

Figure 3: Topological derivative or sensitivity for 
adding a vortex generator in an air duct
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3.2 Perturbation analysis

The  adjoint  approach  is  also  very  helpful  for 
sensitivity analysis, i.e.,  in the determination of the 
effect  of  small  perturbations  of  the  data  on  the 
solution.  This  is  a  very  old  and  classical  topic  in 
nuclear reactor physics [19] where the adjoint state 
is called the importance function. It is a classical tool 
in meteorology too [11].  

Figure 4: Boundary conditions for the mast test case

Compared to the setting of section 2, the variable u 
is now interpreted as a coefficient or a data in the 
model (4) and  j(u)=J(u,y(u)) is a quantity of interest, 
the sensitivity of which has to be computed. Formula 
(11) is precisely the prediction of the sensitivity of the 
output j(u) with respect to perturbations of the data u. 

Figure 5: Optimal mast without uncertainties

A  variant  of  this  perturbation  analysis  appeared 
recently  under  the name of  topological   derivative 
[12],  [21].  It  amounts to compute a criterion which 
predicts if the nucleation of a small hole or inclusion 
is going to decrease or not the objective function. It 
has been very successful, as an additional topology 
optimization tool, in structural mechanics [3], inverse 
problems  [8]  and  fluid  mechanics.  In  figure  3  an 
example  from [7]  is  displayed:  the  blue  (negative) 

region indicates where it  is advantageous to put a 
vortex generator (a small winglet) on the boundary of 
an air duct in order to obtain a homogeneous flow 
distribution at the outlet. 

3.3 Uncertainty quantification

Estimating the variations of a computational results 
in  terms  of  possible  uncertainties  of  the  data  or 
parameters  is  a  very  important  topic  which  has 
attracted  a  lot  of  attention  those  last  years.  Very 
often,  this  task is  associated to  some probabilistic 
representation of the parameters and of the results. 
Besides  the  direct  approach  of  Monte-Carlo 
simulation (which is very CPU time-consuming) one 
can use spectral methods or polynomial  chaos [16]. 
Still  these methods are quite intensive in terms of 
CPU. Another possibility is to rely on a worst-case 
approach which makes the problem deterministic if 
the worst-case scenario can be identified (which is 
not  always  possible).  Recently  a  linearization 
approach for  small  uncertainties was suggested in 
[2]  and  [9]  which  makes  the  problem  fully 
deterministic  and  explicit.  Here  is  the  main  idea. 
Suppose that small perturbations δ occur in the right 
hand side of (4), namely

A(u) y(u,δ) = b + δ (12)

The  perturbed  solution  is  y(u,δ)  =  y(u)  +  z  with 
z=A(u)-1δ. Let us assume that the quantity of interest 
is 

j(u,δ) = J(u,y(u,δ)) (13)

Assuming  that  the  norm  of  the  perturbation  is 
bounded  by  a  small  number  m>0,  the  worst-case 
function is

w(u) = max|| δ|| < m  j(u,δ) (14)

Evaluating  (14)  is  a  difficult  task  in  general. 
However,  if  m  is  small  we  can  linearize  (13)  and 
compute (14) as

w(u) ≈ j(u,0) +  max|| δ|| < m  ∂y J(u,y(u,0)) . z (15)

which yields, since  z=A(u)-1δ, 

w(u) ≈ j(u) +  m || A(u)-T ∂y J(u,y(u)) || (16)

As usual inverting the matrix AT(u) is too costly, so 
we resort to the adjoint approach again. Multiplying 
the adjoint equation (8) by z and comparing with the 
equation A(u)z=δ multiplied by p leads to 

- ∂y J(u,y(u,0)) . z =  δ . p  (17)

which in turn gives the worst-case function

w(u) ≈ j(u) +  m || p || (18)

In  other  words  the  worst  case  deviates  from  the 
standard  ouput  by  the  norm  of  the  adjoint  p 
multiplied by the magnitude m of the uncertainties. 
This   is  a  very  simple  (albeit  linearized)  way  of 
assessing  and  quantifying  uncertainties  which, 
again, relies on the notion of adjoint.

In [2]  we used formula (18)  to perform shape and 
topology optimization of mechanical structures under 
various  type  of  perturbations  (on  loads,  material 
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properties or geometry).  In Figures 4, 5 and 6 are 
displayed boundary conditions and optimal  shapes 
for  minimal  compliance  under  a  volume constraint 
when uncertain vertical loads are applied in the blue 
zone. As can be seen here, these perturbations can 
have a drastic effect on the optimal topology. 

Figure 6: Optimal mast with uncertainties

4. Conclusion

In this paper we briefly recalled the adjoint theory for 
computing derivatives or sensitivities of an objective 
function  depending  on  the  solution  of  a  state 
equation.  In  an increasingly  large variety  of  cases 
(as illustrated in the figures above), the number of 
variables  is  so  large  that  there  is  no  viable 
alternative to the adjoint method. We also collected 
various  problems  where  the  adjoint  is  a  key 
technique:  of  course  optimal  design,  control  and 
inverse problems,  but  also sensitivity  analysis  and 
uncertainty quantification. These types of problems 
occur  in  virtually  all  fields  of  science  and 
engineering.  Despite  its  efficiency  the  adjoint 
approach suffers from one major drawback which is 
the difficulty of implementing an adjoint solver (be it 
analytic  or  by  automatic  differentiation)  in  a  pre-
existing  code  which  was  not  designed  for 
accommodating an adjoint solver. Note however that 
programming an adjoint along the early development 
of  a  numerical  software  is  a  rather  easy  task. 
Therefore  we  advocate  that  any  new  software 
planning should incorporate,  in its early stages,  all 
the necessary tools for later incorporating an adjoint 
(when the need will be felt and, surely, it will happen 
at  some times).  These  ingredients  include  various 
data structures, the possibility  of  defining “dummy” 
loads, similar to the right hand sides of the adjoint 
equation (8),  the definition of  the linearized adjoint 
operator (if an analytic adjoint is going to be chosen) 

or the “clean” programming of the routines that will 
be submitted to an automatic differentiation tool like 
Tapenade  [23].  These  minor  precautions  will  later 
save  a  huge amount  of  development  time,  not  to 
speak of  the even larger  savings in  computational 
efficiency compared to any other method, either not 
relying  on  gradients  or  computing  mere 
approximations (like finite differences). 
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