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TWO-SCALE CONVERGENCE :
A NEW METHOD IN PERIODIC HOMOGENIZATION



1. Introduction.

In many fields of science and technology one has to solve boundary value prob-
lems in periodic media. Quite often the size of the period is small compared to the
size of a sample of the medium, and, denoting by € their ratio, an asymptotic analysis,
as € goes to zero, is called for. In other words, starting from a microscopic description
of a problem, we seek a macroscopic, or effective, description. This process of mak-
ing an asymptotic analysis and seeking an averaged formulation is called homogeniza-
tion (there is a vast body of literature on that topic, see [5], [6], [11] for an introduc-
tion, and additional references). Here, we focus on the homogenization of periodic
structures, but we recall that homogenization 18 not restricted to that particular case
and can be applied to any kind of disordered media (cf. the I'-convergence of E.
DeGiorgi [7], the H-convergence of L. Tartar [13], [8], or the G-convergence of S.
Spagnolo [12]).

To fix ideas, we consider the well-known model problem in homogenization : a
linear second-order partial differential equation with periodically oscillating
coefficients. Such an equation models, for example, the heat conduction in a periodic
composite medium. We call € the material domain (a bounded open set in IRV), & the
period, and Y the rescaled unit cell (ie. ¥ = [0:1]¥). Denoting by f the source term
(a function of L*(Q)), and enforcing a Dirichlet boundary condition for the unknown
U, this equation reads as

—div{A(f)Vus =f inQ

u, =0 on 0Q 7 (1.1)

where A (y) is a L™(Y)-matrix (the diffusion coefficients), Y-periodic in y, such that
there exists two positive constants 0 < o0 < 3 satisfying
N
alg]* < X A;»EE < BIEI? forany & e R (1.2)
ij=1
Under assumption (1.2), it is well-known that equation (1.1) admits a unique solution

u, in H{ (Q) which satisfies the a priori estimate

”usHH(}(Q) < C|lf ||L3(Q) (1.3)



where C is a positive constant which depends only on € and o, and not on €. In
view of (1.3), the sequence of solutions u, is uniformly bounded in H 0' () as € goes
to zero, and thus there exists a limit u such that, up to a subsequence, u, converges
weakly to u in Hol (€2). The homogenization of (1.1) amounts to find a "homogen-
ized" equation which admits the limit u as its unique solution.

In section 2 we are going to recall the usual process of homogenization which
relies on the successive application of two different methods. In a first step, two-scale
asymptotic expansions are used to formally obtain the homogenized equation. In a
second step, the so-called energy method of Tartar is applied to prove that the limit u
is indeed the unique solution of the homogenized equation deduced from the first step.
This way of proceeding is not entirely satisfactory since it involves two different
methods which barely interact and are somehow redundant. In particular, if carefully
used, two-scale asymptotic expansions give the right form of the homogenized prob-
lem. Unfortunately, this method is only formal and needs to be rigorously justified by
the energy method. On the other hand the latter method doesn’t use much of the
information gained by the asymptotic expansions and is sometimes difficult to work
out (this is not surprising since it was not conceived by L. Tartar for periodic prob-
lems, but rather in the more general and more difficult context of H -convergence).

Thus, there is room for a more efficient homogenization method, dedicated to par-
tial differential equations with periodically oscillating coefficients : the two-scale con-
vergence method. Section 3 is devoted to the definition of two-scale convergence and
related results. In section 4 this new method is applied to the homogenization of our
model problem (1.1).

2. The classical method : two-scale asymptotic expansions, and the energy method
of Tartar.

We briefly recall the classical method for the homogenization of the model prob-
lem (1.1). In a first step we apply the well known two-scale asymptotic expansion
method [5], [6], [11] in order to find the precise form of the homogenized equation.
The key of that method 1s to postulate the following ansatz for u

uglx) = uo(x,§)+eu1(x,§)+82 uz(x,§)+ -, (2.1)

where each term u;(x,y) is Y-periodic in y. The ansatz (2.1) is inserted in equation
(1.1), and a geometric series in € is obtained by application of the formal rule of
differentiation

R T L
ax[“"(x’e)] © ox (x’8)+8 dy (x,g).



Then, identitying the coefficients of this series to zero leads to a cascade of equations.

The first one (corresponding to the €72 term) is

— div, [A(y)Vyuo} =0 ¥
(2.2)

y = uglx,y) Y-—periodic.

This implies that u, doesn’t depend on y, namely
uo(xy) = ulx). (2.3)

The second one (the 7! term) is
— divy {A(y)[Vyul(x,y) + qu(x)J:| =0 inY
(2.4)

y = u(x,y) Y-periodic.

From (2.4) we compute u in terms of the gradient of u

N
wy(x,y) = z%(x)wio»),

i=1

where, for 1 €i < N, w; is the unique solution of the so-called local or cell problem

(2.5)

— divy [AU)[Vwa(y)Jre,-]} =0 inY
y = w;(y) Y—periodic. (2.6)

Finally the third one (the €” term) is
— div, [A (y)Vyu,z(x,y)] = fx)+ divy [A )V, u(x ,y)]

+ div, [A (y)[Vyu 1y HV, u (x)]} in'Y 2.7
y — u,(x,y) Y-—periodic.

Applying the Fredholm alternative to (2.7) (the average on Y of the right hand side
must be zero), and replacing u by its expression (2.5) leads to the homogenized equa-

tion
- div[A*Vu (x)} =f in Q
{u =0 on 0Q (2.8)
where the entries of the matrix A* are given by
2.9

A*fj = J'A(y)[Vyw,-(y) + ei].[Vywj(y) + ej] (jy‘
Y



This method is very simple and powerful, but unfortunately is formal since there
is no reason, a priori, for the ansatz (2.1) to hold true. Thus, the two-scale asymptotic
expansion method is used only to guess the form of the homogenized equation (2.8),
and a second step is needed to prove the convergence of the sequence u, to u. To
this end, the more general and powerful method is the so-called energy method of L.
Tartar [13], [8]. The goal of this method is to pass to the limit in the variational for-
mulation of equation (1.1) :

JA(’é)qu(x).Vrb(x) dx = [f()0kx) dx  forany ¢ € Hg(Q).  (2.10)
Q Q

For a given test function ¢ one cannot pass to the limit in (2.10), as € goes to zero,
since the left hand side involves the product of two weakly convergent sequences.
The main idea is thus to replace the fixed test function ¢ by a carefully chosen
sequence ¢ which permits to pass to the limit thanks to some "compensated compact-
ness" phenomenon. The right sequence of test functions is

o 00 o X
de(x) = WHEE 3%, (x)w,—(e), (2.11)

where ¢ is a smooth function with compact support in €, and w; is the solution of the
adjoint cell problem (i.e. equation (2.6) with ‘A instead of A). Integrating by parts in
(2.10) and using the cell equation (2.6) allows us to pass to the limit and to obtain the
variational formulation of the homogenized problem (2.8). The convergence of the
homogenization process is thus rigorously proved.

Although the asymptotic expansion method leads to both the local and the homo-
genized problem, the energy method uses only the knowledge of the cell problem to
construct the test functions. The homogenized problem is then rederived indepen-
dently. Clearly the two methods don’t cooperate very much, and part of the homogen-
ization process is done twice. On the contrary, we are going to see that the two-scale
convergence is efficient because it is self-contained (i.e. it works in a single step).
Loosely speaking, it appears as a blend of the two above methods.

3. Two-scale convergence.

Let us begin this section by a few notations :  is an open set of RY (not neces-
sarily bounded), and Y = [0:1]V is the closed unit cube. We denote by C4°(Y) the
space of infinitely differentiable functions in RY which are periodic of period Y, and
by Cy(Y) the Banach space of continuous and Y -periodic functions.

Definition 3.1.

A sequence of functions u, in L?*(Q) is said to two-scale converge to a limit ug(x,y)
belonging to L3(QxY) if, for any function y(x,y) in D[Q;Cs"(Y)], we have



lim jue(x)lp(x,i) gx = ” uolx,y )wix,y) dxdy . O (3.1)
e=0 & £ ay

This new notion of "two-scale convergence" makes sense because of the next
compactness theorem which was first proved by G. Nguetseng [9] (here, we give a
new and simpler proof).

Theorem 3.2.

From each bounded sequence u, in L*(€2) one can extract a subsequence, and there

exists a limit up(x,y) € LZ(QXY ) such that this subsequence two-scale converges to
Uy. J

Before proving Theorem 3.2, we give a few examples of two-scale convergences.

(*) Any sequence u, which converges strongly in L*(Q) to a limit u (x), two-scale
converges to the same limit u (x).

(**) For any smooth function a(x,y), being Y-periodic in y, the associated sequence
ag(x) = a(x x/e) two-scale converges to a(x,y).

(***)For the same smooth and Y-periodic function a(x,y) the other sequence defined
by b (x) = a(x,%) has the same two-scale limit and weak-L? limit, namely
€
_[a (x,y) dy (this is a consequence of the difference of orders in the speed of
Y
oscillations for b and the test functions \p(x,%)) Clearly the two-scale limit cap-

tures only the oscillations which are in resonance with those of the test functions

X
‘l’(xag)-

To establish theorem 3.2, we need the following
Lemma 3.3.

Let B(£,Y) denote the Banach space LZ[Q;C#(Y )] if Q is unbounded, or any of the
Banach spaces L2[Q:Cy (Y)], LAY :C(Q)], C[Q:Cy(Y)], if Q is bounded. Then, this
space B (£,Y) has the following properties :

(i) B(Q,Y) is a separable Banach space (i.e. contains a dense countable family)

(i) B(,Y) is dense in L2(QxY)

(iii) for any y(x,y) € B(£,Y), the function w(x.i) is measurable and satisfies

Hllf(x%) ||L2(Q) < H\lf(x,)’) HB(Q,Y)



(iv) for any y(x,y) € B(£,Y), one has

li 2 dx = V)2 dxdy . O
El_f)f(l)(f}\l!(x )% dx Jﬁ[w(xy) xdy

In the case where Q is bounded and B (£),Y) is defined as C[f_l;C#(Y)], lemma
3.3 is easily proved since any function y(x,y) in this space is continuous in both vari-
ables x and y. In the other cases the delicate point is (iv) which holds true as soon as
Y(x,y) is continuous in one of its arguments (as it is the case when y belongs to
L2[Q;Cy (V)] or LA[Y;C(Q)]). A complete proof of lemma 3.3 may be found in [2].

Proof of theorem 3.2.
Let u, be a bounded sequence in L%(Q) : there exists a positive constant C such that

For any function y(x,y) € B(£,Y), we deduce from (iii) in lemma 3.3 that
| £J;/ae(x)mx%) de| < Cllye. Dl < Clvey) lsar . 62

Thus, for fixed €, the left hand side of (3.2) turns out to be a bounded linear form on
B(€.,Y). Let us denote by B (€,Y) the dual space of B(£2,Y). By virtue of the Riesz
representation theorem, there exists a unique function p, € B’ (€2,Y) such that

<SP > = [u Oy, ) dx (3.3)
O £

where the brackets in the left hand side of (3.3) denotes the duality product between
B(£,Y) and its dual. Furthermore, in view of (3.2), the sequence (L. is bounded in
B’ (€.,Y). Since the space B(LQ,Y) is separable (see (i) in lemma 3.3), from any
bounded sequence of its dual one can extract a subsequence which converges for the
weak * topology. Thus, there exists |1, € B’ (€2.,Y) such that, up to a subsequence, and
for any ¢ € B(L,Y)

<UeW > = < Uy > . (3.4)

By combining (3.3) and (3.4) we obtain, up to a subsequence, and for any
Y e B(Q,Y)

lim [u (owe.S) de = < pgy >. (3.5)
£—0 @) €
By virtue of (iv) in lemma 3.3 we have

. X
ég}) H‘if(xag) HLZ{Q) = [[w(x.y) ||L2(Qxy) . (3.6)



Now, passing to the limit in the first two terms of (3.2) with the help of (3.5) and
(3.6), we deduce

| <How >| < Cllwllzyaxy) -
By density of B(Q,Y) in L2(QxY) (see (ii) in lemma 3.3), o 1s identified with a func-
tion ug € LY(QxY), ie.

<How > = [lugle.y)wx.y) dxdy . (3.7)
QY

Equalities (3.5) and (3.7) give the desired result. [J

Remark that the choice of the space B(£,Y) is purely technical and does not
affect the final result of theorem 3.2. Remark also that the test function y(x,y) in
definition 3.1 of the two-scale convergence doesn’t need to be very smooth since
theorem 3.2 is proved, for example, with y(x,y) € Lz[Q;C# (.

The next theorem shows that more information is contained in a two-scale limit
than in a weak-L? limit ; some of the oscillations of a sequence are contained in its
two-scale limit. When all of them are captured by the two-scale limit (condition (3.9)
below), one can even obtain a strong convergence (a corector result in the vocabulary
of homogenization).

Theorem 3.4.

Let u, be a sequence of functions in L*(Q) which two-scale converges to a limit
uglx,y) e L(QxY).

(i) Then u, converges also to u(x) = _[uo(x y) dy in LAQ) weakly, and we have
Y

li_l;%nug”ﬂ(m & Hu()”[}(gxy) > [lu ||L2(Q)- (3.8)

(i) Assume further that uq(x,y) is smooth (for example, belongs to Lz[Q;C#(Y)]),
and that
il_l;% | Ug ||L2(Q} =lug ||L2(QXY)- (3:9)

Then, we have

" X
tim [l )05 |2y = 0. (3.10)



Proof.
By taking test functions y(x), which depends only on x, in the definition of two-scale

convergence, we immediately obtain that u, weakly converges to u(x) = juo(x ) dy
Y

in L2(Q). To obtain (3.8), we take a smooth and Y -periodic function y(x,y) and we
compute

Sjl[us(x)—w(xf)]z dx = gj}ug(xﬂ dx —2£_£ug(x)l\u(x,§) &
X2
+§jlw(x,8) dx = 0. G.11)

Passing to the limit as € goes to zero yields

lim [ug(x)® dv 2 2ffugCey)ye.y) dxdy = [[wiey)® dxdy .

e Qy Qy
Then, using a sequence of smooth functions which converges strongly to wu, in
L*(QxY) leads to

. 2 2
}:E})J]ug(x) dx = gj;i;uo(x,y) dxdy .

On the other hand, the Cauchy-Schwarz inequality in ¥ gives the other inequality in
(3.8). To obtain (3.10) we use assumption (3.9) when passing to the limit in the right
hand side of (3.11). This yields

lim [ [ ()=, )2 dx = [ [l o0 3 )=wx y)? dxdy . (3.12)
=00 € ay

e X .
Now, if ug is smooth enough as to ensure that u,(x,—) is measurable and belongs to
€

L%(Q), we can replace y by uq in (3.12) to obtain (3.10). [J

We have just seen that the smoothness assumption on u in part (ii) of theorem
3.4 is needed only to achieve the measurability of uo(x,g) (which otherwise is not
guaranteed for a function of L3(QxY)). However, one could wonder if all two-scale
limits automatically satisfy this property. Unfortunately, this is not true, and it can be
shown that any function in L2(QxY) is attained as a two-scale limit (see lemma 1.13
in [2]).

So far we have only considered bounded sequences in L*(Q). The next proposi-
tion investigates the case of a bounded sequence in H'(€).



Proposition 3.5.

Let u, be a bounded sequence in H'(Q). Then, there exist u(x) e H'(Q) and
u(x,y) e LZ[Q;H#l(Y)/R] such that, up to a subsequence, u, two-scale converges to
u (x), and Vu, two-scale converges to V, u (x )+Vyu1(x y).

Proof.

Since u, (resp. Vu,) is bounded in L*(Q) (resp. [L*(E)]Y), up to a subsequence, it
two-scale converges to a limit wug(x,y) € L3(QxY) (resp. Yolx,y) € [L2(QxY)IY).
Thus for any W(x,y) € D[QCy°(Y)]V, we have

lim [Vi ()W, 2) dx = [[ yolx,y).¥ley) dudy. (3.13)
-0 & E Oy
Integrating by parts the left hand side of (3.13) gives
egj;Vua(x).‘P(x,é) dx = —f,;ug(x)[divy‘l’(x,—z—)+ edivxly(x%n dx .
Passing to the limit yields

0 = — [[ uolx.y)div,V(x,y) dxdy .
Qy

This implies that uy(x,y) does not depend on y. Thus there exists u(x) e LY Q),
such that ug =u. Next, in (3.13) we choose a function ¥ such that div,‘¥'(x.,y) = 0.
Integrating by parts we obtain

im {u Go)div, P, ~) dx = — ). W(x.y) dxd
El_rggjlusm iv, P(x, ) d JJ»X”(”) (x.y) dxdy

I

[[ uCo)divyW(x,y) dxdy. (3.14)
QY

If ¥ does not depend on y, (3.14) proves that u(x) belongs to H'(Q). Furthermore,
we deduce from (3.14) that

”[Xo(x V)= Vux)Wx,y) dxdy = 0
Qy

for any function W(x.y) € D[Q;C#”(Y)]N with divy Y(x,y) =0. Recall that the
orthogonal of divergence-free functions are exactly the gradients (this well-known
result can be very easily proved in the present context by means of Fourier analysis in
Y). Thus, there exists a unique function u(x,y) in LZ[Q;H#I(Y)/H?] such that

Xo&.y) = Vulx)+ Vyu(xy). O



For more results about two-scale convergence (including generalizations to the L”
case or to the multi-scale case) the reader is referred to [2].

4. Application to a model problem.

We go back to the model problem introduced in the first section :

—div[A (é)VuE =f inQ

ug=0 on 9dQ &1
where A (y) is a Y-periodic matrix satistying the coercitivity hypothesis (1.2). We
recall that equation (4.1) admits a unique solution u, in H{ (Q) which satisfies the a
priori estimate

”“g “Ho' Q) = L Hf ”LJ(Q) (4.2)
where C is a positive constant which does not depend on €.

We now describe what we call the "two-scale convergence method" for homogen-
izing problem (4.1). In a first step, we deduce from the a priori estimate (4.2) the
precise form of the two-scale limit of the sequence u,.. Applying proposition 3.5, we
know that there exists two functions, u(x) € HO1 () and wu(x.,y) € LZ[Q;H#[(Y VIR],
such that, up to a subsequence, u, two-scale converges to u(x), and Vu, two-scale
converges to V, u(x) + Vyul(x ). In view of these limits, u, is expected to behave
as u(x) + eu(x,x/e).

Thus, in a second step, we multiply equation (4.1) by a test function similar to
the limit of wu, namely ¢(x)+ed,(x,x/e), where ¢(x)e D() and
0(x,y) € D[Q;Cg(Y)]. This yields

JA Vi VOO )+V, 01(x,)+eV, 0y(x, ) [dx = [ (0)[00x y+ed, (x,)]dx. (4.3)
o ¢ € £ o) g

Regarding *A (x/e)[Vo(x) + qu)](x,xf’e)] as a test function for the two-scale conver-
gence (cf. definition 2.1), we pass to the two-scale limit in (4.3) for the sequence Vu,.
(Although this test function is not necessarily very smooth, it belongs at least to
L#Z[Y;C (ﬁ)] which is enough for the two-scale convergence theorem 3.2 to hold.)
Thus, the two-scale limit of (4.3) is

[JAOVU) + Vyu (e )L IVOE) + Vy01(x )] dxdy = [f (x)o(x) dx. (4.4)
Qy Q



In a third step, we read off a variational formulation for (u,u 1) in (4.4). By den-
sity, (4.4) holds true for any (¢,¢;) in the Hilbert space H | (Q)XL[Q:H ! (Y)/R].
Endowing this space with the norm [|Vu (x) || 12y + |V u1(x.y) | 12y ys We check
the conditions of the Lax-Milgram lemma for (4.4). Let us focus on the coercivity of
the bilinear form defined by the left hand side of (4.4)

JJAG)IVOG) + V01 3)LIVO(x) + V04 (xy)] dxdy >
QY

o [[Vo() + V,0,(x.9) | drdy = o [|Vo(x) |? dx + o [NV, 010e.) |2 dxdy .
Qy Q QY

Thus, by application of the Lax-Milgram lemma, there exists a unique solution (i,u )
of the variational formulation (4.4) in H(} (Q)xLz[Q;H#I(Y)/lR]. Consequently, the
entire sequences u, and Vu, converge to u(x) and Vu (x)+Vyu1(x,y). An easy
integration by parts shows that (4.4) is a variational formulation associated to the fol-
lowing system of equations that we call the "two-scale homogenized problem”

r

— divy [A(y)[Vu(x)+Vyu1(x,y)]] =0 in QxY

I~ div, PA(}P)[VM (x) + Vyu,l(x,y)] dy} =f inQ
Y

u(x) = 0 on 0Q (4.5)

y = uqx,y) Y—periodic.

It is easily seen that (4.5) is equivalent to the usual homogenized and cell equations
(2.6)-(2.8) through the relation
S U

u](xsy) = Z

250 (c)w; ().

At this point, the homogenization process could be considered as achieved since the
entire sequence of solutions u, converges to the solution of a well-posed limit prob-
lem, namely the two-scale homogenized problem (4.5). However, it is usually prefer-
able, from a physical or numerical point of view, to eliminate the microscopic variable
y (one doesn’t want to solve the small scale structure).

Thus, in a fourth (and optional) step, we can eliminate from (4.5) the y variable
and the u, unknown. This is an easy algebra exercise (left to the reader) to derive
from (4.5) the usual homogenized and cell equations (2.6)-(2.8). Due to the simple
form of our model problem the two equations of (4.5) can be decoupled in a macros-
copic and microscopic equations, but we emphasize that it is not always possible, and
sometimes it leads to very complicate forms of the homogenized equation, including
integro-differential operators and non-explicit equations. Thus, the homogenized equa-
tion does not always belong to a class for which an existence and uniqueness theory is



easily available, on the contrary of the two-scale homogenized system, which is, in
most cases, of the same type as the original problem, but with twice more variables (x
and y) and unknowns (u and u ;). The supplementary, microscopic, variable and unk-
nown play the role of "hidden" variables in the vocabulary of mechanics. Although
their presence doubles the size of the limit problem, it greatly simplifies its structure
(which could be useful for numerical purposes too), while eliminating them introduces
"strange" effects (like memory or non-local effects) in the usual homogenized problem.
In short, both formulations ("usual" or two-scale) of the homogenized problem have
their pros and cons, and none should be eliminated without second thoughts. Particu-
lary striking examples of the above discussion may be found in [1], [2], [3] .

Corrector results are easily obtained with the two-scale convergence method. By
application of theorem 3.4, we are going to prove that

e(x) —u(x) — ¢ ul(x%) — 0 in HY(Q) strongly. (4.6)

This rigorously justifies the two first term in the usual asymptotic expansion (2.1) of
the solution u.. Let us first remark that, by standard regulan'ty results for the solutions

w;(y) of the cell problem (2.6), the term u(x,x/e) = 2 (x)w (x/e) does actually

1
belong to L%(Q) and can be seen as a test function for the two-scale convergence.
Bearing this in mind, we write

_[A (%)[Vue(x)—Vu (x)—V-yu1(x,§)]2 dx = jf (x)ug(x) dx
Q Q

+ SJ;A (%)[Vu (x)+vyu1(x%)]2 dx — 2£A(§)Vue(x).[Vu O+ (e, 20)] dx

Using the coercivity condition for A, and passing to the two-scale limit yields

o lim || Vi o(x)-Vu (x)—vyul(x,i) 172y € [F Cou(x)dx
e—0 € O
— [JAO)IVu ()+V uy(x,y)]Pdxdy. (4.7)
QY

In view of (4.5), the right hand side of (4.7) is equal to zero, which gives the desired
result (4.6).

We conclude this short presentation of the two-scale convergence method by say-
ing that it is a very general method which can handle all possible difficulties in
periodic homogenization, as perforated domains, non-linear (monotone) equations,
memory or non-local effects, highly heterogeneous coefficients, etc. : see [1], [2], [3],



[4] (where a so-called dilation operator, similar to two-scale convergence, is intro-
duced), and [10].
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