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1 IntrodutionWe study the spetral asymptotis of a singularly perturbed seond orderellipti operator with loally periodi rapidly osillating oeÆients of theform A" = �"2 ��xi �aij(x; x" ) ��xj�+ (x; x" ); (1)de�ned in a bounded open set G of Rn . We assume that the oeÆientsaij(x; z) and (x; z) are real suÆiently smooth (at least of lass C2) funtionsde�ned on G� Tn where Tn is the unit torus. Equivalently, the oeÆientsan be seen as periodi funtions with respet to z with period 1 in allthe oordinate diretions. Furthermore, the matrix faij(x; z)g is symmetri,uniformly positive de�nite. We onsider the following eigenvalue problemA"p" = �"p" in G; p" = 0 on �G: (2)As is well known, for eah �xed " > 0 this problem is selfadjoint in L2(G)and admits a disrete spetrum �"1 < �"2 � �"3 � : : :, where �"k ! 1 ask ! 1, with orresponding eigenvetor p"k, normalized by kp"kkL2(G) = 1.Moreover, by the Krein-Rutman theorem, �"1 is of multipliity one and theorresponding eigenfuntion p"1 an be hosen positive in G.The ground state asymptotis (i.e. haraterizing the limit of the �rsteigenpair as " goes to 0) plays an important role when studying the longtime behaviour of solutions of the orresponding paraboli equation. Namely,the �rst eigenvalue governs the rate of deay (or growth) of solutions whilethe limit pro�le of the solutions an be determined in terms of the �rsteigenfuntion. Other motivation for studying the limit of (2) are its linkwith semi-lassial analysis of Shrodinger-type equations, or the uniformontrollability of the wave equation (see e.g. [11℄), or the modelling of theso-alled ritiality problem for the one-group neutron di�usion equation(whih allows to ompute the power distribution in a nulear reator ore,see e.g. [2℄).The general study of the homogenization of (2) is far from being omplete.When the oeÆients are not rapidly osillating, i.e. aij(x; z) = aij(x) and(x; z) = (x), it is a problem of singular perturbation (without homogeniza-tion) whih is quite well understood now although the asymptoti behaviourof p"1 is rather omplex. For instane, if (x) has a unique global minimum2



point x0 2 G then p"1(x) is exponentially small everywhere exept at x0, andthe logarithmi asymptotis of p"1 is given by the following formulalim"!0 " log p"1(x) = dist((x0)�(x))bij(x)(x; x0);where the distane is taken in the metri [(x0) � (x)℄bij(x) and fbijg =faijg�1 (see [12℄). A similar logarithmi asymptotis of the ground state foran operator with loally periodi oeÆients of the type (1) was obtained in[13℄. The limit of the entire spetrum of (2) was studied in [4℄, but with nopreise asymptotis of the eigenvetors.When the oeÆients are purely periodially osillating funtions, i.e.aij(x; z) = aij(z) and (x; z) = (z), problem (2) is also quite well under-stood, and more preise results are obtained. This problem, as well as sim-ilar ones for non self-adjoint operators or systems with periodi oeÆients,were studied in [2℄, [6℄, [9℄, [10℄. These works rely on a fatorization priniple�rst introdued in the earlier works [14℄ and [17℄. In the ase of the salarself-adjoint problem (2), all these previous results boils down to the followingtheorem.Theorem 1.1 Assume that aij(x; z) = aij(z) and (x; z) = (z). The ktheigenpair (�"k; p"k) of (2) satis�esp"k(x) = u"k(x)p1(x" )and �"k = �1 + "2�k + o("2);where (�1; p1(z)) is the �rst eigenpair of the ell eigenproblem (3) and, up toa subsequene, the sequene u"k onverges weakly in H10 (G) to uk suh that(�k; uk) is a kth eigenpair for the homogenized problem� ��xi �aijeff �u�xj� = �u in G; u = 0 on �G:The homogenized oeÆients are given by formula (23).The presene of both "slow" and "rapid" arguments in the oeÆientsdrastially hanges the asymptoti behavior of the eigenfuntions and eigen-values of (2). In the present paper we formulate a simple suÆient ondition(see hypothesis H1 and H2 in setion 2) for asymptoti loalization of p"k3



in a p"-neighbourhood of an interior point of the domain, and then on-strut leading terms of the asymptotis of p"1 in this neighbourhood. Thisallows to improve the logarithmi asymptotis mentioned above in the viin-ity of the loalization point, and to approximate p"1 in the metri of uniformonvergene. Our main results are Theorem 4.1 and 5.3.The ase of non self-adjoint operators is muh more ompliated, and itsstudy is the fous of a next paper [5℄. The assumption of smooth oeÆientsis ruial sine in the ase of disontinuous oeÆients ompletely di�er-ent results are obtained in 1-D [3℄. Finally, the ontent of the paper is thefollowing. In setion 2 we introdue notations and detail our main assump-tions. Setion 3 is devoted to formal asymptoti expansions, while setion4 furnishes a rigorous proof of onvergene. Lastly, setion 5 gives an errorestimate. Throughout this paper we use the Einstein summation onventionfor repeated indies and C stands for a generi onstant, independent of ".2 Notations and assumptionsIn order to formulate our onditions on the operator A" we introdue anauxiliary eigenvalue problem (ell eigenproblem) in the spae of periodifuntions (or equivalently on the torus Tn) as followsA(x)p � � ��zi �aij(x; z) �p�zj�+ (x; z)p = �p for z 2 Tn: (3)In the sequel, for any p 2 H1(Tn), we use the notation(A(x)p; p) = ZTn�aij(x; z) �p�zj �p�zi + (x; z)p2� dz:In (3) the variable x 2 G is just a parameter. As is well-known, A(x) is a self-adjoint operator in L2(Tn) whih admits a disrete spetrum �1(x) < �2(x) ��3(x) � : : : with orresponding eigenfuntions p1(x; z); p2(x; z); p3(x; z); : : :,normalized by kpk(x; �)kL2(Tn) = 1. By the Krein-Rutman theorem, �1(x) isof multipliity one and p1(x; z) an be hosen positive in Tn. Therefore, by auniform ontinuity argument we have p1(x; z) > C > 0 uniformly in z 2 Tnand x 2 �G. Another onsequene of the simpliity of �1(x) is that the4



�rst eigenvalue and normalized eigenfuntion have the same di�erentiabilityproperty as the oeÆients with respet to x.Hypothesis H1. The funtion �1(x) has a unique global minimum point x0in the interior of G.HypothesisH2. The oeÆients aij(x; z) and (x; z) are of lass C2 in �G�Tn ,and the Taylor series for �1(x) about x0 has non-degenerate (positive de�nite)quadrati form�1(x) = �1(x0)+Dij(x�x0)i(x�x0)j+o(jx�x0j2); (D�; �) � Cj�j2 (4)where Dij stands for 12 �2�1(x0)�xi�xj and C > 0.HypothesisH2'. The oeÆients aij(x; z) and (x; z) are of lass C3 in �G�Tn,and the Taylor series for �1(x) about x0 has non-degenerate (positive de�nite)quadrati form�1(x) = �1(x0) +Dij(x� x0)i(x� x0)j +O(jx� x0j3);with the same positive de�nite matrix D as in H2.Without loss of generality we shall assume in the sequel that x0 = 0.Remark 2.1 Hypothesis H1 ensures the onentration of p"1 in the neigh-bourhood of x0 while Hypothesis H2 allows to haraterize, in the viinity ofx0, the asymptoti behaviour of its pro�le.Assumption H2' is a little stronger than H2 and gives a more preise re-mainder term in the Taylor series (4). The proof of Theorem 5.3 requiresC3-smoothness of the oeÆients, while the onvergene results of Theorem4.1 remain valid for C2 oeÆients.3 Formal expansionIn this setion we onstrut the leading terms of a formal asymptoti expan-sion of p"1(x) in the viinity of the point x0 = 0. To this end we redue the5



loally periodi problem under onsideration to a series of "purely periodi"problems, i.e. problems that do not depend on the slow variable x but merelyon the fast periodi variable z.First, using assumptionH2', we write down Taylor series in the x variablefor the oeÆients aij(x; z) and (x; z) about 0; this givesaij(x; z) = aij(0; z) + xk ��xkaij(0; z) + 12xkxl ��xk ��xlaij(0; z) +O(jxj3)� aij0 (z) + xkaij1;k(z) + xkxlaij2;kl(z) +O(jxj3);(x; z) = (0; z) + xk ��xk (0; z) + 12xkxl ��xk ��xl (0; z +O(jxj3))� 0(z) + xk1;k(z) + xkxl2;kl(z) +O(jxj3): (5)Then we write the following ansatz for the �rst eigenfuntion of (2)p"1 = q"1kq"1kL2(G) + r"q"1 = �p0(x" ) + xkp1;k(x" ) + xkxlp2;kl(x" ) + "q0(x" )� exp(�Mx�x2" ); (6)where r" is (hopefully) a small remainder, p0(z), p1;k(z), p2;kl(z), q0(z) areperiodi funtions and M = fMijg is a positive de�nite matrix, that areto be determined. Remark that, by symmetry, we have p2;kl = p2;lk. Theorresponding asymptotis for the �rst eigenvalue in (2) is�"1 = �1(0) + "�1 + o("); (7)where �1 has also to be determined. Sine M is positive de�nite, an easyomputation shows that, for any power 1 � � < +1 and any norm-exponentfor any 1 � m � +1, we havekx� exp(�Mx�x2" )kLm(G)k exp(�Mx�x2" )kLm(G) = O("�=2): (8)Remark that (8) holds true also in the ase m = +1, whih means thatx� exp(�Mx � x=2") is uniformly of order "�=2 in G. Therefore, in the righthand side of (6), if the �rst term is normalized to be of order 1, the seondterm xkp1;k(x" ) exp(�Mx�x2" ) is of orderp", the third term xkxlp2;kl(x" ) exp(�Mx�x2" )is of order ", as well as the fourth one. In the sequel we neglet any otherhigher-order terms.Now we substitute (5), (6) and (7) in (2) and we �nd a asade of equa-tions aording to the various powers of " and of x. This gives0 = (A" � �"1)p"1 = (A" � (�1(0) + "�1))q"1 + ~r"6



where ~r" = (A" � �"1)r" + (�"1 � �1(0)� "�1)p"1 is hopefully small and(A" � �"1)q"1 = ��"2 ��xi �[aij0 (x" ) + xkaij1;k(x" ) + xkxlaij2;kl(x" )℄ ��xi�++�0(x" ) + xk1;k(x" ) + xkxl2;kl(x" )� �1(0)� "�1�on[p0(x" ) + xkp1;k(x" ) + xkxlp2;kl(x" ) + "q0(x" )℄ exp(�Mx � x2" )o + r0"where r0" stands for higher order terms whih are small aording to (8). Forbrevity we introdue the notationA 0 = � ��zi �aij0 (z) ��zj� + 0(z)� �1(0)A 1k = � ��zi �aij1;k(z) ��zj�+ 1;k(z)A 2kl = � ��zi �aij2;kl(z) ��zj�+ 2;kl(z)B 0;k = �aki0 (z) ��zi � ��zi�aik0 (z) � �B 1;kl = �aki1;l(z) ��zi � ��zi�aik1;l(z) � �Di�erentiating all terms, inluding the exponential, and replaing x=" by z,we get(A" � �1(0)� "�1)q"1 = nA 0p0(z)+xk �A 0p1;k(z) + A 1kp0(z)�MklB 0;lp0(z)�+xkxl �A 0p2;kl(z) + A 1kp1;l(z) + A 2klp0(z)�MkjB 0;jp1;l(z)�MkjB 1;jl p0(z)�Mkjaij0 (z)Milp0(z)�+" �A 0q0(z) +Mijaij0 p0(z)� aij1;i ��zj p0(z)+B 0;jp1;j(z)� �1p0(z)� o���z=x" exp(�Mx � x2" ) + r00" (9)7



where r00" is another small remainder.Equating to zero the orresponding expressions on the r.h.s. of (9), wederive the sequene of auxiliary problems whih allow us to determine allthe unknown elements in the above expansion. The equation for the leadingterm of the asymptotis reads A 0p0(z) = 0: (10)This equation is solvable in the spae of periodi funtions L2(Tn) and has aunique (up to a multipliative onstant) solution p0(z) = p1(0; z). Sine theoeÆients of the operator A 0 are smooth, the solution p0 belongs, at least,to H2(Tn). For de�niteness we impose the normalization onditionZTn p20(z)dz = 1:At the next step (of order x) we obtain n equationsA 0p1;k(z) = �A 1kp0(z) +MklB 0;lp0(z); k = 1; 2; : : : ; n:Due to the presene of the oeÆients Mkl here, it is natural to representp1;k(z) as the linear ombination ~p1;k(z) + Mkl~~pl1(z), and to onsider thefollowing two equations separatelyA 0 ~p1;k(z) = �A 1kp0(z); (11)and A 0~~pl1(z) = B 0;lp0(z): (12)Aording to the Fredholm alternative, these equations admit solutions if andonly if their right hand sides are orthogonal to the funtion p0 that spansthe kernel of A 0 (orthogonality with respet to the usual salar produtin L2(Tn)). The equation (12) is evidently solvable sine B 0;l is a skew-symmetri operator. Indeed, it suÆes to multiply the right hand side ofthis equation by p0(z) and integrate by parts. To show that the solvabilityondition is satis�ed in (11), we use the fat that x0 = 0 is a minimum pointof �1(x). Realling the de�nition of A(x), p0(z) and p1(x; z), we have�A(x)p0; p0� � �A(x)p1(x; �); p1(x; �)� = �1(x) �8



�1(0) = �A(0)p1(0; �); p1(0; �)� = �A(0)p0; p0�;that is the funtion (A(x)p0; p0) assumes its minimum at the point x0 = 0.Taking the derivatives in x of the said funtion at x0 = 0 givesZTn �aij1;k ��zi p0(z) ��zj p0(z) + 1;kp20(z)�dz = (A 1kp0; p0)L2(Tn) = 0for any k = 1; 2; : : : ; n; this implies the desired solvability ondition.The next equation involves all the quadrati in x terms of (9). It readsA 0p2;kl + A 1kp1;l + A 2klp0 �MkjB 0;jp1;l �MkjB 1;jl p0 �Mkjaij0 Milp0 =A 0p2;kl + A 1k ~p1;l + A 1kMlm~~pm1 + A 2klp0 �MkjB 0;j ~p1;l� (13)MkjB 0;jMlm~~pm1 �MkjB 1;jl p0 �Mkjaij0 Milp0 = 0; k; l = 1; 2; : : : ; n:In truth, equation (13) should be symmetrized with respet to k; l sine p2;kland xkxl are symmetri. The solvability ondition of this equation requiresspeial onsiderations. There are two unknowns in the equation, namelythe matrix-funtion fp2;kl(z)g and the onstant matrix Mij. Our goal is tohose Mij so that the above equation has a solution fp2;kl(z)g in the spaeof periodi funtions.First of all let us show that the linear in Mij terms do not make anydiÆulty. Indeed, by (11) and (12) we have~~pm1 (z) = �A 0��1 B 0;mp0(z) and ~p1;k(z) = � �A 0��1 A 1kp0(z):Thus ZTn (A 1k~~pm1 (z)� B 0;m ~p1;k(z))p0(z)dz == ZTn nA 1k �A 0��1 B 0;mp0(z) + B 0;m �A 0��1 A 1kp0(z)op0(z)dz = 0sine A 1k and (A 0)�1 are symmetri operators while B 0;m is skew-symmetri.Thus, the solvability ondition in (13) is satis�ed if and only if the fol-lowing relation holds for all k; l = 1; 2; : : : ; nZTn np0(z)A 2klp0(z) + p0(z)A 1k ~p1;l(z)� p0(z)MkmB 0;m~~pj1(z)Mjl�p20(z)Mkiaij0 (z)Mjlodz = 0: (14)9



Introduing a matrix X de�ned by its entriesXij = ZTn np0(z)B 0;i~~pj1(z) + p20(z)aij0 (z)odz; (15)and a matrix Y de�ned by its entriesYkl = ZTn (p0(z)A 2klp0(z) + p0A 1k ~p1;l(z))dz; (16)equation (14) is equivalent to MXM = Y:Let us hek that this equation determines the matrix M . If X and Y aresymmetri positive de�nite, it is a lassial result that there exists a uniquesolution M given byM = X�1=2 �X 1=2YX 1=2�1=2X�1=2:We �rst prove the positive de�niteness of the matrix X .Lemma 3.1 The matrix X de�ned by (15) is symmetri positive de�nite.Furthermore, it oinides with the homogenized matrix for the periodi oef-�ients p20(z)aij0 (z).Proof By virtue of (12) and of the skew-symmetri harater of B 0;i , thematrix X is equivalently given byXij = ZTn n� B 0;ip0(z)(A 0)�1B 0;jp0(z) + p20(z)aij0 (z)odz;whih implies it is symmetri. Next for any smooth funtion ', we havep0(z)A 0 (p0(z)'(z)) = � ��zi�p20(z)aij0 (z) �'�zj �: (17)
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The matrix p20(z)aij0 (z) is uniformly positive de�nite. Therefore, homogeniza-tion theory applies to the operator ��xi�p20(x" )aij0 (x" )� ��xj (see, for instane, [8℄)whih admits the following e�etive matrixaije� = ZTn p20(z)aik0 (z)�Id+ ��zk�j(z)� dzwhere Id is the identity matrix and �j(z) is the solution of the following ellproblem � ��zi�p20(z)aij0 (z)� ��zj�k(z) = ��zi�p20(z)aik0 (z)�or, equivalently, by (17)p0A 0(p0�k) = ��zi�p20(z)aik0 (z)� � np0 ��zi�p0aik0 � + p0aik0 ��zi p0o � p0B 0;kp0This yields a new expression for �k sine the solution of this equation is�k = 1p0 (A 0)�1B 0;kp0: (18)Finally, onsidering the above relations, we deriveX kl = ZTn (p20akl0 � p0B 0;k~~pl1)dz = ZTn (p20akl0 � p0B 0;k (A 0)�1B 0;lp0)dz == ZTn (p20akl0 + p0B 0;k(p0�l))dz = ZTn (p20akl0 � �lp0B 0;kp0)dz == ZTn (p20akl0 � �l ��zi (p20aik0 ))dz = ZTn (p20akl0 + p20aik0 ��zi�l)dz = akle� ;whih is the desired result sine the matrix akle� is known to be positive de�-nite.Our next aim is to prove the positive (semi-)de�niteness of the matrix Y.Lemma 3.2 Under Hypothesis H1 the matrix Y is positive semide�nite. If,in addition, Hypothesis H2 holds then Y = D = 12(�2�1(0)�xi�xj ) is positive de�nite.11



Proof The three �rst terms of the Taylor series of p1(x; z) in the x variablearound x0 = 0 arep1(x; z) = p1(0; z) + xk ��xk p1(0; z) + 12xkxl �2�xk�xl p1(0; z)� p0(z) + xkp̂1;k(z) + xkxlp̂2;kl(z):Inserting this, (5) and (4) in (3) and olleting powers of x we obtainA 0p0+xk(A 0 p̂1;k+A 1kp0)+xkxl(A 0 p̂2;kl+A 1k p̂1;l+A 2klp0) = Dklxkxlp0+O(x3):Therefore, p̂1;k = �(A 0)�1A 1kp0 = ~p1;kand Dkl = ZTn p20Dkldz = ZTn �p0A 0 p̂2;kl + p0A 1k p̂1;l + p0A 2klp0	 dz:Integrating by parts and sine A 0p0 = 0, we getDkl = ZTn �p0A 1k ~p1;l + p0A 2klp0	 dz = Ykl;whih is the desired result.Remark 3.3 As a byprodut of Lemma 3.2, we obtained that the derivative��xk p1(0; z) is equal to ~p1;k and not to p1;k.The last equation related to the ansatz (9) ollets all terms of the �rstorder in ". It readsA 0q0 = �p0Mijaij0 � B 0;jp1;j + aij1;i ��zj p0 + �1p0:Writing down the solvability ondition for this equation we �nd�1 =Mij ZTn p20aij0 dz + ZTn �p0B 0;jp1;j � p0aij1;i ��zj p0�dzThis equation gives the value of the orretor �1 in the asymptoti expan-sion (7). Thus, we determined all the unknown elements in the asymptoti12



expansions (6) and (7). This shows that our ansatz is viable and one ansafely hope to prove that it indeed holds true.More preisely, olleting the above results and remarking that, by virtueof (8), all remainder terms are atually small, the onlusion of this setionis the following lemma.Lemma 3.4 The approximation q"1 of the �rst eigenfuntion satis�es theestimate �A" � (�1(0) + "�1)� q"1kq"1kL2(G) � "3=2: (19)The proof of this bound is an immediate onsequene of the fat thatthe negleted terms are proportional to x3, "x or higher order terms. Itremains to prove that q"1 is indeed lose to the true �rst eigenfuntion p"1. Intheory we ould ontinue the ansatz and ompute further orretors, but thealgebra beomes soon formidable and anyway we are able only to prove theorretness of the �rst term of q"1.4 Variational proof of the onvergeneIn this setion we develop the analysis of the bottom of spetrum of eigen-problem (1), whih relies on fatorization in the neigbourhood of the on-entration point of the ground state, and on homogenization tehnique. Inpartiular, this allows to justify the �rst two terms of the asymptotis of theleading eigenvalues in (1) and to obtain a lower bound for the spetral gap.Theorem 4.1 Let p1(x; z) and �1(x) be the �rst eigenvetor and eigenvalueof the ell problem (3) normalized by kp1(x; �)kL2(Tn) = 1. Assume that as-sumptions H1 and H2 hold, and that the oeÆients are of lass C2 withrespet to the ouple (x; z). For k � 1, let �"k and p"k be the kth eigenvalueand normalized eigenvetor of (1). Then,p"k(x) = u"k( xp")p1(x; x" ); �"k = �1(0) + "�k + o (") ; (20)where, up to a subsequene, the sequene u"k(y) onverges weakly in H1(Rn) touk(y), and (�k; uk) is the kth eigenvalue and eigenvetor for the homogenized13



problem ( � ��yi �aijeff �u�yj �+ (eff +Dy � y)u = �u in Rn ;u 2 L2(Rn); (21)where D is the Hessian matrix 12rxrx�1(0). The homogenized oeÆientsare given byeff = � ZTn p1(0; z)��aij�xi �p1�zj + aij �2p1�zj�xi + ��zi �aij �p1�xj�� (0; z) dz(22)and aijeff = ZTn p21(0; z)�aij(0; z) + aki(0; z)��j�zk (z)� dz (23)where the funtions ��k�1�k�n are the solutions in H1(Tn) of� ��zi �p21(0; z)aij(0; z)��k�zj (z)� = ��zi �p21(0; z)aik(0; z)� (24)Remark 4.2 In order to see the onnetion between Theorem 4.1 and theresults of the formal asymptoti expansion, we an rewrite the homogenizedoeÆients with the notation of setion 3. Reall �rst thatp1(0; z) � p0(z); �p1�xj (0; z) � ~p1;j(z); aij(0; z) � aij0 (z); and �aij�xi (0; z) � aij1;i(z):Thus, we obtain aijeff = Xij andeff = ZTn �p0B 0;j ~p1;j � p0aij1;i�p0�zj �dz:The eigenvalues and eigenfuntions of the homogenized problem (21) an beomputed expliitely (see e.g. [15℄). Therefore, we reover the result of theformal asymptoti expansion. In partiular, the �rst eigenpair of (21) is�1 = eff + tr(MX ); and u1(y) = exp��My � y2 �;with M = X�1=2 �X 1=2YX 1=2�1=2 X�1=2.14



Proof Let (�"; p") be an eigenpair of( �"2 ��xi �aij(x; x" ) �p"�xj� + (x; x" )p" = �"p" in G;p" = 0 on �G: (25)We perform the following hange of unknownv"(x) = p"(x)p1 �x; x"� ; (26)whih was already used in the proof of lemma 5.1. Aording to Proposition3.6 in [2℄, (26) de�nes an invertible and biontinuous hange of variables inH10 (G). We replae p" by v" in (25), and we reall that p1(x; z) is the �rsteigenfuntion of (3). After a little algebra and using the following identityp1 ��xi �aij �(p1v")�xj � = ��xi �p21aij �v"�xj�+ p1v" ��xi �aij �p1�xj� ;we obtain that (25) is equivalent to( �" ��xi �p21aij �v"�xj� + ��"(x) + �1(x)��(0)" p21� v" = �"p21v" in G;v" = 0 on �G; (27)where the oeÆients p21 and aij are evaluated at (x; x="), with �" = "�1(�"��1(0)) and�"(x) = ��p1 � ��zi �aij �p1�xj�+ ��xi �aij �p1�zj �+ " ��xi �aij �p1�xj����x; x"� :In order to eliminate the " saling in front of the seond-order operator in(27), we resale the spae variable by introduingy = xp" 2 G" = "�1=2G and u"(y) = v"(x):This yields( � ��yi �~aij" �u"�yj � + �~�"(y) + �1(p"y)��(0)" ~p21;"� u" = �"~p21;"u" in G";u" = 0 on �G";(28)15



with~aij" (y) = fp21aijg(p"y; y=p"); ~p21;"(y) = p21(p"y; y=p"); ~�"(y) = �"(p"y);and �1(p"y)� �(0)" = 12rxrx�1(0)y � y + o(1):Equation (28) is a ombined problem of homogenization and singular per-turbations: the oeÆients are osillating with a period p", and they on-entrate to 0 with respet to their �rst marosopi argument. Remark alsothat the domain G" is onverging to Rn . Therefore, we expet that the limitproblem of (28) is preisely the homogenized problem (21). To prove thisstatement and study the spetral asymptotis of (28), we follow the method-ology of [2℄, [4℄. We introdue the orresponding Green operatorS" : L2(G") ! L2(G")f ! U " (29)where U " is the unique solution in H10(G") of( � ��yi �~aij" �U"�yj � + �~�"(y) + �1(p"y)��(0)" ~p21;"�U " = ~p21;"f in G";U " = 0 on �G": (30)Remark that, under the assumed smoothness of the oeÆients, the fun-tion ~�"(y) is uniformly bounded in Rn . Thus, adding to it C ~p21;"(y) with Cpositive and suÆiently large will make it positive too and has the e�et ofsimply shifting the entire spetrum by this onstant C. Therefore, we shallassume without loss of generality that ~�"(y) is positive. In the sequel weshall onsider that S" is an operator de�ned in L2(Rn) by simply taking f asthe restrition to G" of a funtion of L2(Rn) and extending by zero outsideG" the solution U " = S"f . The homogenization of (29) is quite standard.We introdue the limit Green operatorS : L2(Rn) ! L2(Rn)f ! U unique solution in H1(Rn) of� ��yi �aijeff �U�yj �+ (eff +Dy � y)U = f in Rn ; (31)whih is a ompat operator (see e.g. [15℄) whose spetrum an be expliitlyomputed. Then, we obtain the following onvergene result whih ompletesthe proof. 16



Lemma 4.3 The sequene of operators S" ompatly onverges to the limitoperator S in the sense that (see e.g. [7℄)(i) for any f 2 L2(Rn), lim"!0 kS"(f)� S(f)kL2(Rn) = 0,(ii) the set fS"(f) : kfkL2(Rn) � 1; " � 0g is sequentially ompat.Proof The proof is quite lassial (see e.g. [2℄, [4℄ for similar examples), sowe simply indiate the main ingredients. First, we multiply (30) by U" andintegrate by parts to obtain a priori estimates. Sine by assumptions H1and H2 there exists a positive onstant C > 0 suh that�1(p"y)� �(0)" � Cjyj2;we get krU "kL2(Rn) + kyU "(y)kL2(Rn) � CkfkL2(Rn): (32)This implies that the sequene U " is not only pre-ompat in H1(Rn)-weakbut also pre-ompat in L2(Rn)-strong. Seond, we pass to the limit in(30) by using the two-sale onvergene [1℄. We multiply (30) by a testfuntion '(y)+"'1(y; y=p") where '; '1 are smooth funtions with ompatsupport with respet to the �rst variable y and periodi with respet to theseond variable z = y=p". Sine this test funtion has ompat support(�xed with respet to "), the e�et of the non-periodi modulation in theoeÆients is negligible. Indeed, on any �xed bounded domain, the valuesof the oeÆients, depending on (p"y; y=p") are uniformly lose to theirvalues at (0; y=p"). Now, this is a standard matter in the theory of two-sale onvergene to dedue that any onverging subsequene of U" onvergesweakly inH1(Rn) to U whih is the unique solution of (31). The homogenizedoeÆients in (31) are thus obtained by onsidering the ell problems withthe frozen marosopi variable x = 0 (remark that the weak limit of ~p21;"(y)is preisely RTn p21(0; z)dz whih is equal to 1 by our normalization ondition).By uniqueness of the limit, the entire sequene U" onverges. Furthermore,estimate (32) shows that U" does also onverge strongly in L2(Rn). Thisproves statement (i) of the lemma. To prove statement (ii) we simply remarkthat estimate (32) as well as the strong L2(Rn) onvergene of U" is still validif the right hand side f is replaed by a bounded sequene f" in L2(Rn). Thisshows that S" ompatly onverges to S.17



To �nish the proof of Theorem 4.1, it remains to hek that the operatoronvergene furnished by Lemma 4.3 yields the desired onvergene of thespetrum, as stated in Theorem 4.1. This is indeed true by a lassial resulton the operator ompat onvergene (see [7℄) that we reall.Lemma 4.4 [7℄ If a sequene of ompat self-adjoint operators S" ompatlyonverges to a limit ompat self-adjoint operator S in L2(Rn), then the spe-trum of S" onverges to that of S in the sense that the kth eigenvalue of S"onverges to the kth one of S and, up to a subsequene, the kth normalizedeigenvetor of S" onverges strongly in L2(Rn) to a kth eigenvetor of S.Remark 4.5 Lemma 4.4 would be obvious if the sequene S" were to on-verge uniformly to S. However, this is not the ase beause the right hand sideoeÆient ~p21;"(y) onverges merely weakly to its limit value RTn p21(0; z)dz = 1.Lemma 4.4 extends to the ase of non self-adjoint operators.Corollary 4.6 In the statement of Theorem 4.1 the whole sequene u"1� xp"�assoiated to the ground state p"1(x), does onverge, as " ! 0. Thus, theasymptotis of the ground state is uniquely de�ned.Proof This is immediate onsequene of the fat that the prinipal eigen-value of the homogenized problem (21) is simple.5 Error estimation for the ground state asymp-totis.In this setion we show that, under hypotheses H1-H2', the remainders in(6) and (7) admit quali�ed upper bounds. To this end we ombine the formalasymptotis built above with the estimates proved in the preeding setion.The statement below is a trivial onsequene of Theorem 4.1.Lemma 5.1 Under hypothesis H1 there exists a onstant C > 0, indepen-dent of ", suh that �1(0)� C" � �"1 < �"2 � �1(0) + C": (33)18



If, in addition, the hypothesis H2 holds then�"2 � �"1 � C": (34)Remark 5.2 We derive the statement of Lemma 5.1 as a onsequene ofthe homogenization results of Theorem 4.1. Another, diret way to provethis statement would be to use the min-max priniple and a properly hosenansatz of the form�q0(x" ) + xiq1;i(x" ) + xixjq2;ij(x" )� exp(�x2" ):Combining the bounds of Lemma 5.1 with (19) and (20), we obtain themain estimates of this work. Let p"1 be the leading normalized eigenfuntionof problem (2) and �"1 the orresponding eigenvalue.Theorem 5.3 Under Hypotheses H1 and H2' there hold the estimatesj�"1 � �1(0)� "�1j � C"3=2p"1 � q"1kq"1kL2(G) � "1=2:Proof We write down the Fourier series of the funtion (q"1=kq"1k) w.r.t. theeigenbasis fp"ig1i=1: q"1kq"1kL2(G) = 1Xi=1 �ip"i ; 1Xi=1 �2i = 1:Substituting this series in (19) we get�A" � (�1(0) + "�1)� q"1kq"1k2L2(G) == �21(�"1 � �1(0)� "�1)2 + 1Xi=2 �2i (�"i � �1(0)� "�1)2 � "3:By Theorem 4.1 and Lemma 5.1, we have for all i � 2(�"i � �1(0)� "�1)2 � "2:19
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