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ABSTRACT
We are interested in conductive and radiative transfer of en-

ergy in the core of gas cooled reactors. Two scales characterize
the problem: macroscopic and microscopic. We want to con-
sider the domain like an equivalent homogenous medium. So we
use homogenization theory to compute the effective macroscopic
properties which take into account the microscopic structure. We
first present a full mathematical study of a simpler conduction
problem with non linear boundary condition and its simulation
with the CEA’s (French Atomic Energy Commissariat) computer
code CAST3M. Then we present the homogenization of the real
physical problem (including radiative boundary condition).

NOMENCLATURE

d dimension of the space.
σ Stefan-Boltzmann constant.
K conductivity matrix.
K∗ homogenized conductivity matrix.
Ωε perforated periodic domain.
Ω non perforated domain.
ε period of the domain = size of the cell

size of the domain .
Γε,i boundary of a given channel i in Ωε.
x macroscopic variable.
y = x

ε microscopic variable.
Tε temperature, solution of the real problem.
T temperature, solution of the homogenized problem.
f volumetric source.
g Neumann imposed flux.
Id identity operator.
ress all correspondence to this author.
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INTRODUCTION

The Gas Cooled Reactor (GCR) core contains a large
number of hexagonal blocks. Each block is made of a solid
moderator perforated periodically by many cylindrical gas
channels (see Figure 1, Figure 2). In our study, the heat ex-
change is done by conduction in the solid and by radiation
on the walls of the channels (gas considered like vacuum:
no heat conduction and no absorption of radiation). The
diameter of channels is very small compared to the global
dimension. So two scales characterize the domain (macro-
scopic and microscopic). The corresponding mathematical
model has therefore highly heterogeneous coefficients that
make the problem numerically very difficult to treat (mem-
ory and CPU time). We seek to consider the core like
an equivalent homogenous medium, a mixture of gas and
solid. Homogenization theory (see Bensoussan) has been
used to compute the effective macroscopic properties which
take into account the microscopic structure. The resulting
homogenized model is simpler to simulate: first compute
so-called cell problems to obtain the values of the homog-
enized coefficients, second solve a simpler macroscopic ef-
fective equation with a coarse mesh. The process of ho-
mogenization that we present here allows us to retrieve the
average value of the temperature and allows also to obtain
a correcting term which gives a far more accurate result.
The simulation is done using CAST3M which is a product
of the French Atomic Energy Commissariat(Agency). It’s a
general purpose code for solving partial differentials equa-
tions by the finite element method. Application domains are
structural mechanics, fluid mechanics, heat transfer thermo-
dynamics, magnetism.
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In our application, the walls of channels are diffuse
emitters and reflectors. In thermal engineering applications,
surfaces are gray and their emissivity is between 0 and 1.
To simplify the problem we choose the case of emissivity
equal to 1.
For our study, a periodic perforated domain Ωε, represen-
tative of the real geometry has been considered. Ωε is ob-
tained from an initial solid domain Ω with ∂Ω as boundary.
we denote by ε the domain period (positive and very small
compared to the global size). Y is the reference periodicity
cell (see Figure 3) and Γ is the boundary of the perforations
contained in Y . Y ∗ is the solid part of Y .

The aim now is to find Tε solution of the following sys-
tem:





−div(K∇Tε) = f in Ωε

K∇Tε · n = g on ∂Ω
−K∇Tε · n = 1

ε

[
σT 4

ε −
∫
Γε,i

σw(x, z)T 4
ε (z)dz

]
on Γε,i.

(1)
w(x, z) is the view factor between two given points x

and z of the radiative surface Γε,i. we define also for a given
function ϕ an operator k (see Tiihonen) for the mathemat-
ical properties of this operator) by:

k(ϕ)(x) =

∫

Γε,i

w(x, z)ϕ(z)dz for s ∈ Γε,i (2)

The radiative boundary condition (third equation of
(1)) can also be written as:

−K∇Tε · n =
1

ε
(Id− k)(σT 4

ε ) on Γε,i (3)

The domain Ωε, with its conductivity K(x
ε ), is highly het-

erogenous with periodic heterogeneities of length-scale ε.
From a numerical point of view, solving the problem (1) by
any method will require too much effort if the period ε is
small. It’s preferable to average or homogenize the proper-
ties of Ωε and compute an approximation of Tε on a coarse
mesh. Our goal is to study the behavior of Tε when ε tends
to 0. In other words, we will approximate the temperature
for a very large number of assemblies in the core.

HOMOGENIZATION OF A SIMPLER PROBLEM

First of all we homogenized a simpler conduction prob-
lem with a non linear boundary condition that can be inter-
preted as a radiative heat exchange with an infinite medium
characterized by a constant temperature T∞. In this case
The problem to solve is to find Tε solution of
2




−div(K∇Tε) = f in Ωε

K∇Tε · n = g on ∂Ω
−K∇Tε · n = εσ(T 4

ε − T 4
∞) on Γε,i

(4)

To homogenize the problem we start from the following
two-scale asymptotic expansion of the temperature:

Tε(x) = T (x,
x

ε
) + εT1(x,

x

ε
) + ε2T2(x,

x

ε
) + ... (5)

where Tj(x, x
ε ) are Y−periodic functions defined in Ω×Y .

Substituting in (4) Tε by the relationship (5) we obtain
a cascade of problems. From this problems we can show
that the first term of (5) depends only of the macroscopic
variable x and that:

T1(x, y) =

d∑
i=1

∂T

∂xi
(x)ωi(y) (6)

where ωi, i = 1, ..., d are the solutions of the cell problems
given by:




−divy(K(ei +∇ωi)) = 0 in Y ∗

−K(ei +∇wi) · n = 0 on Γ
y 7−→ ωi(y) Y-periodic

(7)

where ei are the vectors of the canonical basis.
The homogenized problem that models the mean be-

havior of the problem (4) is then given by: find the temper-
ature T as solution of the following system

{−div(K?∇T ) + σα1(T 4 − T 4
∞) = α2f in Ω

−K?∇T · n = mes(Y )g on ∂Ω (8)

where K? is the homogenized conductivity matrix. Its co-
efficients use the solutions of cell−problems:

K∗
ij =

∫

Y ∗
K(ei +∇wi).(ej +∇wj)dy (9)

αi are homogenized terms which depend on the geometry
of the cell.

A full mathematical study of this problem has been
done, we have showed the two-scale convergence (see Al-
laire) of the problem (4) toward its homogenization: the
problem (8). The results of simulation with the computer
code CAST3M allowed to find the theoretical rate of con-
vergence (see Figure 9).
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HOMOGENIZATION OF THE CONDUCTION-RADIATION

PROBLEM

The real physical problem including the radiative
boundary condition (1), introduced in the beginning, has
also been studied through a two-scale asymptotic expan-
sions. The second term of the expansion is still given by
(6) where the ωi, are now solutions of the following cell
problems:




−divy(K(ei +∇ωi)) = 0 in Y ∗

−K(ei +∇ωi) · n = 4σT 3(I − k)(ωi + yi) on Γ
y 7−→ ωi(y) Y-periodic

(10)

The homogenized problem is:

{−divy(K∗(T 3)∇T )) = β1f in Ω
−K∗(T 3)∇T · n = β2g on − ∂Ω (11)

Where βi are homogenized terms which depend on the ge-
ometry of the cell. The coefficients K∗

i,j are given now as
follow:

K∗
ij =

∫

Y ∗
K(∇ωi+ei).(∇ωj+ej)+4σT 3

∫

Γ

(I−k)(ωi+yi)(ωj+yj)

(12)

Note that the coefficients depend as well of the cell prob-
lems and of the macroscopic temperature. It’s a conse-
quence of the fact that they take into account both con-
ductive and radiative heat transfer.

SIMULATIONS

The results of simulation with CAST3M are given in
the case of the problem (4) in 2D, following the algorithm
bellow

Resolution algorithm

1. First solve in the cell geometry (see Figure 3) the cell
problems (one problem in each direction of the space).
Solutions will allow us to compute the homogenized
conductivity matrix coefficients K∗

ij (9).
2. Second solve the homogenized problem that provides

the homogenized temperature T (8).
3. Third, T and ωi allow us to calculate the term of cor-

rection εT1(x, x
ε ) to enhance the approximation of Tε.
3

Results of simulation with CAST3M

In the Figure 4 we see the solutions of the cell problems
(7). Figure 5 is the solution of the homogenized problem
resolved in Ω(non perforated domain) Figure 6 is result of
the homogenization process. Figure 7 gives the results of
the direct resolution of the non-homogenized problem (i.e
with a mesh of the perforated domain Ωε). Figure 9 shows
the convergence of the relative error on the temperature
when the period ε → 0 compared to the curve of theoretical
rate of convergence.

Figure 1. 2D section of the reactor core

each red cell contains 10 of the cell bellow

Figure 2. one fuel cell of the core
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Figure 3. The chosen cell model

Figure 4. ω1(
x
ε
) and ω2(

x
ε
): solutions of cell problems

Figure 5. T , solution of the homogenized problem
4

Figure 6. T (x) + εT1(x, x
ε
): Reconstructed temperature

Figure 7. Tε(x): Direct computation
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Figure 8. The colorbar for temperatures T , Tε and T (x) + εT1(x, x
ε
)
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Figure 9. curve of the convergence of the error: ‖Tε − (T + εT1)‖L2 in

function of ε compared to ε
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Figure 10. CPU time compared between direct resolution and with homog-

enization
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CONCLUSION

This work was an important preliminary step in the
study of the problem including the non linear but also
non local boundary condition on the radiating part of the
boundary (i.e. on the wall of each gas channel). It allowed
to prove the feasibility of the homogenization method im-
plemented in CAST3M code. One of the main result of
this stage is the saving of CPU time compared to the di-
rect computation. The simulation of the complete problem
(1) is under progress. The next step will be to consider an
emissivity value between 1 and 0 and may be a coupling
between thermic model and fluid mechanics equations.
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