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Abstract. In this paper we prove the convergence of the homogenization process of the Stokes equations with
Dirichlet boundary condition in a periodic porous medium. We consider here the case where the solid part of
the porous medium is connected, and we generalize to this case the results obtained by Tartar (1980).

Introduction

We define a porous medium as the periodic repetition in a bounded domain £ of an
elementary e-sized cell in which the solid part of the porous medium is also of size &. A typical
case of such a porous medium is a regular lattice of interconnected cylinders (see Fig. 1). Let £2,
be the fluid part contained in £2. The flow of an incompressible viscous fluid in §2, under the
action of an exterior force f is ruled by the Stokes equations (S,) with Dirichlet boundary
condition;

(s.): vp,—Au,=f inQ,, v -u,=0 in £,, u,=0 onadf2,

(u,, p.) being the velocity and the pressure of the fluid.

Fig. 1.
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The goal of this paper is to prove the following result: let &, and P, be extensions of u, and p,
to the whole of £, defined in the following way:
u, in £,, P. in £,,

| p={ 1
Y

=1
|

e \0 in2-9,; f p. in Yg for each i;
v

where, for an e-cell ¥, we denote by Yg and Yg the corresponding fluid and solid parts. Then

/e —>u in[L*(Q)]" weakly, P.—p in Lj

loc

(2)/R strongly
where (u, p) is the unique solution of Darcy’s law (S):
(S): u=A(f-vp) n®, v-u=0 in®, u-n=0 ondL.

Here A is a constant, symmetric and positive definite matrix depending only on the elementary
cell’s geometry.

It is worth noticing that if £, is defined as the union of entire elementary cells, then the
convergence of the sequence P, occurs in L*(2)/R (there is no more “loc”). This is the case, for
example, when £ is a cube.

The above result is the generalization of results obtained by Tartar, Lipton, and Avellaneda to
another geometry. These authors considered the case of a porous medium the solid part of which
is composed of disconnected grains, each included in a corresponding e-sized cell. For that
geometry, Tartar proved in [8] that there exists an extension P, of the pressure which allows to
pass to the limit in (S,) obtaining (S). Lipton and Avellaneda recently noticed [4] that, actually,
this extension P, is just obtained by taking the mean value of the pressure p, in the fluid part of
each e-sized cell as the value of P, in the solid part of the same cell. This remark illuminates the
meaning of the pressure’s extension defined by Tartar using a transposition process. However,
Tartar’s way of defining the extension seems to be necessary to prove that the sequence P, is
bounded (and even relatively compact) in L3..(2)/R. Here we are concerned with the physically
realistic case of a porous medium which has connected solid and fluid parts, and a diphasic
boundary 9£2. So we follow the scheme of [8], except for the pressure’s extension which is new. In
order to pass to the limit in the equations, we use the energy method introduced by Tartar [9]
(see also [1, Chapter 1]). For more details about periodic homogenization of Stokes equations,
sec [7, Chapter 7]. In [6] (see also [2, Chapter 1, Section 5]) Polisevsky has alrcady proved a
similar result with a different method, but in his result the convergence of P, occurs in LS2(82)
instead of L*(£).

1. Modelization of the porous medium and formulation of the Stokes problem

As usual in periodic homogenization theory (see, ¢.g., [7,1]), we consider a porous medium
obtained by the periodic repetition of an elementary cell of size ¢, in a bounded domain of R".
We will first define the corresponding dimensionless elementary cell Y.
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Fig. 2. Forbidden situations. (a) The boundary of Eg is not of class (' because Yy is not Y-periodic. (b) No contact
between the fluid parts of two adjacent cells implies Ey is not connected. (¢) Although Ep has a smooth boundary,
9Y is not locally Lipschitz at point M.

I.1. Definition of the elementary cell Y

Let Y=]—1; +1[" be the open unit cube of R", N > 2. Let Yy be a closed subset of Y. We
define Y, open set of R”, by Y. = Y — Y, where Y rcpresents the part of Y occupied by the
solid and Yy represents the part of ¥ occupied by the fluid.

The closed set Y is repeated by Y-periodicity and fills the entire space R", in order to obtain
a closed set of R”, noted Es. Let the open set Ep be the complementary of Eg in RY, i.e.

Eg = {(xy; Xg,u05 %3) € RY |3 Ky, 05, ky) € B such that
(x1—2k;,...‘xN—2kN)EYS}, EF=RN—ES.

We assume the following hypotheses on Yy and Ep:

(1) Yr and Y have strictly positive measures in Y;
(i1) Ey and the interior of Eg are open sets with boundary of class C', and are
locally located on one side of their boundary. Moreover E is connected; (1.1)
(111) Y is an open connected set with a locally Lipschitz boundary.

What is the concrete meaning of those hypotheses?

(i) means that the elementary cell Y contains fluid and solid together.
(i1) implies that Y has some properties:

o Yy is “Y-periodic”, because Ep has a boundary of class C'; for example, the situation of Fig.
2(a) is forbidden.

o Y has an intersection with each face of the cube Y which has a strictly positive surface
measure; if not, E could not be connected when Ey and Eg are locally located on one side of
their boundary; for example, the situation of Fig. 2(b) is forbidden.

(iii) is a technical assumption necessary for the proof of Lemma 3.4; for example, the
situation of Fig. 2(c) is forbidden.
In Fig. 3 we give three typical situations which agree with assumptions (1.1). Note that in Figs.

3(b) and 3(c), Y} has a locally Lipschitz boundary which is not of class C'. This motivates (iii) in

(1.1).
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Let (Sx) g c » be the 2N faces of the cube ¥ with #={—-N; —(N—1);...; =1, +1;...; N
—1; N} such that =, and X_y are the two faces of ¥ orthogonal to the K'th unit vector ex. A
first consequence of the hypotheses (1.1) is the existence of a family of functions (¢x)k < » such
that

(i) dx € C*(Y) and ¢ > 0;
(ii) d,#0 on =g, 6, =0 on Ysand = for each K’ # K; (1.2)
(iii) let =; and 2_; be two opposite faces of Y; then ¢ s, =¢_kls ,-

(ék | 5, denotes the restriction of ¢, to Xy). Examples are shown in Figs. 4 and 5.

Remark 1.1. In [8], Tartar considered the case (corresponding to Fig. 3(a)) ¥sC C Y (Y 1s
strictly included in Y). This assumption is not physically realistic in three dimensions because
the solid part Eg is not a connected body.

1.2. Definition of the open set &,

Let © be a bounded and connected open set of R” with a smooth boundary 92 of class ¢’
(N > 2). Let &> 0. The set 2 is covered with a regular mesh of size 2¢, each cell being a cube Y/

Support W-I )

£ | -—— Support (4@’2)

%,
Support(¥_,)—= | 4\
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with 1 < i< N(e). An elementary geometrical consideration gives

2
N(e) = —%[1 + 0(1)].
(2¢)
Let 7° be the linear continuous invertible application, composed of a translation and an
homothety of ratio 1/¢, which maps Y onto Y:

)}}E

LY, x — y = x /¢ + translation. (1.3)
Now we define
£ ey~ 1 € £ T & =8 v
YS,=(7T1') (Ys), Y;a=(‘775) ](YF): 2K=("Tf) I(ZK)'

N(e)

We construct 2, by picking out from §2 the solid parts ¥g: £, = £ —UZ7Yg. £, denotes the part
of £ occupied by the fluid.

gConnected
components of
(.Q.C to suppress

| 1 a5l
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By construction £, is a bounded open set of R". Unfortunately, 2, is not necessarily
connected. Indeed, near the boundary d§2 there may be connected components of {2, which have
a maximum size & (see Fig. 6). In order to simplify the exposition and without loss of generality,
we can suppress those e-sized connected components, and from now on we assume {2, to be
connected (it will allow us to define a unique pressure in £,, up to a single additive constant in
£2,).

The set 2 represents the porous medium, and £, its fluid part. Remark that {2, is supposed to
be connected, but the solid part of the porous medium, which is represented by {2 — §,, may be
connected or not. Moreover, one can see that the boundary 92 of the porous medium may be
either diphasic (i.e, 32N Q,## and 32N (2 — 2,)+#H) or not. Obviously, the physically
realistic case (a connected solid part, and a diphasic boundary) is taken into account in the
present paper.

We now define C, and 2, which approach respectively £ and £, in the following sense: let C,
be the polygonal open set constituted by all the cells ¥ entirely included in £, and let £2; be the
fluid part of C, (see Fig. 7). More precisely,

U ¥ with I(e) = {i€[1; N(e)] | Y c 2}, 2=CngQ,. (1.4)

i€ 1(¢)

C,

£

An clementary geometrical consideration gives |2 — C,| < Ce — 0 and, for sufficiently small
values of ¢, C, and 2, are connected.

Remark 1.2. By definition of £,, & represents the characteristic length of the periodic elementary
cell. In other words, & is the ratio between the two spatial scales: the microscopic and
macroscopic ones (see [7, Chapter 5]).

Remark 1.3. We assume that £ and Ey have smooth boundary of class C', but this has been
done only for the convenience of the reader. In fact, all the following only requires the
assumption that 8{ and 9E, are locally Lipschitz.

Remark 1.4. In the general case we have no indications about the regularity of the boundary 942,
near the boundary 9£2. For particular values of &, 3§2, may be locally Lipschitz near 9{2, but it is,
in general, not true for all the values of & That is why, in the sequel, the pressure’s extension will
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be defined only in L3, () (instead of 1*(£2)). This is the price to pay in order to be able to

loc

handle the diphasic boundary d£2.
1.3. Formulation of the Stokes problem

The flow of an incompressible viscous fluid in the domain §2, under the action of an exterior
force f, and with a no-slip (Dirichlet) boundary condition, is described by the following Stokes
equations, where u, is the fluid velocity, p, is the fluid pressure and f given in [L*(2)]":

(S,): vp,—Au,=f in £, v-u,=0 in £, u,=0 ondf,. (1.5=7)
(The viscosity and density of the fluid are supposed to be equal to 1.)

If 2, is a bounded and connected open set with a locally Lipschitz boundary, a classical result
asserts that there exists a unique solution (u,, p,) of (S,) belonging to [ H(2,)]" X [L*(£2,)/R].
But in the present case the boundary 9{2, is not locally Lipschitz in the vicinity of 342, hence the
existence and uniqueness of the solution (u,, p,) stand only in the space V, X L, with V, being
the closure in [ H,(£2,)]" of the space 9,, where

8,={oc[2(2)]"Iv-¢=0in g},

L={qe2'(2,)|Vocc®, gL («NQ,)}/R. (1.8)
We have the following inclusions which may be strict:

v.cloe[H)(2)]"1v-¢=0inQ,}, L>LY2)/R.

For more details about those existence and uniqueness results for Stokes equations, see, for
example, [11, Chapter 1, Section 2].

In order to predict the “homogenized” limit of equations (S,), one can apply the asymptotic
expansion mcthod to the system (S,). Assume that

u(x) =ez[u0(x, x/€) + eu(x, x/e) + 2uy(x, x/e)+ - |,
p(x) =po(x, x/e) +ep,(x, x/¢) +°p,(x, Rle)+ s

where #,(x, y) and p;(x, y) are Y-periodic in the variable y. Then one can heuristically obtain
(see [7, Chapter 7]) that py(x, x/€) = p(x), where p € H'(£) is the unique solution of

(S): v-[A(f-vp)=0 inQ, [4(f-vp)] -n=0 ondQ, (1.10)

and that wuy(x, x/e) = A(x/¢e)-[f(x)— Vp(x)]. Here, A=(1/|Y|)[yA(y) dy, a symmetric,
positive definite matrix and A(y) is the matrix composed of the column vectors vg(y) for
1 < K< N, defined as the unique solutions (vg, gx) € [H' (Y)Y X [L*(Y)/R] of the following
systems (Sg ):

(1.9)

Vil —Alig=g, 10 ¥, V 'vxg=0 in Y,

(Sx): (1.11)

vg =0 on oY, vg and g, are Y-periodic

where e, is the Kth unit vector of R”.

Remark 1.5. (1.10) is a Darcy’s law for the pressure p in a medium of permeability A. (For more
details about those results, see [7, Chapter 7].)
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2. Convergence of the homogenization process

Notation. Let ~ denote the extension by zero operator in 2 — £2,. More precisely, for each
6 € H)\(R,), we define ¢ € Hj(2) by

~ (¢ in&,
*=\0 in@-9.

2.1. Statement of the main results
The purpose of this paper is to prove the following theorem.

Theorem 2.1. Consider the unigue solution (u,, p.) of (S,). Under the assumptions (1.1) on the
elementary cell, there exists P, € I,i,c_(.!}?), which extends the pressure p, to the whole of § (i.e.
P.=p, in 2,), such that

/e8> u in [LZ(SZ)]N weakly, P.—p inLi (2)/R strongly
where u= A(f— v p) and p is the unique solution of (S) (see (1.10)).

Remark 2.2. In the statement of Theorem 2.1 the convergence of the pre%sure’s extension occurs
in L3,.(2)/R, instead of L*(2)/R as one could expect. Nevertheless, if £ is such that 2=
for a %equencc of & values which tends to zero (e.g., this is the case if £ is a cube), then the
pressure’s convergence really occurs in L*(2)/R (without the “loc”) for this sequence. This
“local” result is imposed only because there are “cutted” cubes ¥ in the vicinity of 92 (see also
Remark 3.2).

The main difficulty in the proof of Theorem 2.1 is to extend the pressure to the whole of Q.
For this purpose we need the following crucial theorem.

Theorem 2.3. Assume that the hypotheses (1.1) on the elementary cell Y hold true. Then there exists
a linear continuous operator R, such that
(i) REEE»”{[HS(CE)]N; [H3 (201"},
(i) u€[HNQD implies R ii=uin Q,
(iii) v -u=0 in C, implies V - (Ru) =0 in 2.,
(iv) there exists a constant C, which does not depend on &, such that, for each u € [ H)(C)]",
have

|| Roull 2y +€ll V(Ru) |l ey < Clllull e,y e Ivull L2

(see (1.4) for the definitions of C, and 7).

Remark 2.4. In order to construct an extension P, of the pressure p,, we will proceed as follows.
In fact, we construct an extension of Vp, in [/ 1(@2)]" which is defined as the “dual” operator
of R,. Because R, is some kind of “restriction” operator from the set of the divergence-free
vectors of [H, 1((,E)] into the set of the divergence-free vectors of [HM)(2)]", the extension of
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vp, is also the gradient of a function P,. And, thanks to the properties of R, P, is just the
bounded pressure’s extension we were looking for.

Remark 2.5. Theorems 2.1 and 2.3 have already been proved by Tartar in [8], in the particular
case where Y is strictly included in Y (see Remark 1.1 and Fig. 3(a)). In this case, the pressure’s
extension converges strongly in L*(2)/R (without the “loc”) if we get rid of the solid parts ¥
which cut the boundary 9£2.

The originality of the present paper comes from the proof of Theorem 2.3 which follows the
lines of Tartar’s proof but needs additional ideas, due to the more complex geometry. Another
original aspect is the “local” convergence of the pressure’s extension in Theorem 2.1 (this is a
consequence of the diphasic boundary 9(2). Polisevsky has also proved theorems similar to
Theorems 2.1 and 2.3 (see [6] or [2, Chapter 1, Section 5]), but his pressure’s extension converges
in L*3(Q) instead of L*(Q).

Whereas R, is explicitly constructed (see the proof of Theorem 2.3 in Section 3), the extension
P, of the pressure p, is not explicitly constructed but is derived from R, through a theoretical
“duality” argument. An interesting problem is then to find the explicit values of P, in the “solid
part™ £ — .. Lipton and Avelladena [4] work out this problem, and we reproducc their
important result.

Theorem 2.6. Let R, be the operator of L{[Hy(C)1"; [Hy(2)]"} whict is explicitly constructed
in the proof of Theorem 2.3. Then the extension P, of the pressure p,, wi ch is derived from R, in
Theorem 2.1, satisfies the following:
(i) P,=p, in the fluid part §2,
(1) in each cell Y included in C,, P, is a constant in the solid part Ys, which is explicitly given
by

1
| ¥z,

£

f p. in Y¢.
Yi

The proofs of Theorems 2.3 and 2.6 can be found in Section 3.
2.2. Some technical lemmas

Lemma 2.7 (Poincaré’s inequality in £2,). There exists a constant C which depends only on Yy, and
not on Q or e, such that, for each u € HXR,), one has || ul| ey < Cel|Vull p2q)

Proof. See [8]. O
Lemma 2.8. Let w be a bounded, connected, open set of R™, with a locally Lipschitz boundary. Let
p be a distribution in w. If Vp<[H Y(w)]", then pe€ L*(w)/R and one has || p|| LAe)/R S

CIVP |l 41wy Where the constant C depends only on « (and not on p).

Proof. See [5]. O
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Lemma 2.9. Let w be a bounded, connected, open set of R™, with a locally Lipschitz boundary. Let
fe[H Y(w)]" such that, for each u € [Hi(@)]™ withv -u=0 in w, one has { f, u)y 1 gy =0;
then there exists p € L*(w)/R such that f=Vp in .

Proof. See [11, Chapter I, Remark 1.9]. O

Lemma 2.10. Let w be a bounded, connected, open set of R™, with a locally Lipschitz boundary.
For each f€ L*(w) with [,f=0, there exists u € [Hy(w)]" such that v -u=fin w. Moreover,
one can choose u in such a way that the application f— u is linear and continuous, with
Il 13y < ClI S| 22y Where the constant C depends only on w.

Proof. Sce [11, Chapter I, Lemma 2.4]. O

Remark 2.11. Lemmas 2.8 through 2.10 are strongly connected. For example, Temam proved
Lemmas 2.9 and 2.10 in [11] with the help of Lemma 2.8 proved by Necas in [5]. If w has a
boundary of class C?, Tartar gives a self-contained proof of Lemmas 2.8-2.10 in [10, pp. 26-31]
(see also [3, Chapter 1, Section 2] which reproduces the proof of Tartar).

2.3. Proof of convergence

This section is devoted to the proof of Theorem 2.1 under the assumption that Theorem 2.3
holds true. The proof is divided into two parts:

(2.3.1) extending the pressure,

(2.3.2) passing to the limit in the equations.

Part (2.3.1) follows [8] with slight modifications due to the “local” character of convergence of
the pressure’s extension. Part (2.3.2) reproduces [8] and is given here in order for the present
paper to be self-contained.

2.3.1. Extending the pressure
Multiplying the following equation by u,

vp,—Au,=f in £, (1.5)
and integrating by parts on £,, we obtain

IVl 20,y = f”‘_f- u,. (2.1)
Using Lemma 2.7 we find that

IVl 12y < Cell Fl 1200 (2.2)
implying

el 222y < CE NI 120y (2.3)

Thus i,/¢* is a bounded sequence in [L2(2)]", and therefore we can extract a subsecquence such
that there exists u € [L*(2)]" with

ii,/e* > u in [LZ(SZ)]N weakly. (2.4)
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While the velocity u, can be naturally continued by zero in £ — 2, it is not obvious to
construct an extension to §2 of the pressure p, (which is defined only on £,). With the help of

Theorem 2.3 this will be achieved.
Let F, be defined in [H ~1(C)]Y by the following formula (see (1.4) for the definitions of C,
and 2)):

N
for each v € [H(}(C,,)] (F, 0)p v mycy= VP ROy myar (2.5)
where R, is glvcn by Theorem 2.3 (we also denote by Vp, the restriction of vp, to £2)).

Because R, is linear, F, is a linear functional on [H}(C)]". In order to estimate its norm, we
write

(F, 0) g ey ={f+ Au,, Rp)y A2

Integrating by parts, we obtain
(Fo U)g1 micey = f FoR Y= f vu, - V(Rp).
@ @

With the help of property (iv) of Theorem 2.3 and of inequality (2.2) we can majorate the
functional and we obtain

[CE 00 ey | S CIT | 1212y + el V0l 12 | (2:6)

Thus, if e <1, || F || g1y S C I I 1200y

Moreover property (iii) of Theorem 2.3 implies that, for each v € [H(C,)]¥ withv -v=01in C,,

we have (F,, v)y-1 gy, =0. Applying Lemma 2.9 we deduce the existence of P, € L*(C)/R

such that FE v P, in C.. On the other hand, Lemma 2.8 provides an estimate of P, dcpendmg on

the norm of its gradient: :

||P ||1 C)/R = C”F || H ‘(c) C||f||1 “(82): (2-7)

Thus we have defined P, on C,, and we complete this definition on £ — C, with
P=p, on(R-C)Nng, P=0 on(2-C)-Q.. (2.8)

Now we prove that P, is an extension of p, with the help of property (ii) of Theorem 2.3: for
each v € [Hy(2))]" we have R =v in £/, implying

(VP Dy v miicy =V Pes V)u=1 1

which is equivalent to

[Py -i=[Pv-v={p¥
€L 2! Q!

Thanks to Lemma 2.10 we can assert that, for each f& L*(2!) with Jorf=0, there exists
ve[H)R)H]Y such that vV -v=f in £/. Then Jo: f(P.—p)=0 for each fe L*(82!) with
Jo:f=0 implying (P, —p)=01in L 2(2)H/R. Morcover, by definition (2.8) we have P, =p, on
(Q C.) N 2,, so we can conclude P, = p, in £, (up to an additive constant). Thus P, is strictly
an extension of the pressure p..
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Now we prove the existence of p € L*(2)/R such that P, — p in L} _(2)/R strongly. First

recall the estimate (2.7): || P, || ;2w < C |l f || 12(g)- For cach open set w, strictly included in 2,
choose sufficiently smalil values of & such that « < C.. Thus one can deduce from (2.7) that
Il Pl 120y < Cl f Il 12gy- This means that P, is bounded in L,.(£2)/R. So we can extract a
subsequence, still denoted by P,, and there exists p € L3, .(2)/R such that P, - p in L (2)/R
weakly. Because of the weak convergence of P, in L%(w)/R, we have, for any open set w strictly
included in £,

N2l 2oy m < liﬂi()nf I Pl 22wy m -

By combining this estimate with inequality (2.7), we obtain || p|| ;2(uym < C|| f || 12(e) for each
w C C £ and C does not depend on w, implying p € L*(£2)/R (there is no more “loc”).

To show that the convergence of P, to p is, in fact, strong in Lj (2)/R, we consider a
sequence w, such that w, »w in [Hj(w)]" weakly, where « is a smooth open set, strictly
included in £2. Consider the following inequality:

KV P, Wb ' iy — V2 W iy | S KV P, we—w) |+ [{VE,—Vp, w)|.
(2.9)

Integrating by parts on w the second right-hand side member of (2.9), we obtain

(P, =" W' —fw(PrP)V =i

because P, — p in L*(w)/R weakly. Using inequality (2.6) for the first right-hand side member

&

of (2.9), we obtain

VP, w,=w) | <C| fll L”(ﬂ)[ W, =Wl 20y T EIl VW, — VW] !.l(w)] . (2.10)
By the definition of w,, we have that (vw,) is bounded in [L*(w)]" " By virtue of Rellich’s
Theorem, w, — w in [L*(w)]" strongly. Recalling inequality (2.9), we have

|<VP€‘ we‘) = <VP, W> |-u 250

=0
for each sequence w, which converges weakly in [H;(w)]". This is just the definition of the
strong convergence of VP, in [H '(w)]". Because w has a smooth boundary, we can apply
Lemma 2.8, and we obtain P, - p in L*(w)/R strongly and this is true for each smooth open set
w strictly included in §2. Thus we can conclude P, — p in L3 (2)/R strongly.

2.3.2. Passing to the limit in the equations
We apply the energy method introduced by Tartar in [9] (see also [1]). First we multiply the
equation v - u, =0 by ¢ € H'(2), and we integrate by parts on 2. We obtain
AvaRE7 =0 & -— ﬂpv e ﬁf‘f’I;O
fsz( i) vls; ? faxa(p

and [,o¢ii, - n =0 because i, € [Hy(2)]". We pass to the limit ¢ > 0, and we get

fszu.v‘b:O > —_/;2¢V-u+ opu-n=20

982



G. Allaire / Homogenization of Stokes flow in a porous medium 215

and this is true for each ¢ € H'(2). Thus,
v-u=0 inQ (in H'(£)),
u-n=0 ond® (in H 2(3Q2)),

On the other hand, using definition (1.11), we define the following functions: let (v, gx) €
[HY(2)]" X [L*(£2,)] such that

{v‘k(x) = vk (x/¢),

(2.11)

W L (extended in £ by eY-periodicity). (2.12)
k(X)) =4k

(v%, gx) satisfy the following system:

VgL —eAvi=e, inf, V-vg=0 inQ, ve=0 in -8, (2.13-15)
with the following estimates:

lax Il L2, < C, okl 12¢2y < €5 | Vgl L2 < C/e (2.16; 17)

where C does not depend on e. Moreover, classically we know that

g —0 in [LZ(SZ)/R] weakly,
vt — Lf”x()’) dy=de, in[L*(2)]" weakly.
Y1 Jy

Let ¢ € 2(£2). We multiply the equations (2.13) by ¢ii,, and (1.5) by ¢vj, and we integrate by
parts on {2. We obtain

vaK v (i) qu{ii Vot — fue,(-iisqb, (2.18)

[va.v (p05) ff UK¢+vaK V. (2.19)

For Guffiuently small values of &, we have Support(¢) C C,. Consequently, the local but strong
convergence of P, in L% (£2)/R is sufficient to pass to the limit in the following term:

j;JPev}- V¢ET€)£2P(I3K) -V,

Therefore we have

fVUK (oii,) 5 fqbu €x,

J v v (9vk) = =0 [ o (Aex) = [ o(de
Q
On the other hand, using the estimates of %, and vy we obtain

fVﬁe'VWUE)—fVU}-V(qbﬁE) < Ce 0.
Q Q
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Hence,

fm‘f’“'e,’(: fﬂﬁbf‘ (A_"K) = fﬁ«bvp-(A_eK)

and this is true for each ¢ € 2(2). Thus, u=A(f— vp) in 2’(2). Recalling (2.11) we obtain
(S):

(S): v [A(f-vp) =0 inQ,  [A(f-Vp)]-n=0 onadQ. (1.10)

A classical result asserts that (S) has a unique solution p € H'(2)/R; therefore, not only a
subsequence, but the whole sequence P, converges to p in Li,.(£)/R. The same result holds for
the velocity: the whole sequence i, converges to u in [L*(£2)]" weakly. And thus Theorem 2.1
has been proved.

3. Construction of the operator R,

The third section of this paper is devoted to the proofs of Theorems 2.3 and 2.6. First we
establish two important lemmas in order to deal, just afterwards, with the proof of Theorem 2.3.
Lastly we reproduce the proof of Theorem 2.6 following [4].

The idea of the construction of an operator R,, which satisfies the properties of Theorem 2.3
in order to extend the pressure, is due to Tartar [8]. Unfortunately, his construction of R, applies
only to the case where Yy is strictly included in Y and is explicitly local in each cube Y. We
propose a generalization of this result when Yy is no longer strictly included in Y, and, in this
case, the construction of R, is partly global (because of the introduction of an operator @, which
projects HM(C,) on H}(2.)), and partly local (because R, is still constructed in each cube Y). In
fact, Q,u defines the boundary values on 3Y;° of the function R,u in each cell Y;".

Remark 3.1. Using several trace properties of the functions belonging to W8(Y), Polisevsky has
constructed in [6] (see also [2, Chapter 1, Section 5]) an operator R, in the case where ¥ is not
strictly included in Y. But R, operates from [W, ()], instead of [H(£)]’, into [H(2.)]°.

Remark 3.2. Why do we choose to construct R, € L{[Hy(C,)]"; [Hy(2.)]"} and not, “more
naturally”, R, € Z{[H))]"; [H(2,)]")? This difference between & and C,, or £, and &, is
the reason why the pressure’s extension P, converges “locally” in L1.(2)/R. (Recall that this
local convergence is sufficient to pass to the limit in the equations). The answer is that the
construction of R,u in each cell Y is reduced, with the help of the translation-homothety =/, to
the construction of Ru in the unit cell ¥ (see Lemma 3.4). Now, if the cell ¥ is “cut” by the
boundary 32, the construction of R,u in ¥* N 2 is reduced to the construction of Ru in a part
of Y which can have a very small size compared with Y (and we cannot “control” this size).
Unfortunately, the various constants C which appear in the estimates of Lemmas 2.10 and 3.4,
depend strongly on the size of the considered open set. And because we cannot estimate those
constants for any small subset of ¥, we cannot obtain estimate (iv) of Theorem 2.3 if we define
R,u in 2 instead of C,.
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Lemma 3.3. There exists a linear continuous operator Q. such that
(i) Q. €L([Hy(C)Y; [Ho(21"),
(i) ue[HYQ) implies Q. ii=uin £,
(iil) for each u € [Hy(C,)]" we have
1 Q.ull 2o T ell V(Q.u) |l 120 < C[ Null 2y T el Vull 2y

where the constant C depends only on Yy, and not on e.

Proof. There are many ways to construct such an operator Q,. We choose the following one: let
u € [HY(C,)]". We consider the following problem:

find v, € [Hé(ﬂ;)]N such that —Au, = —Au in £,. (31)

Thanks to the Lax—Milgram Theorem, we know that this problem has a unique solution v,
belonging to H,(§2.). Then we define Q, by

Qu=uv, (3.2)

Properties (i) and (ii) of Q, can be easily checked, and in order to obtain estimate (iii), we
multiply equation (3.1) by v, and we integrate by parts on 2.

2
[1vet?= [ oo vu = Ivelize < 1Vull .
Using Lemma 2.7 (Poincaré’s inequality), we obtain estimate (iii) with Q u = u,:

10,0l 2@ + el Vol an < €[ Null ey + el Vull 2y - D

Lemma 3.4. Let Q be a linear operator belonging to F{[H'( Y [HN(Y)]Y) satisfying
foreachue [H\(Y)]" Qu=0 in Y. (3.3)

We consider the following problem:

find (v, q) € [H'(Yg)]™ x [L*(Yy)/R] such that
vq—Av= —Au in Yg,

1 .
V‘U_V‘LH-|Y1..|fysv-u in Yy, (5.4
_ Pk = .
v=Qu+ fﬁ(u—Qu)-eK e on B M Y,

IR
v=0 on dYs.

Then we have the following results:
(i) (3.4) has a unique solution,
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(ii) the application R defined by Ru = v belongs to L{[H(Y)"; [H (Yp)IV},
(ili) for each u € [H(Y)]" we have
| Rull gy, < C[ N2l ooy + 11 Qull Hx(y)] where C depends only on Y.

N.B.: See (1.2) for the definitions of ¢ and .

Proof. A necessary condition for the existence of a solution of (3.4) is the following compatibility
condition:

vV u= v-n. 3.5
Y -[()YF ( )

If in this formula we substitute the functions by their assigned values given in (3.4), we obtain

1
fivom f|veut i 7 e - S um [

and

+ N

(LK(“ — Qu) 'eK)eK cex

f von=
oYy

P
QOu +
L f bk

K=-N"=g
K+#0
“~K

+N
= u-ex+ u—Qu) ex|= u-n.
T [[ oot [ am00)ee] - [
K+#0
So (3.5) is satisfied.
In order to show that system (3.4) has a unique solution, we transform (3.4) into a
divergence-free system with homogeneous boundary conditions. Let u; be defined in [H e
by

+N ®
u=Qu+ ) £ l:f1(”_Q”)‘€K:|3K- (3.6)

Ko=—N Tk
k+0 | %x
"

It is easy to see that if v is a solution of (3.4), we have (v —u;) € [H)(Ye)]Y. Moreover, because

Yy is connected with a locally Lipschitz boundary (see assumption (1.1)) we can apply Lemma
2.10 (about the lift of divergence): there exists u, € [HY(Yp)]"Y such that

1 .
Vou,=|V-u-v-uy+-——[ V-u| inYg
[ Ye |y
and
N2 |l v,y < C[ ]l gory + 11 Qull H'(Y)]- (3.7)

Consequently, finding a solution (v, g) of (3.4) is equivalent to finding a solution (u5; q) =(v—
u, — uy; q) € [Hy(Yp)]Y X [L*(Yg)/R] of the following system:

Vq_Au3= "‘A(u_ uq_ - uz) ln YF' v 'u3 =O lIl YF‘ (3.8)
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Because Y7 is connected with a locally Lipschitz boundary, classical results (see, for example,
[11, Chapter 1, Section 2]) state that there exists a unique solution of (3.8), which satisfies

|V usll 2y < £ | v~ —uy) || L12(Ye) " (3.9)

Then (3.4) has also a unique solution (v, g).
This allows us to define an application R by the following formula:

for each ue [H'(Y)]" Ru=v in Yy
It is easy to see that R € Z{[H'(Y)]"; [H'(Yy)]"}, and recalling estimates (3.9), (3.7) and (3.6)
we obtain

| Ru |l v,y < C[ N2l vy + | Qul H'(}’)]

where C depends only on Yg, because the functions ¢, depend only on Y. too. Note that C does
not depend on Q, provided (3.3) holds true. And thus Lemma 3.4 has been proved. 0O

Proof of Theorem 2.3. Let (Y*)¥% be the cubes which cover 2. Let C, be the polygonal open set
such that (%ee (1.4)) C,= U,e,me with I(e)={i€[l; N(e)] | Y 2}. Let u€e [HHCH".
Recall that «#° is the translation— homothety which maps Y;* on Y (see (1.3)).

We define R u by its values in each cell Y C §2, which are denoted by R,u|y.:

Ruly=|R(uo(af) V) om in¥ (3.10)
where R is defined by Lemma 3.4 in which Q is defined by
: Q.u in Yg,
e 1 & ik = € i
[0(u o (m) 1)) o mf = {0 in ve. (3.11)

Definition (3.10) is meaningful, provided that the operator Q defined by (3.11) satisfies the
assumptions of Lemma 3.4. And it is clear that property (i) of Q, (defined by Lemma 3.3)
implies condition (3.3) of Lemma 3.4.

By its very construction, R,u|y. satisfies

there exists g, € L*(Y£ ) /R such that
vq.— A(Ru|y) = —Au in Yg,

V-(R,:ulylr)=v-u+ = fv-u in Yg,
ReEARgs
(3.12)

o W_E
R6u|xs=Q5u+¢—Kf¥[f (u—Q{.u)-eKleK on X%,
28

f Pg © 7
=

’
K

Ruly.=0 on 0¥g.

Thus R,u is defined on 2, = U;F 1y Y5+ It Temains to prove properties (i) to (iv) of R..
(i) Do we have R, Ei"{[HO(C 0 [H{)(SZ )1V }? By construction, R, is linear becau‘;e R is
linear. Moreover, it is easy to see in (3.12) that R,u =0 on 382, =9C, U {U,dYSE k.
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But it is crucial to check that R,u € [H}(£2.)]". Because R u<[H'(Y{)]Y for each i € I(e), it
remains to show that R, u is continuous through the faces of Y[.

(3.12) = R?u=Qeu+M[j‘ (u—Q.u)- eK]eK on X%

ox ° 7/ e
b

By construction (see (1.2)) the functions ¢, are equal on opposite faces of the same cell Y, and,
by definition, Q.u € [Hy(2.)]"; then R,u is continuous through X} and R, €
LLHNCO; [HI@IY).

(ii) If u[H}(2.)]"Y, then Lemma 3.3 implies that Q.& = « in £;. Then, from (3.11), we have
Q(u o nf)=u o #f in Y. In this case, the system (3.4) has an obvious solution which is u, and
the uniqueness of the solution implies that R(u o 7f) =u ° « in Yp. Thus, R =u in Q.

(iii) If v -u=0in C,, then from (3.12) we deduce that v - (R,u) =0 in £,

(iv) Fstimate of the norm of R,u: let ¢ € H'(Y). The norm of ¢ o «% in H'(Y,") in terms of
the norm of ¢ in H(Y) is given by

: . 1 i
[#)dy= [ [¥ o m(2] - Jac vt |dx= = [ (¥ o )" dx
¥ ) g Jyr
and
2
fve1*dar= f T H( )||v(¢ A \Jam|dx——f|v(¢ow)| dx.
Consequently, the estimate of Lemma 3.4 becomes, after the change of variables /",
| R .u ||1%2(Y;,) +& || v (R,u) ||L21(Y|‘.,)
< C[ || u ”Ez(Y,‘) + || Q.u ”12.2(}’,‘.-,) T 52( | v u ||33(1f,’) + | v(Q.u) ||z'l(y;}))]- (3.13)

After summation of the estimates (3.13) for each i € I(¢), we obtain

2 2 2
| R.ull 20+ €|l v (R.u) |72

2 2 2 2 4
< C[ [ ”L:!(('.‘,) + || Qu ||1,2(sz;) +& ( || v u ||Ll(c1,) + | V(QE”) “1:'(9:))]»
and with the help of estimate (iii) of Lemma 3.3, we get
2 2 2 2 2 2
| Reutll 2oy + €7 |l V(R.u) l22e < C[ lull 2y tellVu ||L3((,',)]

where C depends only on Yi (and not on ). This inequality is just property (iv) we were looking
for. Thus, Theorem 2.3 has been proved. O

Proof of Theorem 2.6. Let us first show that the pressure’s extension P, is a constant in the solid
part ¥ of each cell included in C,.

Let w be a function of [C*(Yg )]N with compact support contained in Yg (i.e. w € [Z( YE)] ).
By its very construction in Lemma 3.3, the operator Q, is such that Q.w = 0 in (718 Furthermore,
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system (3.12), which is satisfied by R ,w in Y}, reduces to

there exists ¢, € L*(Y£ ) /R such that
vqg,—A(Rw)=—-Aw=0 in Y§,
: 3.14
v (Rw)=—— [ vw=0 in Y;, A
¥¢
Rw=0 on dYg

because w has a compact support contained in Yg;. Then, (3.14) implies that R, w =0 in Yf,
which means that

Rw=0 1in 2]. (3.15)
Recall definition (2.5) of P (VP, W)y 1 gic)= (VP RW)py1 miy- Then, for each we
[2(Y:

(VP,w)=0 o [ Pv-w=0 (3.16)
Yé

Using Lemma 2.10 this implies that P, is a constant in each solid part Y.

Let us now compute explicitly the value of this constant in each Y. Let v be a function of
[C*(Y#)]Y with compact support contained in the cell Y (i.e., v E 9( Y*)] ). Remark that v is
different from the previous function w because the compact support of v is contained in Y,
while the support of w is in Yg which is strictly included in Y. Recalling the definition (2.5) of
P, we obtain

(VP,, )y miccy = (VP RU) g1 myany = fY,PSV U= fYrPsV “(Rp). (3.17)
i F;

By the very construction of R, and P,, we have
De in Yg,
“" | constant in Ys

and (see (3.12))

1
vV-(Ry)=v- -0+ Vv in Yg
i |75 | J e :
We substitute in (3.17)
Ev 5 e PF )V v = € 7 i
P fY;( )V 0 fY;‘p P T
1
Pl - ; . 3.18
( E'Yﬂ:)fysfv v ( v 7 v) e (3.18)
and this is true for each v € [2(Y")]". Thus,
| v = ! ; 3.19
| 4 | Y; ‘ fYF‘.p ( )
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This proves the fact that the pressure’s extension P, is constant in the solid part of each cell
included in C,, and (3.19) gives the value of the constant. O
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