MASTER M2 E.D.P. ET ANALYSE NUMERIQUE UNIVERSITE PARIS 6 - ECOLE POLYTECHNIQUE

Cours de G. Allaire

Devoir facultatif, novembre 2010 (2 heures)

On attachera le plus grand soin à la rédaction et à la présentation claire et lisible des résultats dont il sera tenu compte lors de la correction.

Soit Ω un ouvert borné régulier de \mathbb{R}^N . On suppose que ce domaine est occupé par un mélange périodique de fluides visqueux, et on s'intéresse à l'homogénéisation de ce mélange. Soit $\mu(y) \geq \mu_0 > 0$ une fonction positive dans $L^{\infty}_{\#}(Y)$ qui représente la viscosité du mélange dans la cellule de périodicité $(Y = [0, 1]^N)$ est le cube unité). Pour $\epsilon > 0$, on définit la fonction oscillante périodiquement $\mu_{\epsilon}(x) = \mu(x/\epsilon)$. On considère les équations de Stokes

$$\begin{cases}
\nabla p_{\epsilon} - \operatorname{div} (\mu_{\epsilon} \nabla u_{\epsilon}) = f \operatorname{dans} \Omega \\
\operatorname{div} u_{\epsilon} = 0 \operatorname{dans} \Omega \\
u_{\epsilon} = 0 \operatorname{sur} \partial \Omega,
\end{cases} \tag{1}$$

où la fonction scalaire $p_{\epsilon}(x)$ est la pression, la fonction vectorielle $u_{\epsilon}(x)$ est la vitesse, et la fonction vectorielle f(x) est la résultante des forces. On admettra que, si $f \in L^2(\Omega)^N$, alors il existe une unique solution de (1) avec $u_{\epsilon} \in H^1_0(\Omega)^N$ et $p_{\epsilon} \in L^2(\Omega)/\mathbb{R}$ (la pression est définie à une constante près).

1. Soit $g \in L^2_{\#}(Y)^N$ et $h \in L^2_{\#}(Y)$. Montrer que le problème suivant

$$\begin{cases} \nabla_y q - \operatorname{div}_y(\mu(y)\nabla_y w) = g \operatorname{dans} \Omega \times Y, \\ \operatorname{div}_y w = h \operatorname{dans} \Omega \times Y, \\ y \to (q, w) \ Y - \operatorname{p\'eriodique}, \end{cases} \tag{2}$$

admet une unique solution (q,w) dans $(L^2_\#(Y)/I\!\! R)\times H^1_\#(Y)^N$ si et seulement si on a

$$\int_{Y} g(y)dy = 0 \quad \text{ et } \quad \int_{Y} h(y)dy = 0.$$

2. Appliquer la méthode des développements asymptotiques à deux échelles à (1) et en déduire formellement le problème homogénéisé. Indication: on pourra utiliser les développements suivants

$$u_{\epsilon}(x) = \sum_{i=0}^{+\infty} \epsilon^{i} u_{i}(x, \frac{x}{\epsilon})$$
 et $p_{\epsilon}(x) = \sum_{i=-1}^{+\infty} \epsilon^{i} p_{i}(x, \frac{x}{\epsilon})$

où la série pour la pression démarre à un ordre plus élevé que celle sur la vitesse.

3. En multipliant l'équation (1) par u_{ϵ} et en intégrant par parties, montrer que la suite u_{ϵ} , lorsque ϵ tends vers 0, est bornée dans $H_0^1(\Omega)^N$. En déduire que la suite ∇p_{ϵ} est bornée dans $H^{-1}(\Omega)$. On admettra dans la suite que ce dernier résultat implique que la suite p_{ϵ} est bornée dans $L^2(\Omega)/\mathbb{R}$.

- 4. Montrer que, pour une sous-suite, u_{ϵ} converge faiblement vers u dans $H_0^1(\Omega)^N$, ∇u_{ϵ} converge à deux échelles vers $\nabla_x u(x) + \nabla_y u_1(x,y)$ avec $u_1 \in L^2(\Omega; H_\#^1(Y))^N$, et p_{ϵ} converge à deux échelles vers $p_0(x,y) \in L^2(\Omega \times Y)$. Montrer aussi que ces limites vérifient div $_xu=0$ dans Ω et div $_yu_1=0$ dans $\Omega \times Y$.
- 5. Déduire de (1), par convergence à deux échelles, le problème de cellule suivant

Donner une expression de u_1 en fonction de $\nabla_x u$.

- 6. En multipliant (1) par une fonction test (à valeurs vectorielles) $\phi(x) + \epsilon \phi_1(x, x/\epsilon)$ avec $y \to \phi_1$ Y-périodique, en déduire le système limite vérifié par u, u_1, p_0 .
- 7. En éliminant la variable microscopique y trouver le système homogénéisé satisfait par u(x) et $p(x) = \int_Y p_0(x,y)dy$. En admettant qu'il possède une solution unique dans les mêmes espaces fonctionnels que (1), en déduire que toute la suite u_{ϵ} et p_{ϵ} converge vers une unique limite.