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LECTURE 1

INTRODUCTION TO HOMOGENIZATION THEORY

Grégoire ALLAIRE

Ecole Polytechnique

CMAP

91128 Palaiseau, France

This lecture is devoted to a brief introduction to the mathematical theory of homog-

enization. For a more advanced presentation of homogenization, the reader is referred to

the books [2], [5], [6], [11], [12], [21], [27], [32] and [33]. Roughly speaking, homogeniza-

tion is a rigorous version of what is known as averaging. In other words, homogenization

extracts homogeneous effective parameters from disordered or heterogeneous media.

Homogenization has first been developed for periodic structures. Indeed, in many

fields of science and technology one has to solve boundary value problems in periodic me-

dia. Quite often the size of the period is small compared to the size of a sample of the

medium, and, denoting by ǫ their ratio, an asymptotic analysis, as ǫ goes to zero, is called

for. Starting from a microscopic description of a problem, we seek a macroscopic, or effec-

tive, description. This process of making an asymptotic analysis and seeking an averaged

formulation is called homogenization. The first chapter will focus on the homogenization

of periodic structures. The method of two-scale asymptotic expansions is presented, and

its mathematical justification will be briefly discussed.

However we emphasize that homogenization is not restricted to the periodic case and

can be applied to any kind of disordered media. This is the focus of the second chapter

where the notion of G- or H-convergence is introduced. It allows to consider any possible

geometrical situation without any specific assumptions like periodicity or randomness.
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Chapter 1

Periodic homogenization

1.1 Setting of the problem.

We consider a model problem of diffusion or conductivity in a periodic medium (for exam-

ple, an heterogeneous domain obtained by mixing periodically two different phases, one

being the matrix and the other the inclusions; see Figure 1.1). To fix ideas, the periodic

domain is called Ω (a bounded open set in R
N with N ≥ 1 the space dimension), its

period ǫ (a positive number which is assumed to be very small in comparison with the

size of the domain), and the rescaled unit periodic cell Y = (0, 1)N . The conductivity in

Ω is not constant, but varies periodically with period ǫ in each direction. It is a matrix (a

second order tensor) A(y), where y = x/ǫ ∈ Y is the fast periodic variable, while x ∈ Ω

is the slow variable. Equivalently, x is also called the macroscopic variable, and y the

microscopic variable. Since the component conductors do not need to be isotropic, the

matrix A can be any second order tensor that is bounded and positive definite, i.e., there

exist two positive constants β ≤ α > 0 such that, for any vector ξ ∈ R
N and at any point

y ∈ Y ,

α|ξ|2 ≤

N
∑

i,j=1

Aij(y)ξiξj ≤ β|ξ|2. (1.1)

At this point, the matrix A is not necessarily symmetric (such is the case when some drift

is taken into account in the diffusion process). The matrix A(y) is a periodic function

of y, with period Y , and it may be discontinuous in y (to model the discontinuity of

conductivities from one phase to the other).

Denoting by f(x) the source term (a scalar function defined in Ω), and enforcing a

Dirichlet boundary condition (for simplicity), our model problem of conductivity reads














−div
(

A
(x

ǫ

)

∇uǫ

)

= f in Ω

uǫ = 0 on ∂Ω,

(1.2)
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Figure 1.1: A periodic domain.

where uǫ(x) is the unknown function, modeling the electrical potential or the temperature.

Remark 1.1.1 From a mathematical point of view, problem (1.2) is well posed in the

sense that, if the source term f(x) belongs to the space L2(Ω) of square integrable func-

tions on Ω, then the Lax-Milgram lemma implies existence and uniqueness of the solution

uǫ in the Sobolev space H1
0 (Ω) of functions which belong to L2(Ω) along with their first

derivatives. Furthermore, the following energy estimate holds

‖uǫ‖L2(Ω) + ‖∇uǫ‖L2(Ω) ≤ C,

where the constant C does not depend on ǫ.

The domain Ω, with its conductivity A
(

x
ǫ

)

, is highly heterogeneous with periodic

heterogeneities of lengthscale ǫ. Usually one does not need the full details of the variations

of the potential or temperature uǫ, but rather some global of averaged behavior of the

domain Ω considered as an homogeneous domain. In other words, an effective or equivalent

macroscopic conductivity of Ω is sought. From a numerical point of view, solving equation

(1.2) by any method will require too much effort if ǫ is small since the number of elements

(or degrees of freedom) for a fixed level of accuracy grows like 1/ǫN . It is thus preferable

to average or homogenize the properties of Ω and compute an approximation of uǫ on a

coarse mesh. Averaging the solution of (1.2) and finding the effective properties of the

domain Ω is what we call homogenization.

There is a difference of methodology between the traditional physical approach of

homogenization and the mathematical theory of homogenization. In the mechanical lit-

erature, the so-called representative volume element (RVE) method is often used (see [8],

or Chapter 1 in [17]). Roughly speaking, it consists in taking a sample of the heteroge-

neous medium of size much larger than the heterogeneities, but still much smaller than the
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medium, and averaging over it the gradient ∇uǫ and the flux A
(

x
ǫ

)

∇uǫ. Denoting by ξ the

average of the gradient and by σ that of the flux, the effective tensor of conductivity A∗ of

this sample is defined by the linear relationship σ = A∗ξ. It turns out that the averaged

stored energy A
(

x
ǫ

)

∇uǫ · ∇uǫ is also equal to the effective energy A∗ξ · ξ. Although this

type of definition is very intuitive, it is not clear whether it defines correctly an effective

tensor A∗. In particular, it may depend on the choice of source term f , sample size, or

boundary conditions.

The mathematical theory of homogenization works completely differently. Rather

than considering a single heterogeneous medium with a fixed lengthscale, the problem is

first embedded in a sequence of similar problems for which the lengthscale ǫ, becoming

increasingly small, goes to zero. Then, an asymptotic analysis is performed as ǫ tends

to zero, and the conductivity tensor of the limit problem is said to be the effective or

homogenized conductivity. This seemingly more complex approach has the advantage of

defining uniquely the homogenized properties. Further, the approximation made by using

effective properties instead of the true microscopic coefficients can be rigorously justified

by quantifying the resulting error.

In the case of a periodic medium Ω, this asymptotic analysis of equation (1.2), as

the period ǫ goes to zero, is especially simple. The solution uǫ is written as a power series

in ǫ

uǫ =

+∞
∑

i=0

ǫiui.

The first term u0 of this series will be identified with the solution of the so-called homog-

enized equation whose effective conductivity A∗ can be exactly computed. It turns out

that A∗ is a constant tensor, describing a homogeneous medium, which is independent of f

and of the boundary conditions. Therefore, numerical computations on the homogenized

equation do not require a fine mesh since the heterogeneities of size ǫ have been averaged

out. This homogenized tensor A∗ is almost never a usual average (arithmetic or harmonic)

of A(y). Various estimates will confirm this asymptotic analysis by telling in which sense

uǫ is close to u0 as ǫ tends to zero.

Remark 1.1.2 From a more theoretical point of view, homogenization can be interpreted

as follows. Rather than studying a single problem (1.2) for the physically relevant value of

ǫ, we consider a sequence of such problems indexed by the period ǫ, which is now regarded

as a small parameter going to zero. The question is to find the limit of this sequence of

problems. The notion of limit problem is defined by considering the convergence of the

sequence (uǫ)ǫ>0 of solutions of (1.2): Denoting by u its limit, the limit problem is defined

as the problem for which u is a solution. Of course, u will turn out to coincide with u0, the

first term in the series defined above, and it is therefore the solution of the homogenized
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equation. Clearly the mathematical difficulty is to define an adequate topology for this

notion of convergence of problems as ǫ goes to zero.

1.2 Two-scale asymptotic expansions.

1.2.1 Ansatz

The method of two-scale asymptotic expansions is an heuristic method, which allows one

to formally homogenize a great variety of models or equations posed in a periodic domain.

We present it briefly and refer to the classical books [5], [6], and [27] for more detail. A

mathematical justification of what follows is to be found in Section 1.3. As already stated,

the starting point is to consider the following two-scale asymptotic expansion (also called

an ansatz), for the solution uǫ of equation (1.2)

uǫ(x) =

+∞
∑

i=0

ǫiui

(

x,
x

ǫ

)

, (1.3)

where each term ui(x, y) is a function of both variables x and y, periodic in y with period

Y = (0, 1)N (ui is called a Y -periodic function with respect to y). This series is plugged

into the equation, and the following derivation rule is used:

∇
(

ui

(

x,
x

ǫ

))

=
(

ǫ−1∇yui +∇xui
)

(

x,
x

ǫ

)

, (1.4)

where∇x and∇y denote the partial derivative with respect to the first and second variable

of ui(x, y). For example, one has

∇uǫ(x) = ǫ−1∇yu0

(

x,
x

ǫ

)

+

+∞
∑

i=0

ǫi (∇yui+1 +∇xui)
(

x,
x

ǫ

)

.

Equation (1.2) becomes a series in ǫ

−ǫ−2 [divyA∇yu0]
(

x,
x

ǫ

)

−ǫ−1 [divyA(∇xu0 +∇yu1) + divxA∇yu0]
(

x,
x

ǫ

)

−ǫ0 [divxA(∇xu0 +∇yu1) + divyA(∇xu1 +∇yu2)]
(

x,
x

ǫ

)

−

+∞
∑

i=1

ǫi [divxA(∇xui +∇yui+1) + divyA(∇xui+1 +∇yui+2)]
(

x,
x

ǫ

)

= f(x).

(1.5)
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Identifying each coefficient of (1.5) as an individual equation yields a cascade of equations

(a series of the variable ǫ is zero for all values of ǫ if each coefficient is zero). It turns out

that the three first equations are enough for our purpose. The ǫ−2 equation is

−divyA(y)∇yu0(x, y) = 0,

which is nothing else than an equation in the unit cell Y with periodic boundary condition.

In this equation, y is the variable, and x plays the role of a parameter. It can be checked

(see Lemma 1.2.1) that there exists a unique solution of this equation up to a constant

(i.e., a function of x independent of y since x is just a parameter). This implies that u0 is

a function that does not depend on y, i.e., there exists a function u(x) such that

u0(x, y) ≡ u(x).

Since ∇yu0 = 0, the ǫ−1 equation is

−divyA(y)∇yu1(x, y) = divyA(y)∇xu(x), (1.6)

which is an equation for the unknown u1 in the periodic unit cell Y . Again, it is a well-

posed problem, which admits a unique solution up to a constant, as soon as the right hand

side is known. Equation (1.6) allows one to compute u1 in terms of u, and it is easily seen

that u1(x, y) depends linearly on the first derivative ∇xu(x).

Finally, the ǫ0 equation is

−divyA(y)∇yu2(x, y) = divyA(y)∇xu1

+divxA(y) (∇yu1 +∇xu) + f(x),
(1.7)

which is an equation for the unknown u2 in the periodic unit cell Y . Equation (1.7) admits

a solution if a compatibility condition is satisfied (the so-called Fredholm alternative; see

Lemma 1.2.1). Indeed, integrating the left hand side of (1.7) over Y , and using the periodic

boundary condition for u2, we obtain
∫

Y

divyA(y)∇yu2(x, y)dy =

∫

∂Y

[A(y)∇yu2(x, y)] · n ds = 0,

which implies that the right hand side of (1.7) must have zero average over Y , i.e.,
∫

Y

[divyA(y)∇xu1 + divxA(y) (∇yu1 +∇xu) + f(x)] dy = 0,

which simplifies to

−divx

(
∫

Y

A(y) (∇yu1 +∇xu) dy

)

= f(x) in Ω. (1.8)

Since u1(x, y) depends linearly on ∇xu(x), equation (1.8) is simply an equation for u(x)

involving only the second order derivatives of u.
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1.2.2 The cell and the homogenized problems.

The method of two-scale asymptotic expansions give rise to a couple of equations (1.6)

(1.8) that have a mathematical, as well as physical, interpretation. In order to compute

u1 and to simplify (1.8), we introduce the so-called cell problems. We denote by (ei)1≤i≤N

the canonical basis of RN . For each unit vector ei, consider the following conductivity

problem in the periodic unit cell:
{

−divyA(y) (ei +∇ywi(y)) = 0 in Y

y → wi(y) Y -periodic,
(1.9)

where wi(y) is the local variation of potential or temperature created by an averaged (or

macroscopic) gradient ei. The existence of a solution wi to equation (1.9) is guaranteed

by the following result.

Lemma 1.2.1 Let f(y) ∈ L2
#(Y ) be a periodic function. There exists a solution in H1

#(Y )

(unique up to an additive constant) of
{

−divA(y)∇w(y) = f in Y

y → w(y) Y -periodic,
(1.10)

if and only if
∫

Y
f(y)dy = 0 (this is called the Fredholm alternative).

By linearity, it is not difficult to compute u1(x, y), solution of (1.6), in terms of u(x)

and wi(y)

u1(x, y) =

N
∑

i=1

∂u

∂xi
(x)wi(y). (1.11)

In truth, u1(x, y) is merely defined up to the addition of a function ũ1(x) (depending only

on x), but this does not matter since only its gradient ∇yu1(x, y) is used in the homog-

enized equation. Inserting this expression in equation (1.8), we obtain the homogenized

equation for u that we supplement with a Dirichlet boundary condition on ∂Ω,
{

−divxA
∗∇xu(x) = f(x) in Ω

u = 0 on ∂Ω.
(1.12)

The homogenized conductivity A∗ is defined by its entries

A∗
ij =

∫

Y

[(A(y)∇ywj) · ei +Aij(y)] dy,

or equivalently, after a simple integration by parts in Y ,

A∗
ij =

∫

Y

A(y) (ej +∇ywj) · (ei +∇wi) dy. (1.13)

The constant tensor A∗ describes the effective or homogenized properties of the heteroge-

neous material A
(

x
ǫ

)

. Note that A∗ does not depend on the choice of domain Ω, source

term f , or boundary condition on ∂Ω.
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Remark 1.2.2 This method of two-scale asymptotic expansions is unfortunately not rig-

orous from a mathematical point of view. In other words, it yields heuristically the ho-

mogenized equation, but it does not yield a correct proof of the homogenization process.

The reason is that the ansatz (1.3) is usually not correct after the two first terms. For

example, it does not include possible boundary layers in the vicinity of ∂Ω (for details,

see, e.g., [20]). Nevertheless, it is possible to rigorously justify the above homogenization

process (see Section 1.3).

1.2.3 A variational characterization of the homogenized coefficients.

The homogenized conductivity A∗ is defined in terms of the solutions of the cell problems

by equation (1.13). When the conductivity tensor A(y) is symmetric, it is convenient to

give another definition of A∗ involving standard variational principles. From now on we

assume that A(y) is indeed symmetric. Therefore, by (1.13), A∗ is symmetric too, and

is completely determined by the knowledge of the quadratic form A∗ξ · ξ where ξ is any

constant vector in R
N . From definition (1.13) it is not difficult to check that

A∗ξ · ξ =

∫

Y

A(y) (ξ +∇ywξ) · (ξ +∇ywξ) dy, (1.14)

where wξ is the solution of the following cell problem:

{

−divyA(y) (ξ +∇ywξ(y)) = 0 in Y,

y → wξ(y) Y -periodic.
(1.15)

It is well-known that equation (1.15) is the Euler-Lagrange equation of the following

variational principle: Find w(y) that minimizes

∫

Y

A(y) (ξ +∇yw) · (ξ +∇yw) dy

over all periodic functions w. In other words, A∗ξ · ξ is given by the minimization of the

potential energy

A∗ξ · ξ = min
w(y)∈H1

#(Y )

∫

Y

A(y) (ξ +∇yw) · (ξ +∇yw) dy, (1.16)

where H1
#(Y ) is the Sobolev space of Y -periodic functions w with finite energy, namely,

∫

Y

(

w2 + |∇yw|
2
)

dy < +∞.

Remark that all the above equivalent definitions of A∗ are not simple algebraic

formulas, but rather they deliver the value of A∗ at the price of a non-explicit computation

of the solutions of the cell problems. However, in practice one is not always interested in
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the precise value of A∗, but rather in lower or upper estimates of its value. In this respect,

the variational characterization (1.16) of A∗ is useful since it provides an upper bound

by choosing a specific test function w(y). The simplest choice is to take w(y) = 0, which

yields the so-called arithmetic mean upper bound

A∗ξ · ξ ≤

(
∫

Y

A(y)dy

)

ξ · ξ. (1.17)

A lower bound can also be obtained from (1.16) if the space of admissible fields in the

minimization is enlarged. Indeed, remarking that the gradient ∇yw(y) has zero-average

over Y because of the periodicity of w(y), this gradient can be replaced by any zero-average

vector field

A∗ξ · ξ ≥ min
ζ(y)∈L2

#
(Y )N

∫
Y ζ(y)dy=0

∫

Y

A(y) (ξ + ζ(y)) · (ξ + ζ(y)) dy, (1.18)

where L2
#(Y ) is the space of square summable Y -periodic functions. The minimum in

the right hand side of (1.18) is easy to compute: The optimal vector ζξ(y) satisfies the

following Euler-Lagrange equation

A(y) (ξ + ζξ(y)) = C,

where C is a constant (a Lagrange multiplier for the constraint
∫

Y
ζξ(y)dy = 0). After

some algebra, one can compute explicitly the optimal ζξ, as well as the minimal value that

delivers the so-called harmonic mean lower bound

A∗ξ · ξ ≥

(
∫

Y

A−1(y)dy

)−1

ξ · ξ. (1.19)

From a physical point of view, the harmonic mean in (1.19) corresponds to an overall

conductivity obtained by assuming that the values of the conductivity A(y) are placed in

series, while the arithmetic mean in (1.17) corresponds to an overall conductivity obtained

by assuming that the values of the conductivity A(y) are placed in parallel. These estimates

hold true in great generality, but usually are not optimal and can be improved (see [2] in

the case of two-phase composites). Actually, improving the harmonic and arithmetic mean

bounds is one of the main problems of homogenization theory applied to the modeling of

composite materials (see [21] for more details on this issue).

1.2.4 Evolution problem

The previous analysis extends easily to evolution problems. Let us consider first a parabolic

equation modeling, for example, a diffusion process. For a final time T > 0, a source term

f(t, x) ∈ L2((0, T ) × Ω), and an initial data a ∈ L2(Ω), the Cauchy problem is














c
(x

ǫ

) ∂uǫ
∂t

− div
(

A
(x

ǫ

)

∇uǫ

)

= f in Ω× (0, T )

uǫ = 0 on ∂Ω× (0, T )

uǫ(0, x) = a(x) in Ω.

(1.20)
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where A satisfies the coercivity assumption (1.1), and c is a bounded positive Y -periodic

function

0 < c− ≤ c(y) ≤ c+ < +∞ ∀ y ∈ Y.

Remark 1.2.3 It is a well-known result that there exists a unique solution uǫ of (1.20)

in the space L2
(

(0, T );H1
0 (Ω)

)

∩ C([0, T ];L2(Ω)) which, furthermore, satisfies the energy

estimate

‖uǫ‖C([0,T ];L2(Ω)) + ‖∇uǫ‖L2((0,T );L2(Ω)) ≤ C, (1.21)

where the constant C does not depend on ǫ.

One can perform the same two-scale asymptotic expansion on (1.20). The ansatz is

uǫ(t, x) =
+∞
∑

i=0

ǫiui

(

t, x,
x

ǫ

)

,

where each term ui(t, x, y) is a function of time t and both space variables x and y. It

is clear that the time derivative yield no contribution in the two first equations of the

cascade of equations (1.5). However it gives a contribution for the third one. In other

words the cell problem is the same as in the steady case, but the homogenized equation is

changed. The reader will check easily that

u0(t, x, y) ≡ u(t, x), u1(t, x, y) =

N
∑

i=1

∂u

∂xi
(t, x)wi(y),

and the homogenized equation is














c∗
∂u

∂t
− div (A∗∇u) = f in Ω× (0, T )

u = 0 on ∂Ω×]0, T [

u(0) = a in Ω,

(1.22)

where the homogenized tensor is still given by (1.13) and

c∗ =

∫

Y

c(y) dy. (1.23)

We now consider an hyperbolic equation modeling, for example, the propagation of

waves. For a final time T > 0, a source term f(t, x) ∈ L2((0, T )×Ω), a pair of initial data

a ∈ H1
0 (Ω) and b ∈ L2(Ω), the Cauchy problem is



























c
(x

ǫ

) ∂2uǫ
∂t2

− div
(

A
(x

ǫ

)

∇uǫ

)

= f in Ω× (0, T )

uǫ = 0 on ∂Ω×]0, T [

uǫ(0, x) = a(x) in Ω
∂uǫ

∂t
(0, x) = b(x) in Ω.

(1.24)
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where A satisfies the coercivity assumption (1.1), and c is a bounded positive Y -periodic

function.

Remark 1.2.4 It is a well-known result that there exists a unique solution uǫ of (1.24)

in the space C([0, T ];H1
0 (Ω)) ∩ C

1([0, T ];L2(Ω)) which, furthermore, satisfies the energy

estimate

‖
∂uǫ
∂t

‖C([0,T ];L2(Ω)) + ‖∇uǫ‖C([0,T ];L2(Ω)) ≤ C, (1.25)

where the constant C does not depend on ǫ.

Again one can perform a two-scale asymptotic expansion on (1.24) with the ansatz

uǫ(t, x) =

+∞
∑

i=0

ǫiui

(

t, x,
x

ǫ

)

,

where each term ui(t, x, y) is a function of time t and both space variables x and y. As in

the parabolic case, the time derivative yield no contribution in the two first equations of

the cascade of equations (1.5). However it gives a contribution for the third one. In other

words the cell problem is the same as in the steady case, but the homogenized equation is

changed. The reader will check easily that

u0(t, x, y) ≡ u(t, x), u1(t, x, y) =
N
∑

i=1

∂u

∂xi
(t, x)wi(y),

and the homogenized equation is



























c∗
∂2u

∂t2
− div (A∗∇u) = f in Ω× (0, T )

u = 0 on ∂Ω×]0, T [

u(0) = a in Ω
∂u
∂t
(0) = b in Ω,

(1.26)

where the homogenized tensor is still given by (1.13) and c∗ is given by (1.23).

1.3 Mathematical justification of homogenization

This section is devoted to a brief introduction to the mathematical methods that justify

the previous heuristic analysis of homogenization. We consider only two methods out of

many more available.
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1.3.1 The oscillating test function method

The oscillating test function method is a very elegant and efficient method for rigorously

homogenizing partial differential equations which was devised by Tartar [30], [23] (some-

times it is also called the energy method). This method is very general and does not require

any geometric assumptions on the behavior of the p.d.e. coefficients: neither periodicity

nor statistical properties like stationarity or ergodicity. However, for the sake of clarity

we present the oscillating test function method only in the periodic setting. Let us also

mention that this method works for many models, and not only diffusion equations.

Recall that our model problem of diffusion reads

{

−div
(

A
(

x
ǫ

)

∇uǫ
)

= f in Ω

uǫ = 0 on ∂Ω,
(1.27)

where the source term f(x) belongs to L2(Ω). By application of Lax-Milgram lemma,

equation (1.27) admits a unique solution uǫ in the space H1
0 (Ω) which satisfies the a priori

estimate

‖uǫ‖H1
0 (Ω) ≤ C‖f‖L2(Ω), (1.28)

where C is a positive constant which does not depend on ǫ. Estimate (1.28) is obtained

by multiplying equation (1.27) by uǫ, integrating by parts, and using Poincaré inequality.

It implies that the sequence uǫ, indexed by a sequence of periods ǫ which goes to 0, is

bounded in the Sobolev space H1
0 (Ω). Therefore, up to a subsequence, it converges weakly

to a limit u in H1
0 (Ω). The goal is to find the homogenized equation satisfied by u.

Theorem 1.3.1 The sequence uǫ(x) of solutions of (1.27) converges weakly in H1
0 (Ω) to

a limit u(x) which is the unique solution of the homogenized problem

{

−div (A∗∇u(x)) = f(x) in Ω

u = 0 on ∂Ω,
(1.29)

where the homogenized diffusion tensor, A∗, is defined by (1.13).

In order to shed some light on the principles of the energy method, let us begin

with a naive attempt to prove Theorem 1.3.1 by passing to the limit in the variational

formulation. The original problem (1.27) admits the following variational formulation

∫

Ω
A
(x

ǫ

)

∇uǫ(x) · ∇ϕ(x)dx =

∫

Ω
f(x)ϕ(x)dx, (1.30)

for any test function ϕ ∈ H1
0 (Ω). By estimate (1.28), we can extract a subsequence, still

denoted by ǫ, such that uǫ converges weakly in H1
0 (Ω) to a limit u. Unfortunately, the

left hand side of (1.30) involves the product of two weakly converging sequences in L2(Ω),

12



A
(

x
ǫ

)

and ∇uǫ(x), and it is not true that it converges to the product of the weak limits.

Therefore, we cannot pass to the limit in (1.30) without any further argument.

The main idea of the energy method is to replace in (1.30) the fixed test function ϕ

by a weakly converging sequence ϕǫ (the so-called oscillating test function), chosen in such

a way that the left hand side of (1.30) miraculously passes to the limit. This phenomenon

is an example of the compensated compactness theory, developed by Murat and Tartar [22]

[31], which under additional conditions permits to pass to the limit in some products of

weak convergences.

Proof of Theorem 1.3.1. The key idea is the choice of an oscillating test function ϕǫ(x).

Let ϕ(x) ∈ D(Ω) be a smooth function with compact support in Ω. Copying the two first

terms of the asymptotic expansion of uǫ, the oscillating test function ϕǫ is defined by

ϕǫ(x) = ϕ(x) + ǫ
N
∑

i=1

∂ϕ

∂xi
(x)w∗

i

(x

ǫ

)

, (1.31)

where w∗
i (y) are not the solutions of the cell problems, defined in (1.9), but that of the

dual cell problems

{

−divy
(

At(y) (ei +∇yw
∗
i (y))

)

= 0 in Y

y → w∗
i (y) Y -periodic.

(1.32)

The difference between (1.9) and (1.32) is that the matrix A(y) has been replaced by its

transpose At(y). By periodicity in y of w∗
i , it is easily seen that ǫw∗

i

(

x
ǫ

)

is a bounded

sequence in H1(Ω) which converges weakly to 0 (see Lemma 1.3.2 below if necessary).

The next step is to insert this oscillating test function ϕǫ in the variational formu-

lation (1.30)
∫

Ω
A
(x

ǫ

)

∇uǫ(x) · ∇ϕǫ(x)dx =

∫

Ω
f(x)ϕǫ(x)dx. (1.33)

To take advantage of our knowledge of equation (1.32), we develop and integrate by parts

in (1.33). Remarking that

∇ϕǫ =
N
∑

i=1

∂ϕ

∂xi
(x)
(

ei +∇yw
∗
i

(x

ǫ

))

+ ǫ
N
∑

i=1

∂∇ϕ

∂xi
(x)w∗

i

(x

ǫ

)

,

yields

∫

Ω
A
(x

ǫ

)

∇uǫ(x) · ∇ϕǫ(x)dx =

∫

Ω
A
(x

ǫ

)

∇uǫ(x) ·
N
∑

i=1

∂ϕ

∂xi
(x)
(

ei +∇yw
∗
i

(x

ǫ

))

dx

+ǫ

∫

Ω
A
(x

ǫ

)

∇uǫ(x) ·

N
∑

i=1

∂∇ϕ

∂xi
(x)w∗

i

(x

ǫ

)

. (1.34)
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The last term in (1.34) is easily seen to be bounded by a constant time ǫ, and thus cancels

out in the limit. In the first term of (1.34), an integration by parts gives

∫

Ω
A
(x

ǫ

)

∇uǫ(x) ·
N
∑

i=1

∂ϕ

∂xi
(x)
(

ei +∇yw
∗
i

(x

ǫ

))

dx = (1.35)

−

∫

Ω
uǫ(x)div

(

At
(x

ǫ

)

N
∑

i=1

∂ϕ

∂xi
(x)
(

ei +∇yw
∗
i

(x

ǫ

))

)

dx.

Let us compute the divergence in the right hand side of (1.35) which is actually a function

of x and y = x/ǫ

dǫ(x) = div

(

At
(x

ǫ

)

N
∑

i=1

∂ϕ

∂xi
(x)
(

ei +∇yw
∗
i

(x

ǫ

))

)

=
N
∑

i=1

∂∇ϕ

∂xi
(x) ·At(y) (ei +∇yw

∗
i (y)) +

1

ǫ

N
∑

i=1

∂ϕ

∂xi
(x)divy

(

At(y) (ei +∇yw
∗
i (y))

)

. (1.36)

The last term of order ǫ−1 in the right hand side of (1.36) is simply zero by definition

(1.32) of w∗
i . Therefore, dǫ(x) is bounded in L2(Ω), and, since it is a periodically oscillating

function, it converges weakly to its average by virtue of Lemma 1.3.2.

The main point of this simplification is that we are now able to pass to the limit

in the right hand side of (1.35). Recall that uǫ is bounded in H1
0 (Ω): by application of

Rellich theorem, there exists a subsequence (still indexed by ǫ for simplicity) and a limit

u ∈ H1
0 (Ω) such that uǫ converges strongly to u in L2(Ω). The right hand side of (1.35)

is the product of a weak convergence (dǫ) and a strong one (uǫ), and thus its limit is the

product of the two limits. In other words,

lim
ǫ→0

∫

Ω
A
(x

ǫ

)

∇uǫ(x) · ∇ϕǫ(x)dx =

−

∫

Ω
u(x)divx

(

∫

Y

At(y)
N
∑

i=1

∂ϕ

∂xi
(x) (ei +∇yw

∗
i (y)) dy

)

dx. (1.37)

By definition (1.13) of A∗, a simple computation (based on multiplying (1.32) by wj and

(1.9) for the index j by w∗
i ) shows that the right hand side of (1.37) is nothing else than

−

∫

Ω
u(x)divx

(

A∗t∇ϕ(x)
)

dx.

Finally, a last integration by parts yields the limit variational formulation of (1.33)

∫

Ω
A∗∇u(x) · ∇ϕ(x)dx =

∫

Ω
f(x)ϕ(x)dx. (1.38)
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By density of smooth functions in H1
0 (Ω), (1.38) is valid for any test function ϕ ∈ H1

0 (Ω).

Since A∗ satisfies the same coercivity condition as A, Lax-Milgram lemma shows that

(1.38) admits a unique solution in H1
0 (Ω). This last result proves that any subsequence

of uǫ converges to the same limit u. Therefore, the entire sequence uǫ, and not only

a subsequence, converges to the homogenized solution u. This concludes the proof of

Theorem 1.3.1. �

In the course of the proof of Theorem 1.3.1, the following lemma on periodically

oscillating functions was used several times. Its proof is elementary (see if necessary [1],

[11]), at least for smooth functions, by using a covering of the domain Ω in small cubes

of size ǫ and the notion of Riemann integration (approximation of integrals by discrete

sums).

Lemma 1.3.2 Let w(x, y) be a continuous function in x, square integrable and Y -periodic

in y, i.e. w(x, y) ∈ L2
# (Y ;C(Ω)). Then, the sequence w

(

x, x
ǫ

)

converges weakly in L2(Ω)

to
∫

Y
w(x, y)dy.

1.3.2 Two-Scale Convergence

Unlike the oscillating test function method, the two-scale convergence method is devoted

only to periodic homogenization problems. It is therefore a less general method, but

it is rather more efficient and simple in this context. Two-scale convergence has been

introduced by Nguetseng [24] and Allaire [1] to which we refer for most proofs.

We denote by C∞
# (Y ) the space of infinitely differentiable functions in R

N which

are periodic of period Y, and by C#(Y ) the Banach space of continuous and Y-periodic

functions. Eventually, D(Ω;C∞
# (Y )) denotes the space of infinitely smooth and compactly

supported functions in Ω with values in the space C∞
# (Y ).

Definition 1.3.3 A sequence of functions uǫ in L2(Ω) is said to two-scale converge to

a limit u0(x, y) belonging to L2(Ω × Y ) if, for any function ϕ(x, y) in D(Ω;C∞
# (Y )), it

satisfies

lim
ǫ→0

∫

Ω
uǫ(x)ϕ

(

x,
x

ǫ

)

dx =

∫

Ω

∫

Y

u0(x, y)ϕ(x, y)dxdy.

In the above definition we use the fact that Y is the unit cube. Otherwise, the right

hand side, which is an average over the periodicity cell Y , should be divied by its measure

|Y |.

Theorem 1.3.4 From each bounded sequence uǫ in L
2(Ω) one can extract a subsequence,

and there exists a limit u0(x, y) ∈ L
2(Ω×Y ) such that this subsequence two-scale converges

to u0.

Here are some examples of two-scale convergence.
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1. Any sequence uǫ which converges strongly in L2(Ω) to a limit u(x), two-scale converges

to the same limit u(x).

2. For any smooth function u0(x, y), being Y -periodic in y, the associated sequence

uǫ(x) = u0
(

x, x
ǫ

)

two-scale converges to u0(x, y).

3. For the same smooth and Y -periodic function u0(x, y) the sequence defined by vǫ(x) =

u0(x,
x
ǫ2
) has the same two-scale limit and weak-L2 limit, namely

∫

Y
u0(x, y)dy (this is

a consequence of the difference of orders in the speed of oscillations for vǫ and the test

functions ϕ
(

x, x
ǫ

)

). Clearly the two-scale limit captures only the oscillations which are

in resonance with those of the test functions ϕ
(

x, x
ǫ

)

.

4. Any sequence uǫ which admits an asymptotic expansion of the type uǫ(x) = u0
(

x, x
ǫ

)

+

ǫu1
(

x, x
ǫ

)

+ ǫ2u2
(

x, x
ǫ

)

+ · · ·, where the functions ui(x, y) are smooth and Y -periodic

in y, two-scale converges to the first term of the expansion, namely u0(x, y).

The next theorem shows that more information is contained in a two-scale limit

than in a weak-L2 limit ; some of the oscillations of a sequence are contained in its

two-scale limit. When all of them are captured by the two-scale limit (condition (1.40)

below), one can even obtain a strong convergence (a corrector result in the vocabulary of

homogenization).

Theorem 1.3.5 Let uǫ be a sequence of functions in L2(Ω) which two-scale converges to

a limit u0(x, y) ∈ L2(Ω× Y ).

1. Then, uǫ converges weakly in L2(Ω) to u(x) =
∫

Y
u0(x, y)dy, and we have

lim
ǫ→0

‖uǫ‖
2
L2(Ω) ≥ ‖u0‖

2
L2(Ω×Y ) ≥ ‖u‖2L2(Ω). (1.39)

2. Assume further that u0(x, y) is smooth and that

lim
ǫ→0

‖uǫ‖
2
L2(Ω) = ‖u0‖

2
L2(Ω×Y ). (1.40)

Then, we have

‖uǫ(x)− u0

(

x,
x

ǫ

)

‖2L2(Ω) → 0. (1.41)

Proof. By taking test functions depending only on x in Definition 1.3.3, the weak con-

vergence in L2(Ω) of the sequence uǫ is established. Then, developing the inequality
∫

Ω
|uǫ(x)− ϕ

(

x,
x

ǫ

)

|2dx ≥ 0,

yields easily formula (1.39). Furthermore, under assumption (1.40), it is easily obtained

that

lim
ǫ→0

∫

Ω
|uǫ(x)− ϕ

(

x,
x

ǫ

)

|2dx =

∫

Ω

∫

Y

|u0(x, y)− ϕ(x, y)|2dxdy.

If u0 is smooth enough to be a test function ϕ, it yields (1.41). �
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Theorem 1.3.6 Let uǫ be a bounded sequence in H1(Ω). Then, up to a subsequence, uǫ

two-scale converges to a limit u(x) ∈ H1(Ω), and ∇uǫ two-scale converges to ∇xu(x) +

∇yu1(x, y), where the function u1(x, y) belongs to L2(Ω;H1
#(Y )/R).

Proof. Since uǫ (resp. ∇uǫ) is bounded in L2(Ω) (resp. L2(Ω)N ), up to a subsequence, it

two-scale converges to a limit u0(x, y) ∈ L2(Ω× Y ) (resp. ξ0(x, y) ∈ L2(Ω × Y )N ). Thus

for any ψ(x, y) ∈ D
(

Ω;C∞
# (Y )N

)

, we have

lim
ǫ→0

∫

Ω
∇uǫ(x) · ψ

(

x,
x

ǫ

)

dx =

∫

Ω

∫

Y

ξ0(x, y) · ψ(x, y)dxdy. (1.42)

Integrating by parts the left hand side of (1.42) gives

ǫ

∫

Ω
∇uǫ(x) · ψ

(

x,
x

ǫ

)

dx = −

∫

Ω
uǫ(x)

(

divyψ
(

x,
x

ǫ

)

+ ǫdivxψ
(

x,
x

ǫ

))

dx. (1.43)

Passing to the limit yields

0 = −

∫

Ω

∫

Y

u0(x, y)divyψ(x, y)dxdy. (1.44)

This implies that u0(x, y) does not depend on y. Thus there exists u(x) ∈ L2(Ω), such

that u0 = u. Next, in (1.42) we choose a function ψ such that divyψ(x, y) = 0. Integrating

by parts we obtain

lim
ǫ→0

∫

Ω
uǫ(x)divxψ

(

x,
x

ǫ

)

dx = −

∫

Ω

∫

Y

ξ0(x, y) · ψ(x, y)dxdy

=

∫

Ω

∫

Y

u(x)divxψ(x, y)dxdy. (1.45)

If ψ does not depend on y, (1.45) proves that u(x) belongs to H1(Ω). Furthermore, we

deduce from (1.45) that

∫

Ω

∫

Y

(ξ0(x, y)−∇u(x)) · ψ(x, y)dxdy = 0 (1.46)

for any function ψ(x, y) ∈ D
(

Ω;C∞
# (Y )N

)

with divyψ(x, y) = 0. Recall that the orthog-

onal of divergence-free functions are exactly the gradients (this well-known result can be

very easily proved in the present context by means of Fourier analysis in Y ). Thus, there

exists a unique function u1(x, y) in L
2(Ω;H1

#(Y )/R) such that

ξ0(x, y) = ∇u(x) +∇yu1(x, y). � (1.47)

Application to the model problem (1.27). We now describe how the “two-scale

convergence method” can justify the homogenization of (1.27). In a first step, we deduce
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from the a priori estimate (1.27) the precise form of the two-scale limit of the sequence uǫ.

By application of Theorem 1.3.6, there exist two functions, u(x) ∈ H1
0 (Ω) and u1(x, y) ∈

L2(Ω;H1
#(Y )/R), such that, up to a subsequence, uǫ two-scale converges to u(x), and ∇uǫ

two-scale converges to ∇xu(x) + ∇yu1(x, y). In view of these limits, uǫ is expected to

behave as u(x) + ǫu1
(

x, x
ǫ

)

.

Thus, in a second step, we multiply equation (1.27) by a test function similar to

the limit of uǫ, namely ϕ(x)+ǫϕ1

(

x, x
ǫ

)

, where ϕ(x) ∈ D(Ω) and ϕ1(x, y) ∈ D(Ω;C∞
# (Y )).

This yields
∫

Ω
A
(x

ǫ

)

∇uǫ·
(

∇ϕ(x) +∇yϕ1

(

x,
x

ǫ

)

+ ǫ∇xϕ1

(

x,
x

ǫ

))

dx =

∫

Ω
f(x)

(

ϕ(x) + ǫϕ1

(

x,
x

ǫ

))

dx.

(1.48)

Regarding At
(

x
ǫ

) (

∇ϕ(x) +∇yϕ1

(

x, x
ǫ

))

as a test function for the two-scale convergence

(see Definition 1.3.3), we pass to the two-scale limit in (1.48) for the sequence ∇uǫ. Al-

though this test function is not necessarily very smooth, as required by Definition 1.3.3, it

belongs at least to C
(

Ω̄;L2
#(Y )

)

which can be shown to be enough for the two-scale con-

vergence Theorem 1.3.4 to hold (see [1] for details). Thus, the two-scale limit of equation

(1.48) is
∫

Ω

∫

Y

A(y) (∇u(x) +∇yu1(x, y)) · (∇ϕ(x) +∇yϕ1(x, y)) dxdy =

∫

Ω
f(x)ϕ(x)dx. (1.49)

In a third step, we read off a variational formulation for (u, u1) in (1.49). Remark

that (1.49) holds true for any (ϕ,ϕ1) in the Hilbert space H1
0 (Ω)× L2

(

Ω;H1
#(Y )/R

)

by

density of smooth functions in this space. Endowing it with the norm
√

(‖∇u(x)‖2
L2(Ω) +

‖∇yu1(x, y)‖
2
L2(Ω×Y )), the assumptions of the Lax-Milgram lemma are easily checked for

the variational formulation (1.49). The main point is the coercivity of the bilinear form

defined by the left hand side of (1.49): the coercivity of A yields
∫

Ω

∫

Y

A(y) (∇ϕ(x) +∇yϕ1(x, y)) · (∇ϕ(x) +∇yϕ1(x, y)) dxdy ≥

α

∫

Ω

∫

Y

|∇ϕ(x) +∇yϕ1(x, y)|
2dxdy = α

∫

Ω
|∇ϕ(x)|2dx+ α

∫

Ω

∫

Y

|∇yϕ1(x, y)|
2dxdy.

By application of the Lax-Milgram lemma, we conclude that there exists a unique solution

(u, u1) of the variational formulation (1.49) in H1
0 (Ω)×L2

(

Ω;H1
#(Y )/R

)

. Consequently,

the entire sequences uǫ and ∇uǫ converge to u(x) and ∇u(x) +∇yu1(x, y). An easy inte-

gration by parts shows that (1.49) is a variational formulation associated to the following

system of equations, the so-called “two-scale homogenized problem”,






















−divy (A(y) (∇u(x) +∇yu1(x, y))) = 0 in Ω× Y

−divx
(∫

Y
A(y) (∇u(x) +∇yu1(x, y)) dy

)

= f(x) in Ω

y → u1(x, y) Y -periodic

u = 0 on ∂Ω.

(1.50)
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At this point, the homogenization process could be considered as achieved since the entire

sequence of solutions uǫ converges to the solution of a well-posed limit problem, namely the

two-scale homogenized problem (1.50). However, it is usually preferable, from a physical

or numerical point of view, to eliminate the microscopic variable y (one does not want

to solve the small scale structure). In other words, we want to extract and decouple the

usual homogenized and local (or cell) equations from the two-scale homogenized problem.

Thus, in a fourth (and optional) step, the y variable and the u1 unknown are

eliminated from (1.50). It is an easy exercise of algebra to prove that u1 can be computed

in terms of the gradient of u through the relationship

u1(x, y) =
N
∑

i=1

∂u

∂xi
(x)wi(y), (1.51)

where wi(y) are defined as the solutions of the cell problems (1.9). Then, plugging for-

mula (1.51) in (1.50) yields the usual homogenized problem (1.12) with the homogenized

diffusion tensor defined by (1.13).

Due to the simple form of our model problem the two equations of (1.50) can be de-

coupled in a microscopic and a macroscopic equation, (1.9) and (1.12) respectively, but we

emphasize that it is not always possible, and sometimes it leads to very complicate forms

of the homogenized equation, including integro-differential operators. Thus, the homog-

enized equation does not always belong to a class for which an existence and uniqueness

theory is easily available, on the contrary of the two-scale homogenized system, which is in

most cases of the same type as the original problem, but with a double number of variables

(x and y) and unknowns (u and u1). The supplementary microscopic variable and un-

known play the role of “hidden” variables in the vocabulary of mechanics. Although their

presence doubles the size of the limit problem, it greatly simplifies its structure (which

could be useful for numerical purposes too), while eliminating them introduces “strange”

effects (like memory or non-local effects) in the usual homogenized problem.

Remark 1.3.7 It is often very useful to obtain so-called “corrector” results which permit

to obtain strong (or pointwise) convergences instead of just weak ones by adding some extra

information stemming from the local equations. Typically, in the above example we simply

proved that the sequence uǫ converges weakly to the homogenized solution u in H1
0 (Ω).

Introducing the local solution u1, this weak convergence can be improved as follows
(

uǫ(x)− u(x)− ǫu1

(

x,
x

ǫ

))

→ 0 in H1
0 (Ω) strongly. (1.52)

This type of result is easily obtained with the two-scale convergence method. This rigorously

justifies the two first term in the usual asymptotic expansion of the sequence uǫ. Indeed

we can develop
∫

Ω
A
(x

ǫ

)(

∇uǫ(x)−∇u(x)−∇yu1

(

x,
x

ǫ

))

·
(

∇uǫ(x)−∇u(x)−∇yu1

(

x,
x

ǫ

))

dx.
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After some algebra and passing to the two-scale limit, we deduce that (∇uǫ(x)−∇u(x)−

∇yu1
(

x, x
ǫ

)

) goes to zero in L2(Ω)N .

Remark 1.3.8 There is a variant of the method of two-scale convergence which is called

the periodic unfolding method [9], [10]. The main idea of the periodic unfolding method

is to introduce a so-called unfolding operator Eǫ from L2(Ω) into L2
(

Ω;L2
#(Y )

)

defined,

for any u(x) ∈ L2(Ω), by

Eǫ(u)(x, y) =

N(ǫ)
∑

i=1

u(xǫi + ǫy)χY ǫ
i
(x),

where (Y ǫ
i )1≤i≤N(ǫ) is a tiling of Ω with cubic cells Y ǫ

i , which are equal to ǫY translated to

its origin xǫi , and χY ǫ
i
(x) is the i-th cell characteristic function. The unfolding operator is

easily seen to be linear and bounded. The main result of [9], [10] is then to prove that a

sequence uǫ(x) of L
2(Ω) two-scale converges to a limit u0(x, y) if and only if the sequence

Eǫ(uǫ)(x, y) weakly converges to u0(x, y) in L2
(

Ω;L2
#(Y )

)

. Note that some of the ideas

of the periodic unfolding method were anticipated in [3], [4], [19].
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Chapter 2

General theory of homogenization

2.1 Introduction.

The first chapter was devoted to a brief presentation of homogenization in a periodic set-

ting. This second chapter focus on the general setting of homogenization when no geomet-

ric assumptions are available (like periodicity, or ergodicity in a probabilistic framework).

It turns out that homogenization can be applied to any kind of disordered media, and is

definitely not restricted to the periodic case (although the nice ”explicit” formulae of the

periodic setting for the homogenized conductivity tensor have no analogue). We introduce

the notion of G- or H-convergence which is due to DeGiorgi and Spagnolo [16], [28], [29],

and has been further generalized by Murat and Tartar [23], [30] (see also the textbooks

[25], [32], [33]). It allows to consider any possible geometrical situation without any spe-

cific assumptions like periodicity or randomness. The G- or H-convergence turns out to

be the adequate notion of convergence for effective properties that will be the key tool in

the study of optimal shape design problems.

Finally, let us mention that there is also a stochastic theory of homogenization (see

[18], [13], [26]) and a variational theory of homogenization (the Γ-convergence of De Giorgi,

[14], [15], see also the books [7], [12]) that will not be described below.

2.2 Definition of G-, or H-convergence.

The G-convergence is a notion of convergence associated to sequences of symmetric opera-

tors (typically, these operators are applications giving the solution of a partial differential

equation in terms of the right hand side). The G means Green since this type of con-

vergence corresponds roughly to the convergence of the associated Green functions. The

H-convergence is a generalization of the G-convergence to the case of non-symmetric oper-

ators (it provides also an easier mathematical framework, but we shall not dwell on that).
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The H stands for Homogenization since it is an important tool of that theory. For the

sake of simplicity, we restrict ourselves to the case of symmetric operators (i.e. diffusion

equations with symmetric coefficients). In such a case, G- and H-convergence coincide.

Therefore in the sequel, we use only the notation G-convergence.

The main result of the G-convergence is a compactness theorem in the homoge-

nization theory which states that, for any bounded and uniformly coercive sequence of

coefficients of a symmetric second order elliptic equation, there exist a subsequence and a

G-limit (i.e. homogenized coefficients) such that, for any source term, the corresponding

subsequence of solutions converges to the solution of the homogenized equation. In prac-

tical terms, it means that the mechanical properties of an heterogeneous medium (like its

conductivity, or elastic moduli) can be well approximated by the properties of a homoge-

neous or homogenized medium if the size of the heterogeneities are small compared to the

overall size of the medium.

The G-convergence can be seen as a mathematically rigorous version of the so-

called representative volume element method [8], [17] for computing effective or averaged

parameters of heterogeneous media.

We introduce the notion of G-convergence for the specific case of a diffusion equation

with a Dirichlet boundary condition, but all the results hold for a larger class of second

order elliptic operators and boundary conditions. Let Ω be a bounded open set in R
N , and

let α, β be two positive constants such that 0 < α ≤ β. We introduce the set M(α, β,Ω)

of all possible symmetric matrices defined on Ω with uniform coercivity constant α and

L∞(Ω)-bound β. In other words, A ∈ M(α, β,Ω) if A(x) satisfies

α|ξ|2 ≤
N
∑

i,j=1

Aij(x)ξiξj ≤ β|ξ|2.

We consider a sequence Aǫ(x) of conductivity tensors in M(α, β,Ω), indexed by a

sequence of positive numbers ǫ going to 0. Here, ǫ is not associated to any specific length-

scale or statistical property of the elastic medium. In other words, no special assumptions

(like periodicity or stationarity) are placed on the sequence Aǫ.

For a given source term f(x) ∈ L2(Ω), there exists a unique solution uǫ in the

Sobolev space H1
0 (Ω) of the following diffusion equation

{

−div (Aǫ(x)∇uǫ) = f(x) in Ω

uǫ = 0 on ∂Ω.
(2.1)

The G-convergence of the sequence Aǫ is defined below as the convergence of the corre-

sponding solutions uǫ.

22



Definition 2.2.1 The sequence of tensors Aǫ(x) is said to G-converge to a limit A∗(x),

as ǫ goes to 0, if, for any f ∈ L2(Ω) in (2.1), the sequence of solutions uǫ converges weakly

in H1
0 (Ω) to a limit u which is the unique solution of the homogenized equation associated

to A∗:
{

−div (A∗(x)∇u) = f(x) in Ω

u = 0 on ∂Ω.
(2.2)

Remark that, by definition, the homogenized tensor A∗ is independent of the source

term f . We shall see that it is also independent of the boundary condition and of the

domain.

This definition makes sense because of the compactness of the set M(α, β,Ω) with

respect to the G-convergence, as stated in the following theorem.

Theorem 2.2.2 For any sequence Aǫ in M(α, β,Ω), there exist a subsequence (still de-

noted by ǫ) and a homogenized limit A∗, belonging to M(α, β,Ω), such that Aǫ G-converges

to A∗.

The G-convergence of a general sequence Aǫ is always stated up to a subsequence

since Aǫ can be the union of two sequences converging to two different limits. The G-

convergence of Aǫ is not equivalent to any other ”classical” convergence. For example,

if Aǫ converges strongly in L∞(Ω) to a limit A (i.e. the convergence is pointwise), then

its G-limit A∗ coincides with A. But the converse is not true ! On the same token,

the G-convergence has nothing to do with the usual weak convergence. Indeed, the G-

limit A∗ of a sequence Aǫ is usually different of its weak-* L∞(Ω)-limit. For example,

a straightforward computation in one space dimension (N = 1) shows that the G-limit

of a sequence Aǫ is given as the inverse of the weak-* L∞(Ω)-limit of A−1
ǫ (the so-called

harmonic limit). However, this last result holds true only in 1-D, and no such explicit

formula is available in higher dimensions.

The G-convergence enjoys a few useful properties as enumerated in the following

proposition.

Proposition 2.2.3 Properties of G-convergence.

1. If a sequence Aǫ G-converges, its G-limit is unique.

2. Let Aǫ and Bǫ be two sequences which G-converge to A∗ and B∗ respectively. Let ω ⊂ Ω

be a subset strictly included in Ω such that Aǫ = Bǫ in ω. Then A∗ = B∗ in ω (this

property is called the locality of G-convergence).

3. The G-limit of a sequence Aǫ is independent of the source term f and of the boundary

condition on ∂Ω.
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4. Let Aǫ be a sequence which G-converges to A∗. Then, the associated density of energy

Aǫ∇uǫ ·∇uǫ also converges to the homogenized density of energy A∗∇u ·∇u in the sense

of distributions in Ω.

5. If a sequence Aǫ G-converges to a limit A∗, then the sequence of fluxes Aǫ∇uǫ converges

weakly in L2(Ω)N to the homogenized flux A∗∇u.

These properties of the G-convergence implies that the homogenized medium A∗

approximates the heterogeneous medium Aǫ in many different ways. First of all, by def-

inition of G-convergence, the fields u, uǫ and their gradients are closed (this is the sense

of the convergence of uǫ to u in the Sobolev space H1
0 (Ω)). Then, by application of the

above proposition, the fluxes and the energy densities are also closed.

Remark also that, by locality of the G-convergence, the homogenized tensor is de-

fined at each point of the domain Ω independently of what may happen in other regions

of Ω.

Of course, a particular example of G-convergent sequences Aǫ is given by periodic

media of the type A
(

x
ǫ

)

as in the previous section.
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