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The goal of this lecture is to show that homogenization is a very efficient tool in

the modeling of complex phenomena in heterogeneous media. In the first lecture we

considered a model problem of diffusion for which the homogenized operator was of the

same type (still a diffusion equation). In this context, homogenization is really a matter

of defining and computing effective diffusion tensors. On the contrary, this second lecture

will focus on models which have different homogenized limits (in the sense that the partial

differential equations are of a different mathematical nature). For example, we shall see

that the Stokes equations for a viscous fluid in a porous medium yield the Darcy’s law as an

homogenized model. Therefore, in this context, homogenization is a modeling tool which

can justify new models arising as homogenized limits of complex microscopic equations.
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Chapter 1

Homogenization of Stokes

equations

1.1 Derivation of Darcy’s Law

1.1.1 Setting and Results

This section is devoted to the derivation of Darcy’s law for an incompressible viscous fluid

flowing in a porous medium. Starting from the steady Stokes equations in a periodic porous

medium, with a no-slip (Dirichlet) boundary condition on the solid pores, Darcy’s law is

rigorously obtained by periodic homogenization using the two-scale convergence method.

The assumption on the periodicity of the porous medium is by no means realistic, but it

allows to cast this problem in a very simple framework and to prove theorems without too

much effort. We denote by ǫ the ratio of the period to the overall size of the porous medium:

it is the small parameter of our asymptotic analysis since the pore size is usually much

smaller than the characteristic length of the reservoir. The porous medium is contained in

a domain Ω, and its fluid part is denoted by Ωǫ. From a mathematical point of view, Ωǫ

is a periodically perforated domain, i.e., it has many small holes of size ǫ which represent

solid obstacles that the fluid cannot penetrate.

The motion of the fluid in Ωǫ is governed by the steady Stokes equations, comple-

mented with a Dirichlet boundary condition. We denote by uǫ and pǫ the velocity and

pressure of the fluid, and f the density of forces acting on the fluid (uǫ and f are vector-

valued functions, while pǫ is scalar). The fluid viscosity is a positive constant µ that we

scale by a factor ǫ2 (where ǫ is the period). The Stokes equations are











∇pǫ − ǫ2µ∆uǫ = f in Ωǫ

divuǫ = 0 in Ωǫ

uǫ = 0 on ∂Ωǫ.

(1.1)
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The above scaling for the viscosity is such that the velocity uǫ has a non-trivial limit as ǫ

goes to zero. Physically speaking, the very small viscosity, of order ǫ2, balances exactly the

friction of the fluid on the solid pore boundaries due to the no-slip boundary condition.

Remark that this scaling is perfectly legitimate since by linearity of the equations one

can always replace uǫ by ǫ2uǫ. To obtain an existence and uniqueness result for (1.1),

the forcing term is assumed to have the usual regularity: f(x) ∈ L2(Ω)N . Then, as is

well-known (see e.g. [24]), the Stokes equations (1.1) admits a unique solution

uǫ ∈ H1
0 (Ωǫ)

N , pǫ ∈ L2(Ωǫ)/R, (1.2)

the pressure being uniquely defined up to an additive constant. The homogenization

problem for (1.1) is to find the effective equation satisfied by the limits of uǫ, pǫ. From the

point of view of homogenization, the mathematical originality of system (1.1) is that the

periodic oscillations are not in the coefficients of the operator but in the geometry of the

porous medium Ωǫ.

Y
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Y

Figure 1.1: Unit cell of a porous medium.

Before stating the main result, let us describe more precisely the assumptions on the

porous domain Ωǫ. As usual in periodic homogenization, a periodic structure is defined

by a domain Ω and an associated microstructure, or periodic cell Y = (0, 1)N , which is

made of two complementary parts : the fluid part Yf and the solid part Yb, satisfying

Yf ∪ Yb = Y and Yf ∩ Yb = ∅ (see Figure 1.1). We assume that Ω is a smooth, bounded,

connected set in R
N , and that Yf is a smooth and connected open subset of Y , identified

with the unit torus (i.e. Yf , repeated by Y -periodicity in R
N , is a smooth and connected

open set of RN). The domain Ω is covered by a regular mesh of size ǫ: each cell Y ǫ
i is of

the type (0, ǫ)N , and is divided in a fluid part Y ǫ
f,i and a solid part Y ǫ

s,i, i.e. is similar to

the unit cell Y rescaled to size ǫ. The fluid part Ωǫ of a porous medium is defined by

Ωǫ = Ω \

N(ǫ)
⋃

i=1

Y ǫ
s,i = Ω ∩

N(ǫ)
⋃

i=1

Y ǫ
f,i (1.3)
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where the number of cells is N(ǫ) = |Ω|ǫ−N (1 + o(1)).

A final word of caution is in order : the sequence of solutions (uǫ, pǫ) is not defined

in a fixed domain independent of ǫ but rather in a varying set, Ωǫ. To state the homog-

enization theorem, convergences in fixed Sobolev spaces (defined on Ω) are used which

requires first that (uǫ, pǫ) be extended to the whole domain Ω. Recall that, by definition,

an extension (ũǫ, p̃ǫ) of (uǫ, pǫ) is defined on Ω and coincides with (uǫ, pǫ) on Ωǫ.

Theorem 1.1.1 There exists an extension (ũǫ, p̃ǫ) of the solution (uǫ, pǫ) of (1.1) such

that the velocity ũǫ converges weakly in L2(Ω)N to u, and the pressure p̃ǫ converges strongly

in L2(Ω)/R to p, where (u, p) is the unique solution of the homogenized problem, a Darcy’s

law,










u(x) = 1
µA (f(x)−∇p(x)) in Ω

divu(x) = 0 in Ω

u(x) · n = 0 on ∂Ω,

(1.4)

where A is a symmetric, positive definite, tensor (the so-called permeability tensor) defined

by its entries

Aij =

∫

Yf

∇wi(y) · ∇wj(y)dy (1.5)

where, (ei)1≤i≤N being the canonical basis of RN , wi(y) denotes the unique solution in

H1
#(Yf )

N of the local, or unit cell, Stokes problem























∇qi −∆wi = ei in Yf

divwi = 0 in Yf

wi = 0 in Yb

y → qi, wi Y -periodic.

(1.6)

The weak convergence of the velocity can be further improved by the following

corrector result.

Proposition 1.1.2 With the same notations as in Theorem 1.1.1, the velocity satisfies

(

ũǫ(x)−
N
∑

i=1

wi(
x

ǫ
)ui(x)

)

→ 0 strongly in L2(Ω)N , (1.7)

where (wi)1≤i≤N are the local, unit cell, velocities and (ui)1≤i≤N are the components of

the homogenized velocity u(x).

Remark 1.1.3 The homogenized problem (1.4) is a Darcy’s law, i.e., the flow rate u

is proportional to the balance of forces including the pressure. The permeability tensor A

depends only on the microstructure, Yf of the porous media (and not on the exterior forces,

nor on the physical properties of the fluid). Quite early, many papers have been devoted to

4



the derivation of Darcy’s law by homogenization, using formal asymptotic expansions (see

for example [12], [14], [21]). The first rigorous proof (including the difficult construction

of a pressure extension) appeared in [23]. Further extensions are to be found in [1], [15],

and [18]. A good reference for physical aspects of this problem, as well as mathematical

ones, is the book [11]. Of course, more complicated models than the incompressible Stokes

equations can be homogenized to derive various variants of Darcy’s law. The next sections

investigate such more general microscopic models. Of course there are other methods,

apart from periodic homogenization, which permit to derive Darcy’s law. It can also be

established by stochastic homogenization, representative volume averaging, and so on.

1.1.2 Two-scale asymptotic expansions

We apply the method of two-scale asymptotic expansions to the previous Stokes equations.

We start from the following two-scale asymptotic expansion (or ansatz) of the velocity uǫ

and pressure pǫ

uǫ(x) =

+∞
∑

i=0

ǫiui

(

x,
x

ǫ

)

, pǫ(x) =

+∞
∑

i=0

ǫipi

(

x,
x

ǫ

)

, (1.8)

where each term ui(x, y) or pi(x, y) is a function of both variables x and y, periodic in y

with period Y = (0, 1)N . These series are plugged into equation (1.1), and the following

derivation rule is used:

∇
(

ui

(

x,
x

ǫ

))

=
(

ǫ−1∇yui +∇xui
)

(

x,
x

ǫ

)

,

where∇x and∇y denote the partial derivative with respect to the first and second variable

of ui(x, y). Equation (1.1) becomes a series in ǫ















ǫ−1∇yp0

(

x,
x

ǫ

)

+ ǫ0 [∇xp0 +∇yp1 − µ∆yyu0]
(

x,
x

ǫ

)

+O(ǫ) = f(x)

ǫ−1divyu0

(

x,
x

ǫ

)

+ ǫ0 [divxu0 + divyu1]
(

x,
x

ǫ

)

+O(ǫ) = 0.

(1.9)

Identifying each coefficient of (1.9) as an individual equation yields a cascade of equations

(a series of the variable ǫ is zero for all values of ǫ if each coefficient is zero). Here, only

the two first equations are enough for our purpose. The ǫ−1 equation for the pressure is

∇yp0(x, y) = 0,

which is nothing else than an equation in the unit cell Y with periodic boundary condition.

This implies that p0 does not depend on y, i.e. there exists a function p(x) such that

p0(x, y) ≡ p(x).
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The ǫ−1 equation from the incompressibility condition and the ǫ0 equation from the mo-

mentum equation are











∇yp1 − µ∆yyu0 = f(x)−∇xp(x)

divyu0 = 0

(1.10)

which is a Stokes equation for the velocity u0 and pressure p1 in the periodic unit cell Y .

It is a well-posed problem, which admits a unique solution, as soon as the right hand side

is known. Equation (1.10) allows one to compute u0 in terms of f and ∇xp which do not

depend on y. By linearity we find

u0(x, y) =
1

µ

N
∑

i=1

wi(y)

(

f −
∂p

∂xi

)

(x), p1(x, y) =

N
∑

i=1

qi(y)

(

f −
∂p

∂xi

)

(x),

where wi is the cell velocity and qi is the cell pressure, solutions of the cell Stokes problem

(1.6).

Finally, the ǫ0 equation from the incompressibility condition yields

divxu0(x, y) + divyu1(x, y) = 0. (1.11)

We average equation (1.11) in the unit cell Y . Taking into account the periodicity condition

and the no-slip condition on the solid part Yb leads, by application of Stokes theorem, to
∫

Yf

divyu1(x, y) dy =

∫

∂Y
u1 · n ds+

∫

∂Yb

u1 · n ds = 0.

This implies that the first term of (1.11) must have zero average over Y , i.e.,

∫

Y
divx

[

N
∑

i=1

wi(y)

(

f −
∂p

∂xi

)

(x)

]

dy = 0,

which simplifies to

−divxA (∇xp(x)− f(x)) = 0 in Ω, (1.12)

which is a second-order elliptic equation for the pressure p. The constant tensor A is

defined by its columns

Aei =

∫

Y
wi(y) dy,

which is equivalent to the previous definition (1.5) by a simple integration by parts (mul-

tiply the Stokes cell problem (1.6) by wj).

Of course, p is the homogenized pressure, and the homogenized velocity u is defined

by

u(x) =

∫

Y
u0(x, y) dy =

1

µ
A (f −∇p) (x).
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1.1.3 Proof of the Homogenization Theorem

This subsection is devoted to the proof of Theorem 1.1.1 by the method of two-scale

convergence. We assume the existence of bounded extensions of the velocity and pressure

of the fluid in the porous medium (see [1], [11], [23] for a proof).

Lemma 1.1.4 There exists an extension (ũǫ, p̃ǫ) of the solution (uǫ, pǫ) satisfying the a

priori estimates

‖ũǫ‖L2(Ω)N + ǫ‖∇ũǫ‖L2(Ω)N×N ≤ C (1.13)

and

‖p̃ǫ‖L2(Ω)/R ≤ C, (1.14)

where the constant C does not depend on ǫ.

We also take for granted the following generalization of Theorem 1.3.7 in the first

lecture, the proof of which may be found in [4].

Proposition 1.1.5 Let uǫ be a bounded sequence in L2(Ω) such that ǫ∇uǫ is also bounded

in L2(Ω)N . Then, there exists a two-scale limit u0(x, y) ∈ L2(Ω;H1
#(Y )/R) such that, up

to a subsequence, uǫ two-scale converges to u0(x, y), and ǫ∇uǫ to ∇yu0(x, y).

Let uǫ be a bounded sequence of vector valued functions in L2(Ω)N such that its

divergence divuǫ is also bounded in L2(Ω). Then, there exists a two-scale limit u0(x, y) ∈

L2(Ω × Y )N which is divergence-free with respect to y, i.e. divyu0 = 0, has a divergence

with respect to x, divxu0, in L
2(Ω× Y ), and such that, up to a subsequence, uǫ two-scale

converges to u0(x, y), and divuǫ to divxu0(x, y).

By application of the two-scale convergence method, we firstly prove

Theorem 1.1.6 The extension (ũǫ, p̃ǫ) of the solution of (1.1) two-scale converges to the

unique solution (u0(x, y), p(x)) of the two-scale homogenized problem











































∇yp1(x, y) +∇xp(x)− µ∆yyu0(x, y) = f(x) in Ω× Yf

divyu0(x, y) = 0 in Ω× Yf

divx
(∫

Y u0(x, y)dy
)

= 0 in Ω

u0(x, y) = 0 in Ω× Yb
(∫

Y u0(x, y)dy
)

· n = 0 on ∂Ω

y → u0(x, y), p1(x, y) Y -periodic.

(1.15)

Remark 1.1.7 The two-scale homogenized problem is also called a two-pressure Stokes

system. It is a combination of the usual homogenized and cell problems (see chapter 1).

By elimination of the y variable, the homogenized Darcy’s law will be recovered in the end.
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Proof of Theorem 1.1.6. Applying Proposition 1.1.5 there exists a two-scale limit

u0(x, y) ∈ L2
(

Ω;H1
#(Y )N

)

such that, up to a subsequence, the sequences ũǫ and ǫ∇ũǫ

two-scale converge to u0 and ∇yu0 respectively. Furthermore, u0 satisfies






















divyu0(x, y) = 0 in Ω× Y

divx
(∫

Y u0(x, y)dy
)

= 0 in Ω

u0(x, y) = 0 in Ω× Yb
(∫

Y u0(x, y)dy
)

· n = 0 on ∂Ω.

(1.16)

By the compactness theorem of two-scale convergence, there exists a two-scale limit

p0(x, y) ∈ L2(Ω × Y ) such that, up to a subsequence, p̃ǫ two-scale converges to p0.

Multiplying the momentum equation in (1.1) by ǫψ
(

x, xǫ
)

, where ψ(x, y) is a smooth,

vector-valued, Y -periodic function, and integrating by parts, leads to

lim
ǫ→0

∫

Ω
p̃ǫdivyψ

(

x,
x

ǫ

)

dx =

∫

Ω

∫

Y
p0(x, y)divyψ(x, y)dxdy = 0. (1.17)

Another integration by parts in (1.17) shows that ∇yp0(x, y) is 0. Thus, there exists

p(x) ∈ L2(Ω)/R such that p0(x, y) = p(x).

The next step in the two-scale convergence method is to multiply system (1.1) by a

test function having the form of the two-scale limit u0, and to read off a variational formu-

lation for the limit. Therefore, we choose a test function ψ(x, y) ∈ D
(

Ω;C∞
# (Y )N

)

with

ψ(x, y) = 0 in Ω×Yb (thus, ψ
(

x, xǫ
)

∈ H1
0 (Ωǫ)

N ). Furthermore, we assume that ψ satisfies

the incompressibility conditions (1.16), i.e. divyψ(x, y) = 0 and divx
(∫

Y ψ(x, y)dy
)

= 0.

Multiplying equation (1.1) by ψ
(

x, xǫ
)

, and integrating by parts yields

−

∫

Ωǫ

pǫ(x)divxψ
(

x,
x

ǫ

)

dx+µ

∫

Ωǫ

ǫ∇uǫ(x) ·∇yψ
(

x,
x

ǫ

)

dx =

∫

Ωǫ

f(x) ·ψ
(

x,
x

ǫ

)

dx+O(ǫ)

(1.18)

where O(ǫ) stands for the the remaining terms of order ǫ. In (1.18) the domain of inte-

gration Ωǫ can be replaced by Ω since the test function is zero in Ω \ Ωǫ. Then, passing

to the two-scale limit, the first term in (1.18) contributes nothing because the two-scale

limit of p̃ǫ does not depend on y and ψ satisfies divx
(∫

Y ψ(x, y)dy
)

= 0, while the other

terms give

µ

∫

Ω

∫

Yf

∇yu0(x, y) · ∇yψ(x, y)dxdy =

∫

Ω

∫

Yf

f(x) · ψ(x, y)dxdy. (1.19)

By density (1.19) holds for any function ψ in the Hilbert space V defined by

V =

{

ψ(x, y) ∈ L2
(

Ω;H1
#(Y )N

)

such that
divyψ(x, y) = 0 in Ω× Y

divx
(∫

Y ψ(x, y)dy
)

= 0 in Ω
,

and
ψ(x, y) = 0 in Ω× Yb
(∫

Y ψ(x, y)dy
)

· n = 0 on ∂Ω

}

. (1.20)
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It is not difficult to check that the hypothesis of the Lax-Milgram lemma holds for the

variational formulation (1.19) in the Hilbert space V , which, by consequence, admits a

unique solution u0 in V . Furthermore, by Lemma 1.1.8 below, the orthogonal of V , a

subset of L2
(

Ω;H−1
# (Y )N

)

, is made of gradients of the form ∇xq(x) + ∇yq1(x, y) with

q(x) ∈ H1(Ω)/R and q1(x, y) ∈ L2
(

Ω;L2
#(Yf )/R

)

. Thus, by integration by parts, the

variational formulation (1.19) is equivalent to the two-scale homogenized system (1.15).

(There is a subtle point here; one must check that the pressure p(x) arising as a Lagrange

multiplier of the incompressibility constraint divx
(∫

Y u0(x, y)dy
)

= 0 is the same as the

two-scale limit of the pressure p̃ǫ. This can easily be done by multiplying equation (1.1)

by a test function ψ which is divergence free only in y, and identifying limits.) Since (1.15)

admits a unique solution, then the entire sequence (ũǫ, p̃ǫ) converges to its unique solution

(u0(x, y), p(x)). This completes the proof of Theorem 1.1.6. �

We now arrive at the last step of the two-scale convergence method which amounts

to eliminate, if possible, the microscopic variable y in the homogenized system. This allows

to deduce Theorem 1.1.1 from Theorem 1.1.6.

Proof of Theorem 1.1.1. The derivation of the homogenized Darcy’s law (1.4) from the

two-scale homogenized problem (1.15) is just a matter of algebra. From the first equation

of (1.15), the velocity u0(x, y) is computed in terms of the macroscopic forces and the local

velocities

u0(x, y) =
1

µ

N
∑

i=1

(

fi(x)−
∂p

∂xi
(x)

)

wi(y). (1.21)

Averaging (1.21) on Y , and denoting by u the average of u0, i.e. u(x) =
∫

Yf
u0(x, y)dy,

yields the Darcy relationship

u(x) =
1

µ
A
(

f(x)−∇p(x)
)

, (1.22)

since the matrix A satisfies

Aij =

∫

Yf

∇wi(y) · ∇wj(y)dy =

∫

Yf

wi(y) · ejdy. (1.23)

Equation (1.23) is obtained by multiplying the ith local problem (1.6) by wj and integrating

by parts (the boundary integrals cancel out, thanks to the periodic boundary condition).

Combining (1.22) with the divergence-free condition on u yields the homogenized Darcy’s

law. Note that it is a well-posed problem since it is just a second order elliptic equation

for the pressure p, complemented by a Neumann boundary condition. To complete the

proof of Theorem 1.1.1 it remains to show that the convergence of the pressure p̃ǫ to p is

not only weak, but also strong, in L2(Ω)/R: this will be done in the next subsection. �
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Lemma 1.1.8 Let V be the subspace of L2(Ω;H1
#(Y )N ) defined by (1.20). Its orthogonal

V ⊥ (with respect to the usual scalar product in L2(Ω × Y )) has the following characteri-

zation

V ⊥ =
{

∇xϕ(x) +∇yϕ1(x, y) with ϕ ∈ H1(Ω) and ϕ1 ∈ L2
(

Ω;L2
#(Yf )/R

)}

. (1.24)

Proof. Remark that V = V1 ∩ V2 with

V1 =
{

v(x, y) ∈ L2(Ω;H1
#(Y )N ) s.t. divyv = 0 in Ω× Y, v = 0 in Ω× Yb

}

V2 =

{

v(x, y) ∈ L2(Ω;H1
#(Y )N ) s.t. divx

(

∫

Yf

vdy

)

= 0 in Ω,

(

∫

Yf

vdy

)

· nx = 0 on ∂Ω

}

It is a well-known result (see, e.g., [24]) that

V ⊥
1 =

{

∇yϕ1(x, y) with ϕ1 ∈ L2
(

Ω;L2
#(Yf )/R

)}

V ⊥
2 =

{

∇xϕ(x) with ϕ ∈ H1(Ω)
}

.

The lemma is proved if one can check that (V1 ∩ V2)
⊥ = V ⊥

1 + V ⊥
2 . Since V1 and V2 are

two closed subspaces, this equality is equivalent to V1 + V2 = V1 + V2. This is indeed

true because we are going to prove that V1 + V2 is equal to L2(Ω;H1
#(Yf )

N ). Introducing

the divergence-free solutions (wi(y))1≤i≤N of the cell Stokes problem (1.6), for any given

v(x, y) ∈ L2(Ω;H1
#(Yf )

N ), we define a unique solution q(x) in H1(Ω)/R of the Neumann

problem






−divx

(

A∇q(x)−
∫

Yf
v(x, y)dy

)

= 0 in Ω
(

A∇q(x)−
∫

Yf
v(x, y)dy

)

· n = 0 on ∂Ω,
(1.25)

where A is the matrix A defined by (1.5). This allows us to decompose v as

v(x, y) =
N
∑

i=1

wi(y)
∂q

∂xi
(x) +

(

v(x, y) −
N
∑

i=1

wi(y)
∂q

∂xi
(x)

)

,

where the first term belongs to V1, while the second one belongs to V2. �

1.2 Inertia Effects

This section is devoted to a generalization of the previous model when inertial effects

are added to the Stokes equations which then become the Navier-Stokes equations. To

simplify the exposition we shall consider successively and separately the different inertial

terms arising in the equations. A first subsection is concerned with the linear, evolutionary

Stokes equations. A second one focuses on non-linear, steady Navier-Stokes equations. Of

course, these two cases could be combined together with no special difficulties, but at the

price of unnecessary and lengthy technical details.
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The geometrical situation is the same as that of section 1.1. Namely, a periodic

porous domain Ω and its fluid part Ωǫ are considered, with period ǫ and unit cell Y . For

a precise description of Ωǫ, the reader is referred to definition (1.3) above.

1.2.1 Darcy’s Law with Memory

We consider the unsteady Stokes equations in the fluid domain Ωǫ with a no-slip (Dirichlet)

boundary condition. We denote by uǫ and pǫ the velocity and pressure of the fluid, f the

density of forces acting on the fluid, and u0ǫ an initial condition for the velocity. We assume

that the density of the fluid is equal to 1, while its viscosity is very small, and indeed is

exactly µǫ2 (where ǫ is the pore size). The system of equations is






















∂uǫ

∂t +∇pǫ − ǫ2µ∆uǫ = f in (0, T )× Ωǫ

divuǫ = 0 in (0, T )× Ωǫ

uǫ = 0 on (0, T ) × ∂Ωǫ

uǫ(t = 0, x) = u0ǫ(x) in Ωǫ at time t = 0.

(1.26)

The scaling ǫ2 of the viscosity is the same as that in section 1.1. However, here it

is not a simple change of variable since the density in front of the inertial term has been

scaled to 1. The scalings in system (1.26) are precisely those which give a non-zero limit

for the velocity uǫ and a limit problem depending on time. In particular, (1.26) is not

equivalent to the following system (which gives rise to a different homogenized system

with no inertial term in the limit)






















∂uǫ

∂t +∇pǫ − µ∆uǫ = f in (0, T )× Ωǫ

divuǫ = 0 in (0, T )× Ωǫ

uǫ = 0 on (0, T )× ∂Ωǫ

uǫ(t = 0, x) = u0ǫ(x) in Ωǫ at time t = 0.

(1.27)

In some sense, the scaling of the viscosity in (1.26) can also be interpreted as a choice of

the time scale of the order of the pore size squared. System (1.26) has been first studied

by J.-L. Lions [14], using formal asymptotic expansions. Rigorous homogenization results

have been proved later in [5]. A study of the different system (1.27) may be found in [18].

To obtain an existence result and convenient a priori estimates for the solution of

(1.26), the force f(t, x) is assumed to belong to L2 ((0, T )× Ω)N , and the initial condition

u0ǫ (x) to H1
0 (Ωǫ)

N . Furthermore, denoting by ũ0ǫ the extension by zero in the solid part

Ω \ Ωǫ of the initial condition, we assume that it satisfies










‖ũ0ǫ‖L2(Ω) + ǫ‖∇ũ0ǫ‖L2(Ω) ≤ C

divũ0ǫ = 0 in Ω

ũ0ǫ(x) two-scale converges to a unique limit v0(x, y).

(1.28)

Then, standard theory (see e.g. [24]) yields the following
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Proposition 1.2.1 Under assumption (1.28) on the initial condition, the Stokes equa-

tions (1.26) admits a unique solution uǫ ∈ L
2
(

(0, T );H1
0 (Ωǫ)

)N
, and pǫ ∈ L2

(

(0, T );L2(Ωǫ)/R
)

.

Furthermore, the extension by zero in the solid part Ω \ Ωǫ of the velocity ũǫ satisfies the

a priori estimates

‖ũǫ‖L∞((0,T );L2(Ω)) + ǫ‖∇ũǫ‖L∞((0,T );L2(Ω)) ≤ C and ‖
∂ũǫ
∂t

‖L2((0,T )×Ω) ≤ C, (1.29)

where the constant C does not depend on ǫ.

The following homogenization theorem states that the limit problem is a Darcy’s

law with memory (due to the convolution in time) which generalizes the usual Darcy’s

law.

Theorem 1.2.2 There exists an extension (ũǫ, p̃ǫ) of the solution (uǫ, pǫ) of (1.26) which

converges weakly in L2
(

(0, T );L2(Ω)N
)

×L2
(

(0, T );L2(Ω)/R
)

to the unique solution (u, p)

of the homogenized problem










u(t, x) = v(t, x) + 1
µ

∫ t
0 A(t− s) (f −∇p) (s, x)ds in (0, T )× Ω

divu(t, x) = 0 in (0, T )× Ω

u(t, x) · n = 0 on (0, T )× ∂Ω,

(1.30)

where v(t, x) is an initial condition which depends only on the sequence u0ǫ and on the

microstructure Yf , and A(t) is a symmetric, positive definite, time-dependent, permeability

tensor which depends only on the microstructure Yf (their precise form is to be found in

the proof of the present theorem).

The complicated form of the homogenized problem (1.30), which is not a parabolic

p.d.e. but an integro-differential equation, is due to the elimination of a hidden microscopic

variable. Actually, to prove Theorem 1.2.2 we first prove a result on the corresponding

two-scale homogenized system which includes this hidden variable and has a much nicer

form.

Theorem 1.2.3 Under assumption (1.28) on the initial condition, there exists an ex-

tension (ũǫ, p̃ǫ) of the solution of (1.26) which two-scale converges to the unique solution

(u0(x, y), p(x)) of the two-scale homogenized problem


















































∂u0

∂t (x, y) +∇yp1(x, y) +∇xp(x)− µ∆yyu0(x, y) = f(x) in (0, T ) × Ω× Yf

divyu0(x, y) = 0 in (0, T ) × Ω× Yf

divx
(∫

Y u0(x, y)dy
)

= 0 in (0, T ) × Ω

u0(x, y) = 0 in (0, T ) × Ω× Yb
(∫

Y u0(x, y)dy
)

· n = 0 on (0, T )× ∂Ω

y → u0, p1 Y -periodic

u0(0, x, y) = v0(x, y) at time t = 0.

(1.31)
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Remark 1.2.4 The two-scale homogenized problem (1.31) is also called a two-pressures

Stokes system (see [14]). Eliminating y in (1.31) yields the Darcy’s law with memory

(1.30). It is not difficult to check that both v(t, x) and A(t, x) decay exponentially in time.

Thus, the permeability keeps track mainly of the recent history. If the force f is steady

(i.e. does not depend on t), asymptotically, for large time t, the usual steady Darcy’s law

for u and p is recovered. As we shall see, the two-scale homogenized problem (1.31) is

equivalent to (1.30) complemented with the cell problems (1.32)-(1.33).

Proof of theorem 1.2.3. The proof is completely parallel to that of Theorem 1.1.6

in section 1.1 (see [5]). The form of the two-scale homogenized problem (1.31) can also

be obtained by using two-scale asymptotic expansions as in Subsection 1.1.2. The only

difference is that the time derivative ∂u0

∂t has to be added in the ǫ0 equation (1.10) which

yields (1.31). �

Proof of theorem 1.2.2. The only thing to prove is that eliminating the microscopic

variable y in (1.31) leads to the Darcy’s law with memory (1.30). The solution u0 is

decomposed in two parts u1+u2 where u1 is just the evolution (without any forcing term)

of the initial condition v0. Thus, at each point x ∈ Ω, u1 is the unique solution of an

equation posed solely in Yf






























∂u1

∂t (x, y) +∇yq(x, y)− µ∆yyu1(x, y) = 0 in (0, T ) × Yf

divyu1(x, y) = 0 in (0, T ) × Yf

u1(x, y) = 0 in (0, T ) × Yb

y → u1, q Y -periodic

u1(0, x, y) = v0(x, y) at time t = 0.

(1.32)

The average of u1 in y is just v(t, x) (the initial condition in the homogenized system

(1.30)). On the other hand, u2 is given by

u2(t, x, y) =

∫ t

0

N
∑

i=1

(

fi −
∂p

∂xi

)

(s, x)
∂wi

∂t
(t− s, y)ds

where, for 1 ≤ i ≤ N , wi is the unique solution of the cell problem, which does not depend

on the macroscopic variable x. The cell problem is defined by






























∂wi

∂t (y) +∇yqi(y)− µ∆yywi(y) = ei in (0, T ) × Yf

divywi(y) = 0 in (0, T ) × Yf

wi(y) = 0 in (0, T ) × Yb

y → wi, qi Y -periodic

wi(0, y) = 0 at time t = 0.

(1.33)

Introducing the matrix A defined by

Aij(t) = µ

∫

Yf

∂wi

∂t
(t, y)ejdy, (1.34)
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the Darcy’s law with memory is easily deduced from the two-scale homogenized problem by

averaging u1 and u2 with respect to y. Eventually, using semi-group theory and integrating

by parts in the cell problem (1.34), one can prove that A is symmetric, positive definite,

and decays exponentially in time. �

1.2.2 Non-linear Darcy’s Law

We consider the steady Navier-Stokes equations











ǫγuǫ · ∇uǫ +∇pǫ − ǫ2µ∆uǫ = f in Ωǫ

divuǫ = 0 in Ωǫ

uǫ = 0 on ∂Ωǫ.

(1.35)

As before, the fluid viscosity µ has been scaled by a factor ǫ2, which implies precisely

that the velocity uǫ has a non-zero limit. The non-linear convective term has also been

scaled by a factor ǫγ , where γ is a positive constant such that γ ≥ 1. The limit case

γ = 1 corresponds exactly to the scaling which yields a non-linear homogenized problem.

The case γ = 4 allows to replace ǫ2uǫ by a new velocity vǫ which satisfies the usual

unscaled Navier-Stokes equations. Intermediate values of γ are analyzed below. For larger

values, the convective terms are much smaller than the viscous ones, and the Navier-Stokes

equations are just a small perturbation of the Stokes ones. For values smaller than 1, the

opposite situation arises: convective terms dominate viscous ones. Unfortunately, in this

last case, the homogenized limit is unclear.

We begin with a result of Mikelić [18] which states that, for γ > 1, the convective

term of the Navier-Stokes equations disappears in the limit and the homogenized system

is the usual Darcy’s law (as in section 1.1). The only price to pay is a weaker convergence

of the pressure: the closer γ to 1, the weaker the estimate on the pressure.

Theorem 1.2.5 Let γ > 1. Define a constant β > 1 by

β = min

(

2,
N

N − 2
,

N

N + 2− 2γ

)

. (1.36)

There exists an extension (ũǫ, p̃ǫ) of the solution (uǫ, pǫ) of (1.35) such that the velocity

ũǫ converges weakly in L2(Ω)N to u, and the pressure p̃ǫ converges strongly in Lq′(Ω)/R

to p, for any 1 < q′ < β, where (u, p) is the unique solution of the homogenized problem,

a linear Darcy’s law,










u(x) = 1
µA (f(x)−∇p(x)) in Ω

divu(x) = 0 in Ω

u(x) · n = 0 on ∂Ω.

(1.37)

In (1.37), the permeability tensor A is the usual homogenized matrix for Darcy’s law,

defined by (1.5) in Theorem 1.1.1.
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We consider the limit case γ = 1 which yields a non-linear Darcy-type law (some-

time called a Dupuit-Forchheimer-Ergun law). The non-linear convective term does not

disappear in the homogenized problem which indicates a non-linear behavior of Darcy’s

law.

Theorem 1.2.6 Let γ = 1. Let f be a smooth function such that its norm in C1,α(Ω),

with 0 < α < 1, is sufficiently small. Then, there exists an extension (ũǫ, p̃ǫ) of the solution

(uǫ, pǫ) of (1.35) and a unique solution (u0, p1, p) of the homogenized system











































∇yp1 + u0 · ∇yu0 − µ∆yyu0 = f(x)−∇p(x) in Yf × Ω

divyu0 = 0 in Yf × Ω

divx
(∫

Y u0dy
)

= 0 in Ω

u0 = 0 in Yb × Ω,
(∫

Y u0dy
)

· n = 0 on ∂Ω,

y → (u0, p1) Y -periodic,

(1.38)

such that p̃ǫ converges strongly in Lq(Ω)/R to p, for any 1 < q < 2, and

‖ũǫ(x)− u0

(

x,
x

ǫ

)

‖L2(Ω)2 ≤ Cǫl with 0 < l < 1/6. (1.39)

The homogenized system (1.38), called a two-pressure Navier-Stokes system, is very

similar to the two-scale homogenized system (1.15). It is not possible to eliminate the y

variable to obtain an explicit macroscopic effective law. Therefore, the non-linear Darcy’s

law is not a local, explicit, partial differential equation. Such a homogenized problem has

formally been derived in [21] and [14]. A rigorous proof of convergence has recently been

given in [17] (see also [19] in the two-dimensional case). The proof of Theorem 1.2.6 is

very technical and is not reproduced here (the key argument is to prove an existence and

uniqueness result for the homogenized system (1.38) by using a monotonicity argument).

1.3 Derivation of Brinkman’s Law

1.3.1 Setting of the Problem

This section is devoted to the derivation of Brinkman’s law for an incompressible vis-

cous fluid flowing in a porous medium. As in the previous sections, we start from the

steady Stokes equations in a periodic porous medium, with a no-slip (Dirichlet) bound-

ary condition on the solid pores. We assume that the solid part of the porous medium

is a collection of periodically distributed obstacles. We denote by ǫ the period, or the

inter-obstacles distance. The major difference with the previous sections is that the solid

obstacles are assumed to be much smaller than the period ǫ. Their size is denoted by

aǫ ≪ ǫ. There are now two small parameters in our asymptotic analysis which means that
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two-scale asymptotic expansions cannot be used in the sequel. The assumption on the

periodicity of the porous medium allows to simplify greatly the results, although it is not

strictly necessary (and not very realistic). As before, the porous medium is denoted by Ω,

and its fluid part by Ωǫ.

i

i

Y

T

a
ε

ε
ε ε

Figure 1.2: Scaling of the periodicity cell of a porous medium.

The motion of the fluid in Ωǫ is governed by the steady Stokes equations, comple-

mented with a Dirichlet boundary condition. We denote by uǫ and pǫ the velocity and

pressure of the fluid, µ its viscosity (a positive constant), and f the density of forces acting

on the fluid (uǫ and f are vector-valued functions, while pǫ is scalar). The microscopic

model is










∇pǫ − µ∆uǫ = f in Ωǫ

divuǫ = 0 in Ωǫ

uǫ = 0 on ∂Ωǫ,

(1.40)

which admits a unique solution (uǫ, pǫ) in H
1
0 (Ωǫ)

N ×L2(Ωǫ)/R if f(x) ∈ L2(Ω)N (see e.g.

[24]).

Let us describe more precisely the assumptions on the porous domain. It is contained

in a bounded domain Ω ⊂ R
N , and its fluid part is denoted by Ωǫ. The set Ω is covered by

a regular periodic mesh of period ǫ. At the center of each cell Y ǫ
i (equal to (0, ǫ)N , up to

a translation), a solid obstacle T ǫ
i is placed which is obtained by rescaling a unit obstacle

T to the size aǫ (i.e. T
ǫ
i = aǫT , up to a translation, see Figure 1.2). The unit obstacle T is

a non-empty, smooth, closed set included in the unit cell and such that Y \ T is a smooth

connected open set. The fluid part Ωǫ of the porous medium is defined by

Ωǫ = Ω \

N(ǫ)
⋃

i=1

T ǫ
i , (1.41)

where the number of obstacles is N(ǫ) = |Ω|ǫ−N (1 + o(1)). A fundamental assumption is

that the obstacles are much smaller than the period,

lim
ǫ→0

aǫ
ǫ

= 0. (1.42)
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1.3.2 Main Results

According to the various scaling of the obstacle size aǫ in terms of the inter-obstacle

distance ǫ, different limit problems arise. To sort these different regimes, we introduce a

ratio σǫ defined by

σǫ =







(

ǫN

aN−2
ǫ

)1/2
for N ≥ 3,

ǫ
∣

∣log
(

aǫ
ǫ

)
∣

∣

1/2
for N = 2.

(1.43)

As usual in perforated domains like Ωǫ, the sequence of solutions (uǫ, pǫ), being not

defined in a fixed Sobolev space, independent of ǫ, needs to be extended to the whole

domain Ω. We denote by (ũǫ, p̃ǫ) such an extension, which coincides, by definition, with

(uǫ, pǫ) on Ωǫ.

Theorem 1.3.1 According to the scaling of the obstacle size, there are three different flow

regimes.

1. If the obstacles are too small, i.e. limǫ→0 σǫ = +∞, then the extended solution (ũǫ, p̃ǫ)

of (1.40) converges strongly in H1
0 (Ω)

N ×L2(Ω)/R to (u, p), the unique solution of the

homogenized Stokes equations











∇p− µ∆u = f in Ω

divu = 0 in Ω

u = 0 on ∂Ω.

(1.44)

2. If the obstacles have a critical size, i.e. limǫ→0 σǫ = σ > 0, then the extended solution

(ũǫ, p̃ǫ) of (1.40) converges weakly in H1
0 (Ω)

N ×L2(Ω)/R to (u, p), the unique solution

of the Brinkman law











∇p− µ∆u+ µ
σ2Mu = f in Ω

divu = 0 in Ω

u = 0 on ∂Ω.

(1.45)

3. If the obstacles are too big, i.e. limǫ→0 σǫ = 0, then the rescaled solution ( ũǫ

σ2
ǫ
, p̃ǫ) of

(1.40) converges strongly in L2(Ω)N ×L2(Ω)/R to (u, p), the unique solution of Darcy’s

law










u = 1
µM

−1 (f −∇p) in Ω

divu = 0 in Ω

u · n = 0 on ∂Ω.

(1.46)

In all regimes, M is the same N ×N symmetric matrix, which depends only on the model

obstacle T (its inverse, M−1, plays the role of a permeability tensor).
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The following proposition gives the precise definition ofM in terms of local problems

around the unit obstacle T . Mathematically speaking, M can be interpreted in terms of

the hydrodynamic capacity of the set T . From a physical point of view, the ith column of

M is the drag force of the local Stokes flow around T in the ith direction. Thus, M may

be interpreted as the slowing effect of the obstacles in the homogenized limit.

Proposition 1.3.2 According to the space dimension N , the local Stokes problem and the

matrix M are defined as follows.

1. If N ≥ 3, for 1 ≤ i ≤ N , the cell problems are























∇qi −∆wi = 0 in R
N \ T

divwi = 0 in R
N \ T

wi = 0 in T

wi → ei at ∞.

(1.47)

The matrix M is defined by its entries

Mij =

∫

RN\T
∇wi · ∇wjdx, (1.48)

or equivalently by its columns, equal to the drag forces applied on T by the local Stokes

flows

Mei =

∫

∂T

(

∂wi

∂n
− qin

)

. (1.49)

2. If N = 2, for 1 ≤ i ≤ 2, the cell problems are























∇qi −∆wi = 0 in R
2 \ T

divwi = 0 in R
2 \ T

wi = 0 in T

wi(x) ∼ ei log(|x|) as |x| → ∞.

(1.50)

The matrix M is defined by its columns, equal to the drag forces applied on T by the

local Stokes flows

Mei =

∫

∂T

(

∂wi

∂n
− qin

)

. (1.51)

Furthermore, whatever the shape or the size of the obstacle T , in two space dimension

the matrix M is always the same

M = 4πId. (1.52)

In the super-critical case, the homogenized problem is a Darcy’s law with a perme-

ability tensor M−1 (see (1.46)). This tensor has nothing to do with that, denoted by A,
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obtained in a two-scale periodic setting (see Theorem 1.1.1 in section 1.1). Recall that here

the obstacles are much smaller than the period (see assumption (1.42)). The two matrices

are not computed with the same local problems which are posed in a single periodicity

cell in section 1.1 and in the whole space RN here. However, it has been proved in [3] that

M−1 is the rescaled limit of A, when the obstacle size goes to zero in the unit periodic

cell Y .

Remark 1.3.3 The surprising result in 2-D, that M is always equal to 4πId, is actually

a consequence of the well-known Stokes paradox. This paradox asserts that there exist no

solution of the local problem (1.47) in 2-D (it explains why the growth condition at infinity

in (1.50) is different from the higher dimensional cases). Notice also that the critical size

yielding Brinkman’s law changes drastically from 2-D, aǫ = e−σ2/ǫ2, to 3-D, aǫ = σ2ǫ3.

The proof of Theorem 1.3.1 relies on the oscillating test function method of Tartar

as adapted to the present framework by Cioranescu and Murat [10]. Let us sketch the

main idea of this method. It consists in multiplying the Stokes equation (1.40) by a test

function, integrating by parts, and passing to the limit, as ǫ → 0, in order to obtain the

variational formulation of the homogenized problem. The key difficulty here is that the

test function must belong to H1
0 (Ωǫ)

N , namely it has to vanish on the obstacles for any

value of ǫ. Of course it is not the case for a non-zero fixed test function ϕ. Therefore,

boundary layers (wǫ
i )1≤i≤N have to be constructed such that, ϕ being a smooth vector-field,

∑N
i=1 ϕiw

ǫ
i belongs toH

1
0 (Ωǫ)

N and converges to ϕ as ǫ goes to zero. These boundary layers

(wǫ
i )1≤i≤N are built with the help of the solutions (wi)1≤i≤N of the local Stokes problems

from Proposition 1.3.2 by rescaling them to the size aǫ around each obstacle and pasting

each contribution at the cell boundary ∂Y ǫ
i . Loosely speaking, wǫ

i is a divergence-free

vector field which vanishes on the obstacles and is almost equal to the unit vector ei far

from the obstacles. Using this oscillating test function,
∑N

i=1 ϕiw
ǫ
i yields the desired result

(see [2] for details). Another interest of the boundary layers (wǫ
i )1≤i≤N is that they permit

to obtain corrector results. For example, in the critical case and under a mild smoothness

assumption on the Brinkman velocity u, the weak convergence in H1
0 (Ω)

N of ũǫ can be

improved in
(

ũǫ −
N
∑

i=1

viw
ǫ
i

)

→ 0 strongly in H1
0 (Ω)

N .

Finally, as in section 1.1 on the derivation of Darcy’s law, a technical difficulty is the

construction of a bounded extension of the pressure pǫ. As usual, extending the velocity

is easier: it suffices to take it equal to 0 inside the obstacles,

{

ũǫ = uǫ in Ωǫ,

ũǫ = 0 in Ω \Ωǫ.
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Remark 1.3.4 In space dimension N = 2, 3, Theorem 1.3.1 can be generalized easily

to the non-linear Navier-Stokes equations (see Remark 1.1.10 in [2]). The microscopic

equations in the porous medium are











∇pǫ + uǫ · ∇uǫ − µ∆uǫ = f in Ωǫ

divuǫ = 0 in Ωǫ

uǫ = 0 on ∂Ωǫ.

(1.53)

Then, there are still three limit flow regimes, corresponding to the same obstacle sizes, and

the definitions of the local problems and of the matrix M are still given by Proposition

1.3.2. In the critical case, the homogenized problem is a non-linear Brinkman’s law











∇p+ u · ∇u− µ∆u+ µ
σ2Mu = f in Ω

divu = 0 in Ω

u = 0 on ∂Ω,

(1.54)

while in the super-critical case it is still the same linear Darcy’s law (1.46).

The rigorous derivation of Brinkman’s law by homogenization of Stokes equations in

a periodic porous medium has first been established by Marchenko and Khruslov [16]. The

description of all limit regimes and the two-dimensional paradoxical result of Proposition

1.3.2 are due to Allaire [2]. Brinkman’s law has also been obtained formally by three-scale

asymptotic expansion by Lévy [13] and Sanchez-Palencia [22].
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Chapter 2

Homogenization of diffusion

equations

2.1 Double Permeability

2.1.1 Setting and results

This section is devoted to the derivation of the so-called double porosity model for de-

scribing single-phase flows in fractured porous media. This model is well known in the

engineering literature [11]. It has rigorously been derived by means of homogenization

techniques [9]. A fractured porous medium possesses two porous structures, one asso-

ciated with the system of cracks or fractures, and the other with the matrix of porous

rocks. In each of these structures, the fluid flow is assumed to be governed by Darcy’s

law. On the contrary of the previous sections where the starting model was a microscopic

model (Stokes equations at the pore level), here the original model is already an averaged

model (Darcy’s law in both the matrix and the fractures). Therefore, we shall obtain a

macroscopic model starting from a mesoscopic one. More precisely, we shall prove, un-

der suitable assumptions, that the homogenization of Darcy’s law in a periodic fractured

porous medium yields a double porosity model.

As before, we denote by Ω the periodic porous medium with its period ǫ. The

rescaled unit cell is Y = (0, 1)N , which is made of two complementary parts: the matrix

block Yb, and the fracture set Yf (Yb ∪ Yf = Y and Yf ∩ Yb = ∅). The matrix block Yb is

assumed to be completely surrounded by the fracture set Yf , i.e. Yb is strictly included in

Y . We define the matrix and fracture parts of Ω by

Y ǫ
b = Ω ∩

N(ǫ)
⋃

i=1

Y ǫ
b i, Y ǫ

f = Ω ∩

N(ǫ)
⋃

i=1

Y ǫ
f i
, (2.1)

where Y ǫ
b i and Y

ǫ
f i

are the ǫ-size copies of Yb and Yf covering Ω.
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Y

Y

f

Y

Figure 2.1: Unit cell of a fractured porous medium.

The reservoir Ω is periodic since its porosity φǫ and permeability kǫ are periodic

functions defined by

{

kǫ(x) = ǫ2kYb
, φǫ(x) = φYb

in Y ǫ
b

kǫ(x) = kYf
, φǫ(x) = φYf

in Y ǫ
f

(2.2)

where φYb
, φYf

are positive constants, and kYb
, kYf

are positive definite tensors (they could

also depend on x and y). The fluid is assumed to be compressible, and the state law giving

the relationship between its density ρǫ and its pressure pǫ is linearized. Combining Darcy’s

law and the conservation of mass, and neglecting gravity effects, yields the following

equation










φǫ
∂ρǫ
∂t − div (kǫ∇ρǫ) = f in (0, T ) × Ω

(kǫ∇ρǫ) · n = 0 on (0, T ) × ∂Ω

ρǫ(0, x) = ρinit(x) at time t = 0.

(2.3)

Remark 2.1.1 We emphasize the particular scaling of the permeability defined in (2.2):

the matrix is much less permeable than the fractures. Equivalently, the time scale of

filtration inside the matrix is much smaller than that inside the fractures. On the other

hand, the porosities have the same order of magnitude in both regions. Such scalings

have been found to yield a homogenized double porosity model by Arbogast, Douglas, and

Hornung in [9]. If the permeabilities of both phases (matrix and fractures) were of the

same order, the homogenized system would easily be seen to be a single Darcy’s law with

effective coefficients computed with the usual rules of homogenization.

To obtain an existence result and convenient a priori estimates for the solution of

(1.40), the source term f(t, x) is assumed to belong to L2 ((0, T )× Ω), and the initial

condition ρinit(x) to H1(Ω) (the initial condition could vary with ǫ as soon as it converges

sufficiently smoothly). Then, standard theory yields the following
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Proposition 2.1.2 There exists a unique density ρǫ ∈ L2
(

(0, T );H1(Ω)
)

solution of sys-

tem (1.26). Furthermore, it satisfies the a priori estimates

‖ρǫ‖L∞((0,T );L2(Ω)) + ‖∇ρǫ‖L∞((0,T );L2(Y ǫ
f
)) + ǫ‖∇ρǫ‖L∞((0,T );L2(Y ǫ

b
)) ≤ C,

‖∂ρǫ
∂t ‖L2((0,T )×Ω) ≤ C,

(2.4)

where the constant C does not depend on ǫ.

The following homogenization theorem states that the homogenized problem is a

double permeability model.

Theorem 2.1.3 Under assumptions (2.2), the density ρǫ, solution of (2.3), two-scale

converges to ρ0(x, y) ∈ L2((0, T )× Ω× Y ) such that
{

ρ0(x, y) = ρYf
(x) if (x, y) ∈ Ω× Yf

ρ0(x, y) = ρYb
(x, y) if (x, y) ∈ Ω× Yb

where
(

ρYf
(x), ρYb

(x, y)
)

∈ L2
(

(0, T );H1(Ω)
)

×L2
(

(0, T )× Ω;H1(Yb))
)

is the unique so-

lution of the coupled homogenized problem










































θφYf

∂ρYf
∂t − divx

(

k∗∇xρYf

)

= f − φYb

∫

Yb

∂ρYb
∂t (x, y)dy in (0, T )× Ω

(

k∗∇ρYf

)

· n = 0 on (0, T ) × ∂Ω

ρYf
(0, x) = ρinit(x) at time t = 0

φYb

∂ρYb
∂t − divy (kYb

∇yρYb
) = f(t, x) in (0, T )× Yb

ρYb
(x, y) = ρYf

(x) on (0, T ) × ∂Yb

ρYb
(0, x, y) = ρinit(x) at time t = 0,

(2.5)

where θ =
|Yf |
|Y | is the volume fraction of fractures, and k∗ is the homogenized permeability

tensor defined by its entries

k∗ij =

∫

Yf

kYf
(ei +∇yχi) · (ej +∇yχj) dy,

where χi(y) are the unique solutions in H1
#(Yf )/R of the cell problems











−divykYf
(ei +∇yχi(y)) = 0 in Yf

kYf
(ei +∇yχi(y)) · n = 0 on ∂Yb

y → χi(y) Y -periodic,

with (ei)1≤i≤N the canonical basis of RN .

The homogenized problem (2.5) is called a double porosity model since it couples a

macroscopic equation for ρYf
(the first line of (2.5)) and a microscopic equation for ρYb

(the fourth line of (2.5)). Remark that the (weak) limit of ρǫ is not ρYf
, but rather a

combination of ρYf
and ρYb

ρǫ ⇀ θρYf
+ (1− θ)ρYb

as ǫ → 0.

Therefore, one can not eliminate the microscopic equation in the homogenized problem.
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2.1.2 Asymptotic expansions

We apply the method of two-scale asymptotic expansions to (2.3). We start from the

following two-scale asymptotic expansion (or ansatz)

ρǫ(t, x) =

+∞
∑

i=0

ǫiρi

(

t, x,
x

ǫ

)

, (2.6)

where each term ρi(t, x, y) is a Y -periodic function. Plugging (2.6) into (2.3) yields a

cascade of equations. One must be careful because there is a difference of order in ǫ in the

matrix block Yb and in the fracture set Yf .

The ǫ−2 equation holds true only in Yf

−divy (kYb
∇yρ0(t, x, y)) = 0 in Yf ,

which implies that ρ0 is a function that does not depend on y in Yf , i.e., there exists a

function ρYf
(t, x) such that

ρ0(t, x, y) ≡ ρYf
(t, x) for any y ∈ Yf .

The ǫ−1 equation in Yf is

−divy (kYb
∇yρ1(t, x, y)) = divy

(

kYb
∇xρYf

(t, x)
)

in Yf ,

with a Neumann boundary condition on ∂Yb, which allows one to compute ρ1 in terms of

∇xρYf
.

Finally, the ǫ0 equation is

φYb

∂ρ0
∂t − divy (kYb

∇yρ0) = f(t, x) in Yb

φYf

∂ρ0
∂t − divy

(

kYf
∇yρ2(x, y)

)

= g(t, x, y) in Yf ,
(2.7)

with

g(t, x, y) = divy
(

kYf
∇xρ1

)

+ divx
(

kYf
∇yρ1

)

+ divx
(

kYf
∇xρ0

)

+ f(x).

The first line of (2.7) is a parabolic equation for ρ0 in the block Yb with Dirichlet boundary

condition on ∂Yb. Writing ρ0 = ρYb
in Yb, it is precisely the fourth line of the homogenized

problem (2.5). The second line of (2.7) is an elliptic equation for the unknown ρ2 in the

fracture Yf with Neumann boundary conditions on ∂Yb. The compatibility condition of

this equation (in order that it admits a solution) is

∫

Y

[

g(t, x, y) − φYf

∂ρ0
∂t

]

dy = 0,

which is exactly the first line of the homogenized problem (2.5).
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2.2 Long time behavior of a diffusion equation

2.2.1 Setting and main results

In this section we discuss the homogenized limit of a time-evolution diffusion equation.

This is a parabolic equation for which we are interested in the long time behavior. As

we shall see, the homogenized limit is quite different in this setting from the usual one as

described in the first lecture. For an initial data a ∈ L2(Ω), the equation is















c
(x

ǫ

) ∂uǫ
∂t

− ǫ2div
(

A
(x

ǫ

)

∇uǫ
)

= σ
(x

ǫ

)

uǫ in Ω× R
+

uǫ = 0 on ∂Ω ×R
+

uǫ(0) = a in Ω.

(2.8)

where A is a symmetric matrix satisfying the coercivity assumption

α|ξ|2 ≤
N
∑

i,j=1

Aij(y)ξiξj ≤ β|ξ|2, with 0 < α ≤ β,

and c is a bounded positive Y -periodic function

0 < c− ≤ c(y) ≤ c+ < +∞ ∀ y ∈ Y.

Equation (2.8) models a reaction-diffusion problem (there is no sign restriction on the

reaction coefficient σ). It is frequently used also in nuclear physics or neutronics [7], [8]

(see also the lecture notes [6] where additional references and physical motivation are

given).

Remark the ǫ2 scaling in front of the diffusion term. One possible justification of

this scaling is that, upon the change of variables y = x/ǫ, the ǫ2 factor disappears in

front of the diffusion, the periodicity cell (0, 1)N is independent of ǫ while the domain size

is of order 1/ǫ. Another interpretation of the ǫ2 scaling is concerned with the long time

behavior of this reaction-diffusion equation. Indeed, if we change the time scale by the

change of variable τ = ǫ2t, we can divide all terms of the equation by ǫ2 and suppress

this scaling (except in front of the reaction term). Clearly, if the new time variable τ is of

order 1, then the original time variable t is of order ǫ−2, i.e. we investigate the asymptotic

of (2.8) for very long times.

In order to state the main convergence result for (2.8) we need to introduce an

auxiliary problem which is a cell spectral problem. Let λ ∈ R and w(y) ∈ L2
#(Y ) be the

first eigenvalue and the first eigenfunction of the cell spectral problem

{

−λc(y)w − divy (A(y)∇yw) = σ(y)w in Y,

y → w(y) Y − periodic.
(2.9)
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The existence of (λ,w) is standard, and the Krein-Rutman theorem implies furthermore

that the first eigenvalue is simple and the first eigenvector is the only one that can be chosen

positive, w(y) > 0 in Y . Physically, the first eigencouple models the local equilibrium

between the diffusion and reaction terms.

Theorem 2.2.1 Let uǫ be the unique solution of (2.8). Define a new unknown

vǫ(ǫ
2t, x) =

uǫ(t, x)

w
(

x
ǫ

) eλt. (2.10)

Then, for any time T > 0, vǫ(τ, x) converges weakly in L2
(

(0, T );H1(Ω)
)

to u(τ, x) which

is the unique solution of the homogenized problem














c
∂u

∂τ
− div

(

A∇u
)

= 0 in Ω× (0, T )

u = 0 on ∂Ω× (0, T )

u(0) = u0 in Ω,

(2.11)

with

c =

∫

Y
c(y)w(y)2dy,

and A the homogenized diffusion tensor defined by its entries

Aij =

∫

Y
w2A (ei +∇yχi) · (ej +∇yχj) dy,

where χi(y) are the unique solutions in H1
#(Y )/R of the cell problems

{

−divy
(

w2A (ei +∇yχi(y))
)

= 0 in Y

y → χi(y) Y -periodic,

with (ei)1≤i≤N the canonical basis of RN .

In other words, Theorem 2.2.1 gives the following asymptotic expansion for the

solution of (2.8)

uǫ(t, x) ≈ e−λtw
(x

ǫ

)

u
(

ǫ2t, x
)

.

Proof. Applying the change of unknown (2.10) and using the cell spectral equation (2.9),

we find a simplified equation for vǫ














(cw2)
(x

ǫ

) ∂vǫ
∂τ

− div
(

(w2A)
(x

ǫ

)

∇vǫ
)

= 0 in Ω× (0, T )

vǫ = 0 on ∂Ω × (0, T )

vǫ(0) = vǫ0 in Ω

(2.12)

with vǫ0 = a(x)/w(x/ǫ). Remark that all scalings have disappear from (2.12) and we can

therefore apply the standard homogenization theory to (2.12) (see subsection 1.2.4 in the

first lecture). This easily yields (2.11). �
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Remark 2.2.2 It is possible to consider a source term in the reaction-diffusion equation

(2.8) of the form

ǫ2f(ǫ2t, x)e−λt.

It yields a source term in the homogenized equation (2.11) of the type

(
∫

Y
w(y) dy

)

f(τ, x).

2.2.2 Asymptotic expansions

In order to understand how we guessed the clever change of unknowns (2.10) in the previous

subsection, we apply now the method of two-scale asymptotic expansions to the reaction-

diffusion equation (2.8) (without any a priori knowledge of the result). Since there are two

time scales, the fast one t and the slow one τ = ǫ2t, we start from the following two-scale

asymptotic expansion (or ansatz)

uǫ(t, x) =

+∞
∑

i=0

ǫiui

(

t, ǫ2t, x,
x

ǫ

)

, (2.13)

where each term ui(t, τ, x, y) is a Y -periodic function. Remark however that there is no

periodicity with respect to the time variables. This series is plugged into equation (2.8)

and we get the usual cascade of equations. The ǫ0 equation is
{

c(y)∂u0

∂t − divy (A(y)∇yu0) = σ(y)u0 in Y,

y → u0(t, τ, x, y) Y − periodic.
(2.14)

Since we are interested in the long time asymptotic of the problem, and because t is the

fast time variable (compared to τ), we ignore the initial condition in (2.14) and we decide

to retain only the behavior of u0 for very large time t. (The initial condition will be applied

to the Cauchy problem with respect to the slow time variable τ .) It is well-known that

any solution of (2.14) has the same asymptotic profile, as time t goes to infinity, whatever

the initial condition. This limit profile is precisely

Ce−λtw(y),

where C is a constant depending on the initial condition, and (λ,w) is the first eigencouple

of the underlying operator (2.9). Therefore, we deduce that, for large t,

u0(t, τ, x, y) = u(τ, x)e−λtw(y).

The ǫ equation is
{

c(y)∂u1

∂t − divy (A(y)∇yu1) = σ(y)u1 + g1 in Y,

y → u1(t, τ, x, y) Y − periodic,
(2.15)

27



with the source term

g1 = divx (A(y)∇yu0) + divy (A(y)∇xu0) .

If we want the series (2.13) to converge for large time t, its second term u1 should not

grow faster in t than its first term u0. To avoid any resonance effect in (2.15), the right

hand side g1 must be orthogonal to the first eigenfunction w(y), namely

∫

Y
g1(y)w(y) dy = 0. (2.16)

This condition is always satisfied since

∫

Y
g1(y)w(y) dy = e−λt

∫

Y
(A(y)∇yw(y) · ∇xu(x)w(y) −A(y)w(y)∇xu(x) · ∇yw(y)) dy = 0

because A is a symmetric matrix. Thus, for large time t, the solution u1 is

u1(t, τ, x, y) = e−λtχ(τ, x, y),

where χ solves

{

−λc(y)χ− divy (A(y)∇yχ) = σ(y)χ+ g1 in Y,

y → χ(t, τ, x, y) Y − periodic.

The ǫ2 equation is

{

c(y)∂u2

∂t − divy (A(y)∇yu2) = σ(y)u2 + g2 in Y,

y → u2(t, τ, x, y) Y − periodic,
(2.17)

with the source term

g2 = divx (A∇yu1) + divy (A∇xu1)− c
∂u0
∂τ

+ divx (A∇xu0) .

Once again, if we want the series (2.13) to converge, its third term u2 should not grow

faster in t than u0. To avoid any resonance effect in (2.17), the right hand side g2 must

be orthogonal to the first eigenfunction w(y), namely

∫

Y
g2(y)w(y) dy = 0. (2.18)

After some algebra, the compatibility condition (2.18) yield a macroscopic equation

c
∂u

∂τ
− divx

(

A∇xu
)

= 0

to which we add the initial condition in order to recover the homogenized problem (2.11).
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l’Ecole Polytechnique (2010).

[7] G. Allaire, F. Malige, Analyse asymptotique spectrale d’un problème de diffusion neu-

tronique, C. R. Acad. Sci. Paris, Série I, t.324, pp.939-944 (1997).

[8] G. Allaire, Y. Capdeboscq, Homogenization of a spectral problem in neutronic multi-

group diffusion, Comput. Methods Appl. Mech. Engrg. 187, pp.91-117 (2000).

[9] T. Arbogast, J. Douglas, U. Hornung, Derivation of the double porosity model of

single phase flow via homogenization theory, SIAM J. Math. Anal. 21, pp.823-836

(1990).
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