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LECTURE 3

NUMERICAL METHODS OF HOMOGENIZATION

Grégoire ALLAIRE

Ecole Polytechnique

CMAP

91128 Palaiseau, France

The goal of this lecture is to describe how homogenization theory can be applied

to numerical computations of partial differential equations in highly heterogeneous media.

In the first chapter we briefly review the classical numerical method for periodic media.

It amounts to the separate computation of the cell and homogenized problems. We also

give some indications about correctors and boundary layers. In the second chapter we

discuss recent numerical methods, inspired from the theory of periodic homogenization,

but which can be applied to any kind of disordered heterogeneous media (not necessarily

periodic).

1



Chapter 1

Periodic media

1.1 Classical approach

We consider only periodic media as described in the first lecture. This is of course a serious

restriction in many applications (the next chapter is devoted to the non-periodic case). For

simplicity we restrict ourselves to a model problem of diffusion. The periodic domain is

denoted by Ω (see Figure 1.1), its period by ǫ (assumed to be small in comparison with the

size of the domain), and the rescaled unit periodic cell by Y = (0, 1)N . The conductivity

tensor in Ω is A
(

x
ǫ

)

where A(y) is Y -periodic and satisfies the coercivity assumption

α|ξ|2 ≤
N
∑

i,j=1

Aij(y)ξiξj ≤ β|ξ|2 ∀ ξ ∈ IRN , ∀ y ∈ Y, (1.1)

with β ≥ α > 0. Denoting by f(x) the source term, and enforcing a Dirichlet boundary

condition (for simplicity), our model problem reads
{

−div
(

A
(x

ǫ

)

∇uǫ
)

= f in Ω

uǫ = 0 on ∂Ω,
(1.2)

which admits a unique solution uǫ(x).

If one wants to compute numerically the solution uǫ, any method (finite differences,

finite elements, finite volumes) will require a mesh spacing h that must be smaller than ǫ

which the characteristic length of the medium. If ǫ is too small, it yields a very fine mesh

and thus a very large number of degrees of freedom. Such discrete problems may be too

costly or even impossible to solve because the CPU time, as well as the memory storage,

being proportional to some power of the total number of degrees of freedom, are too large.

The classical approach to numerically solve (1.2) is rather to compute the solution

of the homogenized problem corresponding to (1.2), namely
{

−divx (A
∗∇xu(x)) = f(x) in Ω

u = 0 on ∂Ω.
(1.3)
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Ω

Figure 1.1: A periodic domain.

Since the homogenized tensor A∗ is constant, the discretization of (1.3) does not require

a small mesh size h. However, we first need to compute the N cell solutions of the cell

problems, for 1 ≤ i ≤ N ,
{

−divyA(y) (ei +∇ywi(y)) = 0 in Y

y → wi(y) Y -periodic,
(1.4)

which yield the value of the tensor A∗

A∗
ij =

∫

Y

A(y)(ei +∇ywi) · ej dy =

∫

Y

A(y) (ei +∇ywi) · (ej +∇wj) dy. (1.5)

An additional advantage of the cell problems (1.4) is that it allows to improve the approx-

imation of uǫ by u by adding the so-called correctors to the homogenized solution. Indeed,

recall the beginning of the two-scale asymptotic expansion for uǫ (and its mathematical

justification, see Remark 1.3.7 in the first lecture)

uǫ(x) ≈ u(x) + ǫ

N
∑

i=1

∂u

∂xi
(x)wi

(x

ǫ

)

. (1.6)

In (1.6) the term ǫ
∑N

i=1
∂u
∂xi

(x)wi

(

x
ǫ

)

is called the corrector term. When ǫ is small, the

corrector term is not very important if one is interested in the values of uǫ. However, if

the physical quantity of interest is the gradient ∇uǫ (some type of flux or of strain), then

the corrector is of the same order than the homogenized gradient ∇u, even if ǫ is small,

because the approximation in (1.6) is in the sense of the H1(Ω)-norm and it implies

∇uǫ(x) ≈ ∇u(x) +
N
∑

i=1

∂u

∂xi
(x)(∇ywi)

(x

ǫ

)

.

This classical approach of numerical homogenization has been pursued by many authors.

Let us mention just a few references: [7], [8], [12], etc.
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Remark 1.1.1 The results of periodic homogenization are also valid for macroscopically

modulated oscillating coefficients of the type A
(

x, x
ǫ

)

, where A(x, y) is a smooth function of

x, periodic with respect to y. Numerically this type of problems is solved exactly as above,

except that we compute an effective tensor A∗(x) which is piecewise constant in each cell

of the coarse mesh of size h (used for the computation of the homogenized problem (1.3)).

��

��

��

��

��

��

��

��

��

��

��

�� �� �� ��

��������

Figure 1.2: Periodic boundary conditions in the unit cell.

The only numerical difficulty in this classical approach is the periodic boundary

condition in the cell problems (1.4). Such periodic boundary conditions are frequently

not available in usual numerical codes (although they are easy to implement: just merge

the degrees of freedom on the boundary with their counterparts on the opposite face of

the unit cell Y , see Figure 1.2). Fortunately, under appropriate symmetry conditions, one

can replace the periodic boundary condition by a simpler combination of Dirichlet and

Neumann conditions.

Σ
1

Σ2

Σ
1

Σ2

y

y1

2

Figure 1.3: Cubic symmetry in the unit cell Y .

Let us assume that the coefficient matrix A(y) has cubic symmetry in Y , i.e. is a

diagonal matrix, symmetric with respect to the hyperplanes, parallel to the faces of Y ,

running through its center (see Figure 1.3). Then, it is easily seen that −wi(−y) and

wi(y
′, yj) for any j 6= i (with y = (y′,−yj)) are also solutions of (1.4). This implies that

wi is even with respect to yj for j 6= i, and odd with respect to yi. Therefore, denoting by
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Σi the faces of the unit cube Y which are normal to the vector ei, the cell problem (1.4)

is equivalent to










−divyA(y) (ei +∇ywi(y)) = 0 in Y

wi(y) = 0 on Σi

∂wi

∂n
= 0 on Σj, j 6= i.

(1.7)

Of course, one can further reduce the computational domain Y in (1.7) to one of its

quadrant because the same type of boundary conditions hold true on the hyperplanes,

parallel to the faces of Y , running through its center.

Remark 1.1.2 There is an alternative method to the computation of the cell and homog-

enized problems and to the approximation formula (1.6): the so-called Bloch wave method

[13], [14], [15]. A variant of this method has also been investigated in [26], [27], [28].

1.2 Boundary layers

An important issue in the previous classical approach is the possible improvement of the

computation by adding boundary layers. The starting point is to recognize that the right

hand side of (1.6) does not satisfy the Dirichlet boundary condition which is actually

imposed to the true solution uǫ. Therefore, the approximation (1.6) can be improved, at

least near the boundary ∂Ω, by adding to its right hand side a so-called boundary layer.

Introduce a function uǫ1,bl(x), solution of















−div
(

A
(x

ǫ

)

∇uǫ1,bl
)

= 0 in Ω

uǫ1,bl = −
N
∑

i=1

∂u

∂xi
(x)wi

(x

ǫ

)

on ∂Ω.
(1.8)

Then, we replace (1.6) by

uǫ(x) ≈ u(x) + ǫ

N
∑

i=1

∂u

∂xi
(x)wi

(x

ǫ

)

+ ǫuǫ1,bl(x). (1.9)

By construction, the right hand side of (1.9) satisfies the Dirichlet boundary condition as

the true solution uǫ. One can prove that (1.9) is a better approximation than (1.6), mainly

near the boundary. More precisely, without boundary layer the optimal error estimate is
∥

∥

∥

∥

∥

uǫ(x)− u(x)− ǫ

N
∑

i=1

∂u

∂xi
(x)wi

(x

ǫ

)

∥

∥

∥

∥

∥

H1(Ω)

≤ C
√
ǫ,

while taking into account the boundary layer improves the estimate
∥

∥

∥

∥

∥

uǫ(x)− u(x)− ǫ

N
∑

i=1

∂u

∂xi
(x)wi

(x

ǫ

)

− ǫuǫ1,bl(x)

∥

∥

∥

∥

∥

H1(Ω)

≤ Cǫ. (1.10)
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However, the function uǫ1,bl(x) is not explicit. It is only for rectangular domains with faces

aligned with those of the unit cell that one can find an explicit approximation uǫ1,bl(x).

Γ
y’

y
N

G

Figure 1.4: Semi infinite band.

For simplicity, assume that Ω = (0, L)N where L is a positive length. Denote by Γ

that face of Ω where xN = 0 (we use the same name for the corresponding face of the unit

cell Y ). We define a semi-infinite band G by

G = (0, 1)N−1 × (0,+∞),

such that Γ = G ∩ {yN = 0} (see Figure 1.4). We use the notation y = (y′, yN ) with

y′ = (y1, ..., yN−1). We define a semi-infinite band problem











−divy(A(y)∇ywi,bl) = 0 in G

wi,bl = −wi on Γ

y′ → wi(y
′, yN ) (0, 1)N−1-periodic.

(1.11)

One can prove that (1.11) admits a unique solution. Furthermore, this solution converges

exponentially fast to a constant when yN tends to +∞, and its gradient converges expo-

nentially fast to zero. More precisely, there exists a limit ci and a positive exponent γ > 0

such that

lim
yN→+∞

eγyN (|wi,bl − ci|+ |∇wi,bl|) = 0.

The solution wi,bl of (1.11) is called a boundary layer. One can prove that, near Γ, we

have

uǫ1,bl(x) ≈
N
∑

i=1

∂u

∂xi
(x)wi,bl

(x

ǫ

)

. (1.12)

Of course a similar result holds true for any face of Ω. Finally, plugging the boundary

layer approximation (1.12) in (1.9) gives an approximation of uǫ which satisfies the same

improved error estimate (1.10). Numerically, it is easy to compute approximate solutions

of the semi-infinite band problem (1.11): beacuse of the exponential decay of its solution

wi,bl, one can truncate the semi-infinite band G to just a few cells (typically of the order

of 5).

Boundary layers are discussed at length in many papers including [2], [25], [29].

Boundary layers are also very important for the homogenization of oscillating boundaries

and for the determination of effective boundary conditions (see, e.g. [1], [9], [20], [24]).
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Chapter 2

Heterogeneous non-periodic media

2.1 Generalities

The goal is to compute the solution of a partial differential equation in an heterogeneous

medium with one, several, or a continuum of lengthscales, characterized by a small pa-

rameter ǫ. If the lengthscale ǫ is very small, a direct computation is impossible or too

costly. Therefore, we want to use a mesh with a mesh-spacing of size h >> ǫ.

The main idea is to use an homogenization paradigm (i.e. a specific model) to

devise an adapted numerical algorithm. For example, in this section and in the next one,

we consider again the model problem

{

−div (Aǫ∇uǫ) = f in Ω

uǫ = 0 on ∂Ω
(2.1)

where Aǫ(x) is not necessarily a periodic function of x. The last section of this chapter

will focus on another model problem.

The point is that we do not satisfy ourselves with the mere computation of the

solution of the homogenized problem of (2.1). We want, not only the homogenized be-

havior of the true solution uǫ, but also its microscopic fluctuations (the correctors in the

terminology of periodic homogenization).

Several multiscale finite element methods for the numerical solution of (2.1) have

been proposed. We are going to discuss at length that of Hou et al. [22], [23], but let us

also mention a method due to Arbogast [6] for mixed finite element algorithms, a method

of Matache, Babuska and Schwab [26] using Bloch waves, the HMM approach of E and

Engquist [18] and a wavelet-based method [10], [17]. There are many other methods

devoted to numerical homogenization (multigrid, residual free bubble, etc.).
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2.2 Multiscale finite element methods

In this section we describe the multiscale finite element method of Hou et al. [22], [23], as

well as its extension in [5]. The model problem under consideration is (2.1). We get some

inspiration from the periodic case Aǫ = A
(

x
ǫ

)

, but the method will be of use for more

general cases. However, the convergence proofs are available only in the periodic case, or

at least in the non-resonant case, i.e. when all heterogeneities length scales are smaller

than the mesh size, h >> ǫ.

The main idea is very close to the method of the oscillating test function due to

Tartar [30]. Indeed, instead of using the usual P1 (or affine) finite element basis, we first

build an oscillating finite element basis and then compute the solution of (2.1) with this

specially adapted basis.

1

0

0

Figure 2.1: Multiscale finite element method.

We start with a coarse mesh of the domain Ω, denoted by Th = (Kl)l∈Ih . It can be

a rectangular or a triangular mesh (see Figure 2.1). We denote by h > 0 the mesh spacing

in this coarse mesh. We denote by (xi)1≤i≤Nh
the vertices of this coarse mesh. We build

a special finite element basis adapted to the problem. Each mesh cell K has its own fine

mesh, independent from the other ones (see Figure 2.1). For each mesh cell K and for

each of its vertex xi we compute a base function φǫi,K as the solution of















−div
(

Aǫ∇φǫi,K
)

= 0 in K

φǫi,K(xj) = δij at the vertex xj

φǫi,K affine on ∂K

(2.2)

The boundary value problem (2.2) is similar to the cell problem (1.4). Indeed, introducing
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the affine function e · x+ c which coincides with the boundary condition of (2.2) (namely

e · xj + c = δij), and defining wǫ
i,K = φǫi,K − e · x− c, (2.2) is equivalent to

{

−div
(

Aǫ(e+∇wǫ
i,K)

)

= 0 in K

wǫ
i,K = 0 on ∂K

(2.3)

The main difference between (2.3) and the cell problem (1.4) is the boundary condition:

Dirichlet for the former, periodic for the latter.

Collecting these functions φǫi,K for all cells K around a single vertex xi we get a base

function φǫi , with compact support (see Figure 2.2), such that

(φǫi)|K ≡ φǫi,K , φǫi(xj) = δij at any vertex xj. (2.4)

Remark that the computations of the base functions φǫi,K can be made in parallel since

they are completely independent.

xi

Figure 2.2: Support of the finite element basis function φǫi .

Finally it remains to compute an approximation uhǫ of the true solution uǫ of (2.1)

by using the finite element basis (φǫi)1≤i≤Nh
on the coarse mesh Th. This last problem is

of moderate size, and thus of low cost. However, it incorporates the oscillations of the

heterogeneous tensor Aǫ. This multiscale finite element method is thus a simple conforming

method. When implementing this method, there are two delicate issues. First, the rigidity

matrix must be computed with a quadrature rule applied on the fine mesh. Second, the

numerical solution must be plotted on the fine mesh. This is very important if one want

to see the fine oscillations which are incorporated in the finite element basis functions.

In the periodic case, the following convergence result has been proved [22], [23]:

there exists a constant C > 0 such that

‖uǫ − uhǫ ‖H1

0
(Ω) ≤ C

(

h+

√

ǫ

h

)

. (2.5)
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It is clear that estimate (2.5) is interesting only when h >> ǫ, and that there is a resonance

effect when h is of the same order as ǫ. The main idea in the proof of estimate (2.5) is to

use asymptotic expansions of the type of (1.6) for uǫ and for each basis function φǫi .

There is a variant of this method [23], called the multi scale finite element method

with oversampling, which improves the estimate (2.5) by getting rid of the square root.

This generalization amounts to compute the base functions φǫi,K on a fine mesh K ′ which

is slightly larger than K, namely K ⊂⊂ K ′. The method becomes non-conforming since

the different functions φǫi,K do not match at the interface between neighbouring cells, but

this variant suppresses all boundary layers effects near the cell boundaries ∂K.

K

K

’

Figure 2.3: Fine mesh for the oversampling method.

Another variant [5] starts by recognizing that the approximation (1.6) is also equiv-

alent (by a first order Taylor expansion) to

uǫ(x) ≈ u
(

x+ ǫw
(x

ǫ

))

with w = (wi)1≤i≤N . (2.6)

Formula (2.6) suggests a change of variables. Let (ψi)1≤i≤Nh
be a standard finite element

basis on the coarse mesh (for example, Pk Lagrange finite elements). This basis is suitable

for approximating the homogenized solution u. Then, by composing it with oscillating

functions of the type x+ ǫw
(

x
ǫ

)

, we should obtain a good basis to approximate uǫ.

For example, taking a combination of the oscillating functions φǫi,K , defined by (2.2),

we build a vector φǫK solution of

{

−div (Aǫ∇φǫK) = 0 in K

φǫK = x on ∂K.
(2.7)

As already remarked, φǫK is similar to x+ ǫw
(

x
ǫ

)

(in the periodic case). Thus, by compo-

sition, we define an oscillating finite element basis

ψǫ
i (x) = ψi (φ

ǫ
K(x)) in each cell K. (2.8)

Finally, this basis (ψǫ
i )1≤i≤Nh

is used to compute an approximate solution of uǫ.

10



If the coarse basis (ψi)1≤i≤Nh
were P1 (piecewise affine) finite elements, then this

method is exactly that proposed by T. Hou in [22]. However, the advantages of this new

method are the following.

1. One can take higher order elements for (ψi)1≤i≤Nh
, thus improving the convergence

rate. More precisely, in estimate (2.5) the term h can be replaced by hk if Pk Lagrange

finite elements are used.

2. The idea can be generalized to the non-periodic case.

3. One can change the definition of φǫK , and do, for example, an oversampling method:

this will still yield a conforming method.

Remark 2.2.1 Roughly speaking, the method of Arbogast amounts to replace the Dirich-

let boundary condition in (2.2) by a Neumann boundary condition (but it works for mixed

finite elements), while the method of Babuska and Schwab uses periodic boundary condi-

tions.

2.3 Factorization method in neutronics

In this section we describe another method of numerical homogenization which does not

rely on the usual model problem (2.1) but rather on the following model of reaction-

diffusion equation














c
(x

ǫ

) ∂uǫ

∂t
− ǫ2div

(

D
(x

ǫ

)

uǫ

)

= σ
(x

ǫ

)

uǫ in Ω× IR+
∗

uǫ = 0 on ∂Ω× IR+
∗

uǫ(0) = u0 in Ω.

(2.9)

This model, as well as the following numerical method, is frequently used in nuclear reactor

physics (or neutronics, see e.g. [3], [4]).

Recall from the second lecture that the asymptotic behavior of (2.9) is given by

uǫ(t, x) ≈ e−λtw
(x

ǫ

)

u
(

ǫ2t, x
)

, (2.10)

where (λ,w) is the first eigencouple of the following cell spectral problem
{

−λc(y)w − div (D(y)w) = σ(y)w in Y

y → w(y) Y − periodic,
(2.11)

and u is the solution of the homogenized problem














c
∂u

∂τ
− div

(

Du
)

= 0 in Ω× IR+
∗

u = 0 on ∂Ω× IR+
∗

u(0) = u0 in Ω.

(2.12)
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We refer to the second lecture for the precise values of the homogenized coefficients in

(2.12). The asympotic result (2.10) allows to compute a correct approximation of the true

solution uǫ without using a fine mesh. As an example, we reproduce a result of [4] in Figure

2.4 (to which we refer for a precise description of the test case). It is a one-dimensional

result (with 20 cells) comparing the true solution uǫ and the right hand side of (2.10).

The solution is plotted for a very large time (thus, its spatial profile is given by the first

eigenfunction).

0 5 10 15 20
0

0.5

1

Direct Computation
Reconstructed Flux

Figure 2.4: Comparison of the left and right hand sides of (2.10).

As another example of the application of (2.10) we display a two-dimensional result

of V. Siess (PhD Thesis to appear) in Figure 2.5.

Although the asympotic result (2.10) is restricted to the periodic setting, it can be

used to derive a multiscale numerical method in the non-periodic case (see e.g. [11], [16],

[31]). When the coefficients in (2.9) are not periodic, one can still compute a cell spectral

problem (2.11) for each cell of the domain Ω. Then, in the spirit of (2.10), a change of

unknown is performed

vǫ
(

ǫ2t, x
)

=
uǫ(t, x)e

λt

w
(

x
ǫ

) ,

and a standard discretization scheme is applied to the new function vǫ (the coefficients in

the equation for vǫ are simply averaged in each cell). Remark that the function vǫ is not

continuous through the interfaces between cells. Therefore, if a finite element method is

used for vǫ, it should be a non conforming one.
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Figure 2.5: Reconstructed solution with (2.10).
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[27] Morgan, R. C.; Babuška, I. An approach for constructing families of homogenized

equations for periodic media. II. Properties of the kernel, SIAM J. Math. Anal. 22

(1991), no. 1, 16–33.
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